Structural Basis for the Interaction of the Golgi-Associated Retrograde Protein Complex with the T-SNARE Syntaxin 6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VAMP3 and VAMP8 Regulate the Development and Functionality of 5 Parasitophorous Vacuoles Housing Leishmania Amazonensis
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.09.195032; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 VAMP3 and VAMP8 regulate the development and functionality of 5 parasitophorous vacuoles housing Leishmania amazonensis 6 7 8 Olivier Séguin1, Linh Thuy Mai1, Sidney W. Whiteheart2, Simona Stäger1, Albert Descoteaux1* 9 10 11 12 1Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 13 Laval, Québec, Canada 14 15 2Department of Molecular and Cellular Biochemistry, University of Kentucky College of 16 Medicine, Lexington, Kentucky, United States of America 17 18 19 *Corresponding author: 20 E-mail: [email protected] 21 22 23 24 Short title: SNAREs and Leishmania-harboring communal parasitophorous vacuoles 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.09.195032; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 26 ABSTRACT 27 28 To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into 29 parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular 30 and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are 31 poorly understood. -
A Yeast Phenomic Model for the Gene Interaction Network Modulating
Louie et al. Genome Medicine 2012, 4:103 http://genomemedicine.com/content/4/12/103 RESEARCH Open Access A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis Raymond J Louie3†, Jingyu Guo1,2†, John W Rodgers1, Rick White4, Najaf A Shah1, Silvere Pagant3, Peter Kim3, Michael Livstone5, Kara Dolinski5, Brett A McKinney6, Jeong Hong2, Eric J Sorscher2, Jennifer Bryan4, Elizabeth A Miller3* and John L Hartman IV1,2* Abstract Background: The overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically. Methods: To gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a ‘phenomic’ model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1. -
The Endocytic Membrane Trafficking Pathway Plays a Major Role
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository RESEARCH ARTICLE The Endocytic Membrane Trafficking Pathway Plays a Major Role in the Risk of Parkinson’s Disease Sara Bandres-Ciga, PhD,1,2 Sara Saez-Atienzar, PhD,3 Luis Bonet-Ponce, PhD,4 Kimberley Billingsley, MSc,1,5,6 Dan Vitale, MSc,7 Cornelis Blauwendraat, PhD,1 Jesse Raphael Gibbs, PhD,7 Lasse Pihlstrøm, MD, PhD,8 Ziv Gan-Or, MD, PhD,9,10 The International Parkinson’s Disease Genomics Consortium (IPDGC), Mark R. Cookson, PhD,4 Mike A. Nalls, PhD,1,11 and Andrew B. Singleton, PhD1* 1Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain 3Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 4Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 5Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom 6Department of Pathophysiology, University of Tartu, Tartu, Estonia 7Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 8Department of Neurology, Oslo University Hospital, Oslo, Norway 9Department of Neurology and Neurosurgery, Department of Human Genetics, McGill University, Montréal, Quebec, Canada 10Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 11Data Tecnica International, Glen Echo, Maryland, USA ABSTRACT studies, summary-data based Mendelian randomization Background: PD is a complex polygenic disorder. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Defining the Kv2.1–Syntaxin Molecular Interaction Identifies a First-In-Class Small Molecule Neuroprotectant
Defining the Kv2.1–syntaxin molecular interaction identifies a first-in-class small molecule neuroprotectant Chung-Yang Yeha,b,1, Zhaofeng Yec,d,1, Aubin Moutale, Shivani Gaura,b, Amanda M. Hentonf,g, Stylianos Kouvarosf,g, Jami L. Salomana, Karen A. Hartnett-Scotta,b, Thanos Tzounopoulosa,f,g, Rajesh Khannae, Elias Aizenmana,b,g,2, and Carlos J. Camachoc,2 aDepartment of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; bPittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; cDepartment of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; dSchool of Medicine, Tsinghua University, Beijing 100871, China; eDepartment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724; fDepartment of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and gPittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Lily Yeh Jan, University of California, San Francisco, CA, and approved June 19, 2019 (received for review February 27, 2019) + The neuronal cell death-promoting loss of cytoplasmic K follow- (13). The Kv2.1-dependent cell death pathway is normally initiated ing injury is mediated by an increase in Kv2.1 potassium channels in by the oxidative liberation of zinc from intracellular metal-binding the plasma membrane. This phenomenon relies on Kv2.1 binding to proteins (14), leading to the sequential phosphorylation of syntaxin 1A via 9 amino acids within the channel intrinsically disor- Kv2.1 residues Y124 and S800 by Src and p38 kinases, respectively dered C terminus. Preventing this interaction with a cell and blood- (15–17). -
Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen, -
Mig-6 Controls EGFR Trafficking and Suppresses Gliomagenesis
Mig-6 controls EGFR trafficking and suppresses gliomagenesis Haoqiang Yinga,1, Hongwu Zhenga,1, Kenneth Scotta, Ruprecht Wiedemeyera, Haiyan Yana, Carol Lima, Joseph Huanga, Sabin Dhakala, Elena Ivanovab, Yonghong Xiaob,HaileiZhangb,JianHua, Jayne M. Stommela, Michelle A. Leea, An-Jou Chena, Ji-Hye Paika,OresteSegattoc, Cameron Brennand,e, Lisa A. Elferinkf,Y.AlanWanga,b, Lynda China,b,g, and Ronald A. DePinhoa,b,h,2 aDepartment of Medical Oncology, bBelfer Institute for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115; cLaboratory of Immunology, Istituto Regina Elena, Rome 00158, Italy; dHuman Oncology and Pathogenesis Program and eDepartment of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; fDepartment of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555; gDepartment of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and hDepartment of Medicine and Genetics, Harvard Medical School, Boston, MA 02115 Edited* by Webster K. Cavenee, Ludwig Institute, University of California, La Jolla, CA, and approved March 8, 2010 (received for review December 23, 2009) Glioblastoma multiforme (GBM) is the most common and lethal structural aberrations that serve as a key pathological driving primary brain cancer that is driven by aberrant signaling of growth force for tumor progression and many of them remain to be factor receptors, particularly the epidermal growth factor receptor characterized (6, 7). GBM possesses a highly rearranged genome (EGFR). EGFR signaling is tightly regulated by receptor endocytosis and high-resolution genome analysis has uncovered myriad and lysosome-mediated degradation, although the molecular somatic alterations on the genomic and epigenetic levels (2, 3). -
UVRAG Is Required for Virus Entry Through Combinatorial Interaction with the Class C-Vps Complex and Snares
UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs Sara Dolatshahi Pirooza, Shanshan Hea, Tian Zhanga, Xiaowei Zhanga, Zhen Zhaoa, Soohwan Oha, Douglas O’Connella, Payam Khalilzadeha, Samad Amini-Bavil-Olyaeea, Michael Farzanb, and Chengyu Lianga,1 aDepartment of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and bDepartment of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved January 15, 2014 (received for review November 4, 2013) Enveloped viruses exploit the endomembrane system to enter host (R)-SNAREs embedded in the other (3). Specifically, syntaxin 7 cells. Through a cascade of membrane-trafficking events, virus-bearing (STX7; Qa), Vti1b (Qb), and STX8 (Qc) on the LE, when paired vesicles fuse with acidic endosomes and/or lysosomes mediated by with VAMP7 (R), mediate the LE fusion with the lysosome, but SNAREs triggering viral fusion. However, the molecular mechanisms when paired with VAMP8 (R), regulate homotypic fusion of the underlying this process remain elusive. Here, we found that UV- LEs (4). The upstream process regulating LE-associated SNARE radiation resistance-associated gene (UVRAG), an autophagic tumor pairing relies on the class C vacuolar protein sorting (Vps) complex suppressor, is required for the entry of the prototypic negative- (hereafter referred to as C-Vps), composed of Vps11, Vps16, strand RNA virus, including influenza A virus and vesicular stoma- Vps18, and Vps33 as core subunits (5, 6). A recent study indicated titis virus, by a mechanism independent of IFN and autophagy. -
Syntaxin 16'S Newly Deciphered Roles in Autophagy
cells Perspective Syntaxin 16’s Newly Deciphered Roles in Autophagy Bor Luen Tang 1,2 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; [email protected]; Tel.: +65-6516-1040 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore Received: 19 November 2019; Accepted: 6 December 2019; Published: 17 December 2019 Abstract: Syntaxin 16, a Qa-SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor), is involved in a number of membrane-trafficking activities, particularly transport processes at the trans-Golgi network (TGN). Recent works have now implicated syntaxin 16 in the autophagy process. In fact, syntaxin 16 appears to have dual roles, firstly in facilitating the transport of ATG9a-containing vesicles to growing autophagosomes, and secondly in autolysosome formation. The former involves a putative SNARE complex between syntaxin 16, VAMP7 and SNAP-47. The latter occurs via syntaxin 16’s recruitment by Atg8/LC3/GABARAP family proteins to autophagosomes and endo-lysosomes, where syntaxin 16 may act in a manner that bears functional redundancy with the canonical autophagosome Qa-SNARE syntaxin 17. Here, I discuss these recent findings and speculate on the mechanistic aspects of syntaxin 16’s newly found role in autophagy. Keywords: ATG9; autophagy; autophagosome; SNARE; syntaxin 16; syntaxin 17; VAMP7 1. Introduction Vesicular membrane trafficking [1] and macroautophagy [2] are two highly conserved cellular membrane remodeling processes in eukaryotes. The former mediates the transfer of materials between membrane compartments, while the latter serves to degrade and recycle cytosolic as well as membranous cellular materials. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Disease-Related Cellular Protein Networks Differentially Affected
www.nature.com/scientificreports OPEN Disease‑related cellular protein networks diferentially afected under diferent EGFR mutations in lung adenocarcinoma Toshihide Nishimura1,8*, Haruhiko Nakamura1,2,8, Ayako Yachie3,8, Takeshi Hase3,8, Kiyonaga Fujii1,8, Hirotaka Koizumi4, Saeko Naruki4, Masayuki Takagi4, Yukiko Matsuoka3, Naoki Furuya5, Harubumi Kato6,7 & Hisashi Saji2 It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) afect downstream molecular networks and pathways. This study aimed to provide information on the infuences of these mutations. The study assessed 36 protein expression profles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identifed 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen- activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identifed various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our fndings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.