Multivariate Analysis Reveals Differentially Expressed Genes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Analysis of Retinopathy in Type 1 Diabetes
Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194). -
Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3. -
Refinement and Discovery of New Hotspots of Copy-Number Variation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder Santhosh Girirajan,1,5 Megan Y. Dennis,1,5 Carl Baker,1 Maika Malig,1 Bradley P. Coe,1 Catarina D. Campbell,1 Kenneth Mark,1 Tiffany H. Vu,1 Can Alkan,1 Ze Cheng,1 Leslie G. Biesecker,2 Raphael Bernier,3 and Evan E. Eichler1,4,* Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n ¼ 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n ¼ 1,247, median size 79 kbp, range 3–96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p ¼ 0.01; OR ¼ 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism. -
Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis
Hindawi Disease Markers Volume 2019, Article ID 3521746, 10 pages https://doi.org/10.1155/2019/3521746 Research Article Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis Wei Liu,1 Jishi Ye,2 and Hong Yan 1 1Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China 2Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China Correspondence should be addressed to Hong Yan; [email protected] Received 2 November 2018; Accepted 31 December 2018; Published 10 February 2019 Academic Editor: Hubertus Himmerich Copyright © 2019 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. The neurobiological mechanisms underlying the chemotherapy-induced neuropathic pain are only partially understood. Among them, microglia activation was identified as the key component of neuropathic pain. The aim of this study was to identify differentially expressed genes (DEGs) and pathways associated with vincristine-induced neuropathic pain by using bioinformatics analysis and observe the effects of oxycodone on these DEG expressions in a vincristine-induced microglia activation model. Methods. Based on microarray profile GSE53897, we identified DEGs between vincristine-induced neuropathic pain rats and the control group. Using the ToppGene database, the prioritization DEGs were screened and performed by gene ontology (GO) and signaling pathway enrichment. A protein-protein interaction (PPI) network was used to explore the relationship among DEGs. -
Podoplanin Regulates Mammary Stem Cell Function and Tumorigenesis by Potentiating Wnt/Β-Catenin Signaling Laura Bresson1,2,3, Marisa M
© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev160382. doi:10.1242/dev.160382 STEM CELLS AND REGENERATION RESEARCH ARTICLE Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling Laura Bresson1,2,3, Marisa M. Faraldo1,4, Amandine Di-Cicco1, Miguel Quintanilla5, Marina A. Glukhova1,4 and Marie-Ange Deugnier1,4,* ABSTRACT K5/14), P-cadherin, smooth muscle-specific contractile proteins, Δ Stem cells (SCs) drive mammary development, giving rise postnatally and the transcription factors Np63 (an isoform of Trp63) and Slug/ to an epithelial bilayer composed of luminal and basal myoepithelial Snail2, which are essential for the maintenance of basal cell identity cells. Dysregulation of SCs is thought to be at the origin of certain breast (Yalcin-Ozuysal et al., 2010; Guo et al., 2012). The luminal cell cancers; however, the molecular identity of SCs and the factors layer is characterized by the expression of K8/18. It includes a regulating their function remain poorly defined. We identified the subset of hormone-sensing cells that express estrogen, progesterone transmembrane protein podoplanin (Pdpn) as a specific marker of the and prolactin receptors (ER, PR and PrlR, respectively) and produce basal compartment, including multipotent SCs, and found Pdpn local mediators involved in the paracrine control of basal and localized at the basal-luminal interface. Embryonic deletion of Pdpn luminal cell function (Brisken and Ataca, 2015). targeted to basal cells diminished basal and luminal SC activity and It is established that both mammary lineages, basal and luminal, affected the expression of several Wnt/β-catenin signaling components originate from a common embryonic stem cell (SC) expressing basal in basal cells. -
Oncogenic Role of SFRP2 in P53-Mutant Osteosarcoma Development Via Autocrine and Paracrine Mechanism
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism Huensuk Kima,b,c, Seungyeul Yood,e, Ruoji Zhouf,g,AnXuf, Jeffrey M. Bernitza,b,c, Ye Yuana,b,c, Andreia M. Gomesa,b,h,i, Michael G. Daniela,b,c, Jie Sua,b,c,j, Elizabeth G. Demiccok,l, Jun Zhud,e, Kateri A. Moorea,b,c, Dung-Fang Leea,b,f,g,m,n,1,2, Ihor R. Lemischkaa,b,c,o,1,3, and Christoph Schaniela,b,c,o,p,1,2 aDepartment of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bThe Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cThe Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dDepartment of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; eIcahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; fDepartment of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030; gThe University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030; hCentre for Neuroscience and Cell Biology, University of Coimbra, 3030-789 Coimbra, Portugal; iInstitute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; jCancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; kDepartment of Pathology, Icahn School -
The Endocytic Membrane Trafficking Pathway Plays a Major Role
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository RESEARCH ARTICLE The Endocytic Membrane Trafficking Pathway Plays a Major Role in the Risk of Parkinson’s Disease Sara Bandres-Ciga, PhD,1,2 Sara Saez-Atienzar, PhD,3 Luis Bonet-Ponce, PhD,4 Kimberley Billingsley, MSc,1,5,6 Dan Vitale, MSc,7 Cornelis Blauwendraat, PhD,1 Jesse Raphael Gibbs, PhD,7 Lasse Pihlstrøm, MD, PhD,8 Ziv Gan-Or, MD, PhD,9,10 The International Parkinson’s Disease Genomics Consortium (IPDGC), Mark R. Cookson, PhD,4 Mike A. Nalls, PhD,1,11 and Andrew B. Singleton, PhD1* 1Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain 3Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 4Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 5Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom 6Department of Pathophysiology, University of Tartu, Tartu, Estonia 7Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 8Department of Neurology, Oslo University Hospital, Oslo, Norway 9Department of Neurology and Neurosurgery, Department of Human Genetics, McGill University, Montréal, Quebec, Canada 10Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 11Data Tecnica International, Glen Echo, Maryland, USA ABSTRACT studies, summary-data based Mendelian randomization Background: PD is a complex polygenic disorder. -
Three Dact Gene Family Members Are Expressed During Embryonic Development
Three Dact Gene Family Members are Expressed During Embryonic Development and in the Adult Brains of Mice Daniel A Fisher, Saul Kivimäe, Jun Hoshino, Rowena Suriben, Pierre -Marie Martin, Nichol Baxter, Benjamin NR Cheyette Department of Psychiatry & Gra duate Programs in Developmental Biology and Neuroscience, University of California, San Francisco, 94143-2611 Correspondence: Benjamin NR Cheyette [email protected] 415.476.7826 Running Title: Mouse Dact Gene Family Expression Key Words: mouse, Dpr, Frodo, Thyex, Dact, Wnt, Dvl, expression, embryo, brain Supported by: NIH: MH01750 K08; NARSAD Young Investigator Award; NAAR award #551. Abstract Members of the Dact protein family were initially identified through binding to Dishevelled (Dvl), a cytoplasmic protein central to Wnt signaling. During mouse development, Dact1 is detected in the presomitic mesoderm and somites during segmentation, in the limb bud mesenchyme and other mesoderm-derived tissues, and in the central nervous system (CNS). Dact2 expression is most prominent during organogenesis of the thymus, kidneys, and salivary glands, with much lower levels in the somites and in the developing CNS. Dact3, not previously described in any organism, is expressed in the ventral region of maturing somites, limb bud and branchial arch mesenchyme, and in the embryonic CNS; of the three paralogs it is the most highly expressed in the adult cerebral cortex. These data are consistent with studies in other vertebrates showing that Dact paralogs have distinct signaling and developmental roles, and suggest they may differentially contribute to postnatal brain physiology. Introduction Signaling downstream of secreted Wnt ligands is a conserved process in multicellular animals that plays important roles during development and, when misregulated, contributes to cancer and other diseases (Polakis, 2000; Moon et al., 2002). -
Evolution of the DAN Gene Family in Vertebrates
bioRxiv preprint doi: https://doi.org/10.1101/794404; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. RESEARCH ARTICLE Evolution of the DAN gene family in vertebrates Juan C. Opazo1,2,3, Federico G. Hoffmann4,5, Kattina Zavala1, Scott V. Edwards6 1Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. 2David Rockefeller Center for Latin American Studies, Harvard University, Cambridge, MA 02138, USA. 3Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD). 4 Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, 39762, USA. Cite as: Opazo JC, Hoffmann FG, 5 Zavala K, Edwards SV (2020) Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State Evolution of the DAN gene family in University, Mississippi State, 39762, USA. vertebrates. bioRxiv, 794404, ver. 3 peer-reviewed and recommended by 6 PCI Evolutionary Biology. doi: Department of Organismic and Evolutionary Biology, Harvard University, 10.1101/794404 Cambridge, MA 02138, USA. This article has been peer-reviewed and recommended by Peer Community in Evolutionary Biology Posted: 29 June 2020 doi: 10.24072/pci.evolbiol.100104 ABSTRACT Recommender: Kateryna Makova The DAN gene family (DAN, Differential screening-selected gene Aberrant in Neuroblastoma) is a group of genes that is expressed during development and plays fundamental roles in limb bud formation and digitation, kidney formation and morphogenesis and left-right axis specification. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
Rabbit Anti-ADAM9/FITC Conjugated Antibody-SL20104R-FITC
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-ADAM9/FITC Conjugated antibody SL20104R-FITC Product Name: Anti-ADAM9/FITC Chinese Name: FITC标记的去整合素样金属蛋白酶9抗体 A disintegrin and metalloproteinase domain 9; A disintegrin and metalloproteinase domain 9; ADAM 9 antibody ADAM metallopeptidase domain 9; Cellular disintegrin Alias: related protein; Disintegrin and metalloproteinase domain 9; MCMP; MDC9; Meltrin gamma; Metalloprotease disintegrin cysteine rich protein 9; Mltng; Myeloma cell metalloproteinase; ADAM9_HUMAN. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Cow,Rabbit,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 88kDa Form: Lyophilized or Liquid Concentration: 2mg/1ml immunogen: KLH conjugated synthetic peptide derived from human ADAM9 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: This gene encodes a member of the ADAM (a disintegrin and metalloprotease domain) family. Members of this family are membrane-anchored proteins structurally related to Product Detail: snake venom disintegrins, and have been implicated in a variety of biological processes involving cell-cell and cell-matrix interactions, including fertilization, muscle development, and neurogenesis. -
Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.