The Endocytic Membrane Trafficking Pathway Plays a Major Role

Total Page:16

File Type:pdf, Size:1020Kb

The Endocytic Membrane Trafficking Pathway Plays a Major Role View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository RESEARCH ARTICLE The Endocytic Membrane Trafficking Pathway Plays a Major Role in the Risk of Parkinson’s Disease Sara Bandres-Ciga, PhD,1,2 Sara Saez-Atienzar, PhD,3 Luis Bonet-Ponce, PhD,4 Kimberley Billingsley, MSc,1,5,6 Dan Vitale, MSc,7 Cornelis Blauwendraat, PhD,1 Jesse Raphael Gibbs, PhD,7 Lasse Pihlstrøm, MD, PhD,8 Ziv Gan-Or, MD, PhD,9,10 The International Parkinson’s Disease Genomics Consortium (IPDGC), Mark R. Cookson, PhD,4 Mike A. Nalls, PhD,1,11 and Andrew B. Singleton, PhD1* 1Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain 3Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 4Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 5Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom 6Department of Pathophysiology, University of Tartu, Tartu, Estonia 7Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 8Department of Neurology, Oslo University Hospital, Oslo, Norway 9Department of Neurology and Neurosurgery, Department of Human Genetics, McGill University, Montréal, Quebec, Canada 10Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 11Data Tecnica International, Glen Echo, Maryland, USA ABSTRACT studies, summary-data based Mendelian randomization Background: PD is a complex polygenic disorder. In analyses were applied to explore possible functional recent years, several genes from the endocytic genomic associations with expression or methylation membrane-trafficking pathway have been suggested to quantitative trait loci. contribute to disease etiology. However, a systematic Results: The heritability estimate attributed to endocytic analysis of pathway-specific genetic risk factors is yet to membrane-trafficking pathway was 3.58% (standard be performed. error = 1.17). Excluding previously nominated PD endo- Objectives: To comprehensively study the role of the cytic membrane-trafficking pathway genes, the missing endocytic membrane-trafficking pathway in the risk of PD. heritability was 2.21% (standard error = 0.42). Random Methods: Linkage disequilibrium score regression was heritability simulations were estimated to be 1.44% used to estimate PD heritability explained by 252 genes (standard deviation = 0.54), indicating that the unbiased involved in the endocytic membrane-trafficking pathway total heritability explained by the endocytic membrane- including genome-wide association studies data from trafficking pathway was 2.14%. Polygenic risk score 18,869 cases and 22,452 controls. We used pathway- based on endocytic membrane-trafficking pathway specific single-nucleotide polymorphisms to construct a showed a 1.25 times increase of PD risk per standard polygenic risk score reflecting the cumulative risk of com- deviation of genetic risk. Finally, Mendelian randomiza- mon variants. To prioritize genes for follow-up functional tion identified 11 endocytic membrane-trafficking ----------------------------------------------------------------------------------------------------------------------- *Correspondence to: Dr. Andrew Singleton, Porter Neuroscience Relevant conflicts of interest/financial disclosures: Mike A. Nalls’ Center, 35 Convent Drive, Bethesda, MD 20892, USA; participation is supported by a consulting contract between Data Tec- E-mail: [email protected] nica International and the National Institute on Aging, NIH, Bethesda, fl Dr. Bandres-Ciga, Dr. Saez-Atienzar, and Dr. Bonet-Ponce contributed MD, USA, as a possible con ict of interest. Dr. Nalls also consults for equally to the work. SK Therapeutics Inc, Lysosomal Therapeutics Inc, the Michael J. Fox Foundation, and Vivid Genomics, among others. Funding agencies: This research was supported, in part, by the fi Intramural Research Program of the National Institutes of Health Full nancial disclosures and author roles may be found in the (National Institute on Aging, National Institute of Neurological Disor- online version of this article. ders and Stroke; project numbers: project numbers 1ZIA- Received: 3 October 2018; Revised: 5 December 2018; Accepted: 23 NS003154, Z01-AG000949-02, and Z01-ES101986). In addition, December 2018 this work was supported by the Department of Defense (award W81XWH-09-2-0128) and The Michael J. Fox Foundation for Published online 00 Month 2018 in Wiley Online Library Parkinson’s Research. (wileyonlinelibrary.com). DOI: 10.1002/mds.27614 Movement Disorders, 2019 1 BANDRES-CIGA ET AL pathway genes showing functional consequence associ- made to identify potential avenues within this biological ated to PD risk. process suitable for therapeutic interventions. © 2019 Conclusions: We provide compelling genetic evidence International Parkinson and Movement Disorder Society that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this Key Words: endocytosis; genetic risk; heritability; pathway is warranted given that critical effort should be Parkinson’s disease; polygenic risk score Parkinson’s disease (PD) is a progressive neurodegen- cargo can be retained in early endosomes that will eventu- erative disorder clinically characterized by the manifes- ally mature into late endosomes and fuse with lysosomes tation of motor disturbances such as bradykinesia, to ensure cargo degradation. In parallel, proteins can also rigidity, tremor, and a wide range of nonmotor symp- traffic between endosomes and the Golgi apparatus (for a toms. Disease is caused by the death of the dopaminer- review, see a previous work9). A substantial amount of gic neurons in the SN with the consequent deficit of genetic variation in PD and parkinsonism previously striatal dopamine.1 The etiology of PD is complex, nominated genes has been associated with vesicle traffick- including genetic, epigenetic, and environmental fac- ing by endosomal gene alterations,10 including monogenic tors. Familial PD accounts for less than 10% of the genes (VPS35,11 DNAJC613,18) and GWAS-nominated total cases, mostly attributed to monogenic forms with genes (RAB7L1,12,13 SH3GL2,14 GAK,15,16 and autosomal-dominant (including SNCA, LRRK2, and CHMP2B15,17). In addition, other well-known PD genes, VPS35) or autosomal-recessive pattern of inheritance, such as LRRK212,13 and PLA2G6, 18 seem to be linked such as PARKIN, PINK1, and DJ-1, among others.2,3 to the aforementioned pathway through their biological However, the vast majority of the disease is considered interaction with EMPT genes. LRRK2 binds to to be sporadic, likely caused by the cumulative effect of RAB7L112,13 andPLA2G6interactswithVPS35and multiple common or rare variants of small or moderate VPS26, although a clear role of these genes in the EMTP effect sizes in addition to other unknown environmental is yet to be elucidated. The genes involved in the EMTP and stochastic factors. play different roles within the pathway. For instance, Over the last two decades, extensive work in genetics DNAJC6, SYNJ1, GAK,andSH3GL2 are linked to has uncovered up to 92 common risk loci associated clathrin-coated vesicles whereas VPS35, DNAJC13,or with idiopathic PD.4 As expected from complex diseases, RAB7L1 participate in recycling components from the the PD-related signals identified to date only account for endosomes to the Golgi. Hence, it seems plausible that a small proportion of the total phenotypic variation, other genes in that pathway could be involved in PD risk defined as heritability.5 It is estimated that only around and therefore account for the nonreported heritability. 10% to 15% of the overall heritable risk of PD is Based on these premises, we aimed to benefit from a cel- explained by current genome-wide association studies lular perspective to systematically explore the genetic con- (GWAS).4 The most plausible explanation for the “miss- tribution of 252 endosomal membrane-trafficking–related ing heritability” might be small effect sizes of the yet to genes on the susceptibility for PD. We set out to study to be discovered risk loci which do not reach GWAS signifi- what extent common variation in these genes might play a cance, as well as structural genomic and rare variation role on the genetic architecture of PD by performing poorly covered by current technology.6 Undoubtedly, genome-wide heritability estimations and polygenic risk the estimated heritability in PD suggests that a significant versus disease status and age at onset in the International amount of risk has not been uncovered yet. Parkinson’s Disease Genomics Consortium (IPDGC) Aligned with the genetic discoveries, a big effort has GWAS data set. We also applied Mendelian randomization been made to identify how those genes interact within to attempt to investigate possible functional genomic asso- biological pathways to elucidate the cellular and molecu- ciations between nominated variants of interest within this lar processes that could explain the neurodegenerative pathway versus expression and methylation
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma
    cancers Article Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma 1, 1, 1 1 1 Lan Wang y, Anudeep Yekula y, Koushik Muralidharan , Julia L. Small , Zachary S. Rosh , Keiko M. Kang 1,2, Bob S. Carter 1,* and Leonora Balaj 1,* 1 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; [email protected] (L.W.); [email protected] (A.Y.); [email protected] (K.M.); [email protected] (J.L.S.); [email protected] (Z.S.R.); [email protected] (K.M.K.) 2 School of Medicine, University of California San Diego, San Diego, CA 92092, USA * Correspondence: [email protected] (B.S.C.); [email protected] (L.B.) These authors contributed equally. y Received: 11 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Distinguishing Pleiotropy from Linked QTL Between Milk Production Traits
    Cai et al. Genet Sel Evol (2020) 52:19 https://doi.org/10.1186/s12711-020-00538-6 Genetics Selection Evolution RESEARCH ARTICLE Open Access Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle Zexi Cai1*†, Magdalena Dusza2†, Bernt Guldbrandtsen1, Mogens Sandø Lund1 and Goutam Sahana1 Abstract Background: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that afect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Efect-bearing variants often afect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic efects of variants in candidate genes. However, large sample sizes are required to achieve sufcient power. Multi-trait meta-analysis is one approach to deal with this prob- lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. Results: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com- pared with the subjective assessment of overlapping of single-trait QTL confdence intervals. Pleiotropic efects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confrmed by bivariate association analysis. The previously reported pleiotropic efects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic efects of variants in GHR on milk yield and fat yield were con- frmed.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • Mitochondrial Rab Gaps Govern Autophagosome Biogenesis During Mitophagy Koji Yamano1, Adam I Fogel1, Chunxin Wang1, Alexander M Van Der Bliek2, Richard J Youle1*
    RESEARCH ARTICLE elife.elifesciences.org Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy Koji Yamano1, Adam I Fogel1, Chunxin Wang1, Alexander M van der Bliek2, Richard J Youle1* 1Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States; 2Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, United States Abstract Damaged mitochondria can be selectively eliminated by mitophagy. Although two gene products mutated in Parkinson’s disease, PINK1, and Parkin have been found to play a central role in triggering mitophagy in mammals, how the pre-autophagosomal isolation membrane selectively and accurately engulfs damaged mitochondria remains unclear. In this study, we demonstrate that TBC1D15, a mitochondrial Rab GTPase-activating protein (Rab-GAP), governs autophagosome biogenesis and morphology downstream of Parkin activation. To constrain autophagosome morphogenesis to that of the cargo, TBC1D15 inhibits Rab7 activity and associates with both the mitochondria through binding Fis1 and the isolation membrane through the interactions with LC3/ GABARAP family members. Another TBC family member TBC1D17, also participates in mitophagy and forms homodimers and heterodimers with TBC1D15. These results demonstrate that TBC1D15 and TBC1D17 mediate proper autophagic encapsulation of mitochondria by regulating Rab7 activity at the interface between mitochondria and isolation membranes. DOI: 10.7554/eLife.01612.001 *For correspondence: [email protected] Introduction Competing interests: See page 21 Autophagosomes enclose seemingly random portions of the cytoplasm to supply nutrients during starvation or they can specifically engulf cellular debris to maintain quality control (Mizushima et al., Funding: See page 21 2011).
    [Show full text]
  • Evolution of the DAN Gene Family in Vertebrates
    bioRxiv preprint doi: https://doi.org/10.1101/794404; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. RESEARCH ARTICLE Evolution of the DAN gene family in vertebrates Juan C. Opazo1,2,3, Federico G. Hoffmann4,5, Kattina Zavala1, Scott V. Edwards6 1Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. 2David Rockefeller Center for Latin American Studies, Harvard University, Cambridge, MA 02138, USA. 3Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD). 4 Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, 39762, USA. Cite as: Opazo JC, Hoffmann FG, 5 Zavala K, Edwards SV (2020) Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State Evolution of the DAN gene family in University, Mississippi State, 39762, USA. vertebrates. bioRxiv, 794404, ver. 3 peer-reviewed and recommended by 6 PCI Evolutionary Biology. doi: Department of Organismic and Evolutionary Biology, Harvard University, 10.1101/794404 Cambridge, MA 02138, USA. This article has been peer-reviewed and recommended by Peer Community in Evolutionary Biology Posted: 29 June 2020 doi: 10.24072/pci.evolbiol.100104 ABSTRACT Recommender: Kateryna Makova The DAN gene family (DAN, Differential screening-selected gene Aberrant in Neuroblastoma) is a group of genes that is expressed during development and plays fundamental roles in limb bud formation and digitation, kidney formation and morphogenesis and left-right axis specification.
    [Show full text]
  • The Function and Mechanism of Chmp1a in Tumor Development
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2008 The uncF tion and Mechanism of Chmp1A in Tumor Development Jing Li [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, and the Oncology Commons Recommended Citation Li, Jing, "The unctF ion and Mechanism of Chmp1A in Tumor Development" (2008). Theses, Dissertations and Capstones. Paper 120. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. THE FUNCTION AND MECHANISM OF CHMP1A IN TUMOR DEVELOPMENT Thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Jing Li Committee Members: Dr. Simon Collier, Committee Chairperson Dr. Maiyon Park Dr. Guozhang Zhu Marshall University May 2008 ABSTRACT THE FUNCTION AND MECHANISM OF CHMP1A IN TUMOR DEVELOPMENT By Jing Li Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) is a member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) family. ESCRT complexes play central roles in endosome mediated trafficking via MVB (multivesicular body) formation and sorting. Chmp1A is a potential tumor suppressor, especially in the pancreas. Knockdown of Chmp1A resulted in an increase of anchorage-independent growth of HEK 293T cells. Chmp1A shRNA expressing HEK 293T cells transformed these non-tumorigeneic cells to form tumors in xenograft assays.
    [Show full text]
  • Multivariate Analysis Reveals Differentially Expressed Genes
    www.nature.com/scientificreports OPEN Multivariate analysis reveals diferentially expressed genes among distinct subtypes of difuse astrocytic gliomas: diagnostic implications Nerea González‑García1,2, Ana Belén Nieto‑Librero1,2, Ana Luisa Vital3, Herminio José Tao4, María González‑Tablas2,5,6, Álvaro Otero2, Purifcación Galindo‑Villardón1,2, Alberto Orfao2,5,6 & María Dolores Tabernero2,5,6,7* Diagnosis and classifcation of gliomas mostly relies on histopathology and a few genetic markers. Here we interrogated microarray gene expression profles (GEP) of 268 difuse astrocytic gliomas—33 difuse astrocytomas (DA), 52 anaplastic astrocytomas (AA) and 183 primary glioblastoma (GBM)—based on multivariate analysis, to identify discriminatory GEP that might support precise histopathological tumor stratifcation, particularly among inconclusive cases with II–III grade diagnosed, which have diferent prognosis and treatment strategies. Microarrays based GEP was analyzed on 155 difuse astrocytic gliomas (discovery cohort) and validated in another 113 tumors (validation set) via sequential univariate analysis (pairwise comparison) for discriminatory gene selection, followed by nonnegative matrix factorization and canonical biplot for identifcation of discriminatory GEP among the distinct histological tumor subtypes. GEP data analysis identifed a set of 27 genes capable of diferentiating among distinct subtypes of gliomas that might support current histological classifcation. DA + AA showed similar molecular profles with only a few discriminatory genes
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Identification and Characterization of Genes Essential for Human Brain Development
    Identification and Characterization of Genes Essential for Human Brain Development The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ganesh, Vijay S. 2012. Identification and Characterization of Genes Essential for Human Brain Development. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9773743 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Copyright © 2012 by Vijay S. Ganesh All rights reserved. Dissertation Advisor: Dr. Christopher A. Walsh Author: Vijay S. Ganesh Identification and Characterization of Genes Essential for Human Brain Development Abstract The human brain is a network of ninety billion neurons that allows for many of the behavioral adaptations considered unique to our species. One-fifth of these neurons are layered in an epithelial sheet known as the cerebral cortex, which is exquisitely folded into convolutions called gyri. Defects in neuronal number clinically present with microcephaly (Greek for “small head”), and in inherited cases these defects can be linked to mutations that identify genes essential for neural progenitor proliferation. Most microcephaly genes are characterized to play a role in the centrosome, however rarer presentations of microcephaly have identified different mechanisms. Charged multivesicular body protein/Chromatin modifying protein 1A (CHMP1A) is a member of the ESCRT-III endosomal sorting complex, but is also suggested to localize to the nuclear matrix and regulate chromatin.
    [Show full text]