(12) United States Patent (10) Patent No.: US 8,932,761 B2 Yamaguchi Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,932,761 B2 Yamaguchi Et Al US008932761 B2 (12) United States Patent (10) Patent No.: US 8,932,761 B2 Yamaguchi et al. (45) Date of Patent: *Jan. 13, 2015 (54) ANODE AND METHOD OF HOIM 4/1.31 (2010.01) MANUFACTURING THE SAME, AND HO1 M 4/134 (2010.01) BATTERY AND METHOD OF HOIM IO/O52 (2010.01) MANUFACTURING THE SAME (52) U.S. Cl. (75) Inventors: Hiroyuki Yamaguchi, Fukushima (JP); CPC H0IM 4/38 (2013.01); H0IM 4/13 (2013.01); H01 M 4/139 (2013.01); H0IM 4/366 Hiroshi Horiuchi, Fukushima (JP): (2013.01); H0IM 4/485 (2013.01); HOIM Kenichi Kawase, Fukushima (JP); 4/131 (2013.01); H01 M 4/134 (2013.01): HOIM Tadahiko Kubota, Fukushima (JP); 10/052 (2013.01); Y02E 60/122 (2013.01) Hideki Nakai, Fukushima (JP); USPC ........................................ 429/231.1; 429/233 Takakazu Hirose, Fukushima (JP) (58) Field of Classification Search (73) Assignee: Sony Corporation, Tokyo (JP) USPC .............. 429/218.1, 209, 233,236, 242, 221, 429/223, 229, 220; 204/291, 290.01 (*) Notice: Subject to any disclaimer, the term of this See application file for complete search history. patent is extended or adjusted under 35 U.S.C. 154(b) by 937 days. (56) References Cited This patent is Subject to a terminal dis U.S. PATENT DOCUMENTS claimer. 4,950,566 A 8/1990 Huggins et al. (21) Appl. No.: 11/995,802 5,696,206 A * 12/1997 Chen et al. .................... 525, 186 (22) PCT Filed: May 22, 2007 2004/009 1780 A1* 5/2004 Kinoshita et al. .......... 429,231.1 (86). PCT No.: PCT/UP2007/060401 FOREIGN PATENT DOCUMENTS S371 (c)(1), JP 59-157969 * 9, 1984 ............ HOM 10/12 (2), (4) Date: Jan. 15, 2008 JP 08-333603 * 12, 1996 ................ B22F1/OO (87) PCT Pub. No.: WO2007/136046 (Continued) OTHER PUBLICATIONS PCT Pub. Date: Nov. 29, 2007 (65) Prior Publication Data International Search Report dated Oct. 7, 2007. US 2009/0092892 A1 Apr. 9, 2009 Primary Examiner — Raymond Alejandro (74) Attorney, Agent, or Firm — Dentons US LLP (30) Foreign Application Priority Data (57) ABSTRACT May 23, 2006 (JP) ................................. 2006-142977 An anode wherein the anode active material layer includes May 23, 2006 (JP) ................................. 2006-142978 anode active material particles made of an anode active mate May 11, 2007 (JP) ................................. 2007-127005 rial including at least one of silicon and tin as an element. An May 11, 2007 (JP) ................................. 2007-127006 oxide-containing film including an oxide of at least one kind (51) Int. Cl. selected from the group consisting of silicon, germanium and HOLM 4/58 (2010.01) tin is formed in a region in contact with an electrolytic solu HOLM 4/38 (2006.01) tion of the surface of each anode active material particle. The HOLM 4/13 (2010.01) region in contact with the electrolytic solution of the surface HOLM 4/39 (2010.01) of each anode active material particle is covered with the HOLM 4/36 (2006.01) oxide-containing film. HOLM 4/485 (2010.01) 8 Claims, 8 Drawing Sheets a- 22B, 34B 22D, 34D 220, 34C 22A, 34A US 8,932,761 B2 Page 2 (56) References Cited JP 2004-171874 6, 2004 JP 2004-319469 11, 2004 JP 2005-26144 * 1 2005 ............ HO1M 12/06 FOREIGN PATENT DOCUMENTS JP 2005-317446 11, 2005 WO 2006/033358 3, 2006 JP 09-28902O * 11, 1997 .............. HO1 M 4/62 JP 2000-012018 1, 2000 * cited by examiner U.S. Patent Jan. 13, 2015 Sheet 1 of 8 US 8,932,761 B2 25 14 15A 15 ZZZZ17212121727-27.212127 A-1 4K) / WSZZY RN 4. N 6 727-721212 SS NYSAYYYYS 727-ZZZZY SN 17 N 12 11 O 1 2 NIK,NOEN,NOEN-ON-NOEN-NOEN-NOFSTIN 3 4. NÚ,ÍRÓ-ŠŒ-ÍÑIŠI?,?,TÍN NOENOESJTS,NOETSOENTSTSTONTST?OENTÍN 13 STY CZZZZZ& ZYZZYZZZZZZZY77Z Z24-4444 26 FIG.NN 1 NN U.S. Patent Jan. 13, 2015 Sheet 2 of 8 US 8,932,761 B2 U.S. Patent Jan. 13, 2015 Sheet 3 of 8 US 8,932,761 B2 FG. 3 U.S. Patent Jan. 13, 2015 Sheet 5 of 8 US 8,932,761 B2 e- 22B, 34B (AACS U.S. Patent Jan. 13, 2015 Sheet 6 of 8 US 8,932,761 B2 rN N 2213,2. O2, U.S. Patent Jan. 13, 2015 Sheet 7 of 8 US 8,932,761 B2 U.S. Patent Jan. 13, 2015 Sheet 8 of 8 US 8,932,761 B2 1600 1400 1200 1000 800 300 295 290 285 ENERGY (eV) FG. 9 US 8,932,761 B2 1. 2 ANODE AND METHOD OF coating film formed by a vapor-phase method, thereby suffi MANUFACTURING THE SAME, AND cient cycle characteristics cannot be obtained, so a further BATTERY AND METHOD OF improvement is desired. MANUFACTURING THE SAME In view of the foregoing, it is an object of the invention to provide an anode capable of improving charge-discharge effi TECHNICAL FIELD ciency and a method of manufacturing the anode, and a bat tery using the anode, and a method of manufacturing the The present invention relates to an anode including an battery. anode active material which includes at least one of silicon A first anode according to the invention is used in a battery 10 including a cathode, an anode and an electrolyte, and the (Si) and tin (Sn) as an element, and a method of manufactur anode includes: an anode current collector; and an anode ing the anode, and a battery and a method of manufacturing active material layer arranged on the anode current collector, the battery. wherein the anode active material layer includes anode active BACKGROUND ART material particles including at least one of silicon and tin as an 15 element, and each of the anode active material particles includes an oxide-containing film including an oxide of at In recent years, a large number of portable electronic least one kind selected from the group consisting of silicon, devices such as camcorders, digital still cameras, cellular germanium and tin in a region in contact with the electrolyte phones, personal digital assistances and laptop computers of its surface. In this case, the oxide-containing film is formed have been emerged, and an attempt to reduce the size and the by a liquid-phase method. weight of them has been made. Accordingly, the development A method of manufacturing an anode according to the oflightweight secondary batteries capable of obtaining a high invention is a method of manufacturing an anode used in a energy density as power sources for the electronic devices battery including a cathode, an anode and an electrolyte, and have been promoted. Among them, a lithium-ion secondary the method includes: a step of arranging an anode active battery using a carbon material for an anode, a composite 25 material layer including anode active material particles on an material of lithium (Li) and a transition metal for a cathode anode current collector, the anode active material particles and a carbonate for an electrolytic solution has been widely including at least one of silicon and tin; and a step of forming put to practical use, because the lithium-ion secondary battery an oxide-containing film including an oxide of at least one can obtain a larger energy density thana lead-acid battery and kind selected from silicon, germanium and tin in a region in a nickel-cadmium battery in related arts. 30 contact with the electrolyte of the surface of each of the anode Moreover, recently as the performance of portable elec active material particles by a liquid-phase method. tronic devices is enhanced, a further improvement in capacity A first battery according to the invention includes a cath is desired, and it is considered to use tin, silicon or the like as ode, an anode and an electrolyte, and the anode is the above an anode active material instead of a carbon material (for described anode according to the invention. Moreover, in a 35 method of manufacturing a battery according to the invention, example, refer to Patent Literature 1). It is because the theo an anode is manufactured by the above-described method of retical capacity of tin, 994 mAh/g, and the theoretical capac manufacturing an anode according to the invention. ity of silicon, 4199 mAh/g are much larger than the theoretical In the first anode and the first battery according to the capacity of graphite, 372 mAh/g, so an increase in capacity invention, the oxide-containing film is formed in a region in can be expected. 40 contact with the electrolyte of the surface of each anode active However, a tin alloy or a silicon alloy into which lithium is material particle by a liquid-phase method, so the region in inserted has high activity, so there is an issue that an electro contact with the electrolyte of the surface of each anode active lytic Solution is easily decomposed, and lithium is inacti material particle can be uniformly covered with the oxide vated. Therefore, when charge and discharge are repeated, containing film, and chemical stability can be improved. charge-discharge efficiency declines, thereby sufficient cycle 45 Therefore, in the battery using the anode, charge-discharge characteristics cannot be obtained. efficiency can be improved. Therefore, it is considered to form an inert layer on a In the method of manufacturing an anode and the method Surface of an anode active material, and, for example, it is of manufacturing a battery according to the invention, the proposed to form a coating film of silicon oxide on a Surface oxide-containing film is formed by a liquid-phase method, so of an anode active material (for example, refer to Patent 50 the oxide-containing film can be formed in the interior, which Literature 2).
Recommended publications
  • United States Patent (10) Patent No.: US 7,190,052 B2 Lindgren (45) Date of Patent: Mar
    US0071900.52B2 (12) United States Patent (10) Patent No.: US 7,190,052 B2 Lindgren (45) Date of Patent: Mar. 13, 2007 (54) SEMICONDUCTOR DEVICES WITH OXIDE 5,516,721 A 5/1996 Galli et al. COATINGS SELECTIVELY POSITONED 5,683,946 A 1 1/1997 Lu et al. OVER EXPOSED FEATURES INCLUDING 5,776,829 A 7/1998 Homma et al. SEMCONDUCTOR MATERAL 6,022,814 A 2/2000 Mikoshiba et al. 6,045,877 A 4/2000 Gleason et al. (75) Inventor: Joseph T. Lindgren, Boise, ID (US) 6,174,8246,130,116 AB1 10/20001/2001 MichaelSmith et etal. al. 6, 197,110 B1 3/2001 Lee et al. (73) Assignee: Micron Technology, Inc., Boise, ID 6,251,753 B1 6/2001 Yeh et al. (US) (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Schreiber, S.J. et al., “Low Temperature Deposition of Microcrystal line Silicon For Thin Film Transistors,' CUED Electronic Devices (21) Appl. No.: 10/454.256 and Materials Group, http://www2.eng.cam.ac.uk/~www-edm/ (22) Filed: Jun. 3, 2003 projects/lowtempdepf1.htm, prior to Sep. 2000, 2 pages. e as (Continued) (65) Prior Publication Data Primary Examiner T. N. Quach US 2004/OO33682 A1 Feb. 19, 2004 (74) Attorney, Agent, or Firm TraskBritt Related U.S. Application Data (57) ABSTRACT (62) Division of application No. 10/218.268, filed on Aug. 13, 2002, now Pat. No. 6,593,221. A semiconductor device structure includes a passivation layer through which only non-silicon-comprising structures (51) Int.
    [Show full text]
  • Hydrofluoric Acid Reduction Project – TURI Grant 2017
    Hydrofluoric Acid Reduction Project – TURI Grant 2017 Sponsored by: Toxics Use Reduction Institute 126 John St Lowell, MA 01854 TURI Report 2018-001 Authors: Tyler DeFosse David Demarey Supervisor: Paul Watson Special Thanks to: Joy Onasch – Toxics Use Reduction Institute John Raschko – Massachusetts Office of Technical Assistance and Technology 1 Table of Contents 1.0 Executive Summary .......................................................................................................................... 3 2.0 Background ....................................................................................................................................... 5 2.1 Introduction ......................................................................................................................................... 5 2.2 Literature Searches .......................................................................................................................... 6 2.2.1 Diffusion Dialysis ...................................................................................................................... 6 2.2.2 Reverse Osmosis ....................................................................................................................... 7 2.2.3 Hydrofluoric Acid Wastewater Recycling Method ............................................................... 7 2.2.4 Issues Regarding the Etching of Silicon Dioxide ................................................................. 8 2.3 Alternative Strategies .....................................................................................................................
    [Show full text]
  • Fluorosilicic Acid CAS No
    Product Safety Summary Fluorosilicic Acid CAS No. 16961-83-4 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information in the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names Fluorosilicic acid (FSA) Hexafluorosilicic acid (HFA or HFS) Sand acid Silicate(2-), hexafluoro- hydrogen (1:2) Silicofluoride Fluosilicic acid Hydroflurosilicic acid Silicofluoric acid Silicon hexafluoride dihydride Silicate(2-), hexafluoro-, dihydrogen Product Overview Solvay Fluorides, LLC does not sell fluorosilicic acid solutions directly to consumers. Most fluorosilicic acid is used in industrial or municipal applications/processes. Concentrated fluorosilicic acid solution (FSA) is used for water fluoridation, as a metal surface treatment and cleaner and for pH adjustment in industrial textile processing or laundries. It can also be used in the processing of hides, for hardening masonry and ceramics and in the manufacture of other chemicals. FSA can only exist as a liquid. There is no solid form. Fluorosilicic acid solutions are corrosive and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing concentrated fluorosilicic acid solutions can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. Many of the symptoms described are due to the hydrogen fluoride present as an impurity. Page 1 of 7 Copyright 2010-2013, Solvay America, Inc.
    [Show full text]
  • Hexafluorosilicic Acid
    Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature October 2001 Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. (Principal Investigator) Bonnie L. Carson, M.S. (Co-Principal Investigator) Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 October 2001 Toxicological Summary for Sodium Hexafluorosilicate [16893-85-9] and Fluorosilicic Acid [16961-83-4] 10/01 Executive Summary Nomination Sodium hexafluorosilicate and fluorosilicic acid were nominated for toxicological testing based on their widespread use in water fluoridation and concerns that if they are not completely dissociated to silica and fluoride in water that persons drinking fluoridated water may be exposed to compounds that have not been thoroughly tested for toxicity. Nontoxicological Data Analysis and Physical-Chemical Properties Analytical methods for sodium hexafluorosilicate include the lead chlorofluoride method (for total fluorine) and an ion-specific electrode procedure. The percentage of fluorosilicic acid content for water supply service application can be determined by the specific-gravity method and the hydrogen titration method. The American Water Works Association (AWWA) has specified that fluorosilicic acid contain 20 to 30% active ingredient, a maximum of 1% hydrofluoric acid, a maximum of 200 mg/kg heavy metals (as lead), and no amounts of soluble mineral or organic substance capable of causing health effects.
    [Show full text]
  • Chemifloc Ltd. SAFETY DATA SHEET Fluorosilicic Acid 10.9%
    Chemifloc Ltd. SAFETY DATA SHEET Fluorosilicic Acid 10.9% Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II Section 1: Identification of the substance and of the company/undertaking Identification of the substance or mixture Product Name: Fluorosilicic Acid 10.9% Chemical Name: Hexafluorosilicic acid Registration Number: 01-2119488906-19 Synonyms: Hydrofluorosilicic Acid, Fluosilicic Acid Date of first issue: 17 January 2011 Version number 04 Revision date: 24-03-2016 Supersedes date: 04-03-2016 Relevant identified uses of the substance or mixture and uses advised against: Identified uses Use in the treatment of raw water in the supply of either potable water or industrial process water Uses advised against None Details of the supplier of the safety data sheet Manufacturer: Chemifloc Ltd Smithstown, Shannon, Co. Clare, Rep. of Ireland. Tel: 00353 61 708699 Fax: 00353 61 708698 e-mail: [email protected] Emergency Telephone Number: National Poison Information Centre, 00353 1 8379964 Section 2: Hazards Identification Classification of the substance The substance has been assessed and/or tested for its physical, health and environmental hazards and the following classificatory applies. Classification according to Regulation (EC) no 1272/2008 as amended Health hazards Serious eye damage/eye irritation Category 1B H314 – Causes severe skin burns and eye damage. Hazard summary Physical hazards Not classified for physical hazards. Health hazards Causes burns. Environmental hazards Not classified for hazards to the environment. Specific hazards Not available Main symptoms Not available. Page 1of 8 Label elements Label according to Regulation (EC) No. 1272/2008 as amended Contains: Hexafluorsilicic Acid Signal word Danger Hazard statements H314 - Causes severe skin burns and eye damage.
    [Show full text]
  • 4. Chemical and Physical Information
    FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE 187 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY The common synonyms and other information for fluorine, hydrogen fluoride, sodium fluoride, fluorosilicic acid, and sodium fluorosilicate are listed in Table 4-1. The terms “fluorine” and “fluoride” are often used interchangeably in the literature as generic terms. In this document, we will use “fluoride” as a general term to refer to all combined forms of fluorine unless the particular compound or form is known and there is a reason for referring to it. The term “fluorine gas” will sometimes be used to emphasize the fact that we are referring to the elemental form of fluorine rather than a combined form. In general, the differentiation between different ionic and molecular or gaseous and particulate forms of fluorine-containing substances is uncertain and may also be unnecessary. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Fluorine is the lightest member of Group 17 (VIIA) of the periodic table. This group, the halogens, also includes chloride, bromine, and iodine. As with the other halogens, fluorine occurs as a diatomic molecule, F2, in its elemental form. It has only one stable isotope and its valence in all compounds is -1. Fluorine is the most reactive of all the elements, which may be attributed to its large electronegativity (estimated standard potential +2.85 V). It reacts at room temperature or elevated temperatures with all elements other than nitrogen, oxygen, and the lighter noble gases. Fluorine is also notable for its small size; large numbers of fluorine atoms fit around atoms of another element.
    [Show full text]
  • Hexafluorosilicic Acid 34% Pure F6si.2H
    PRODUCT STEWARDSHIP SUMMARY Hexafluorosilicic acid 34% pure F6Si.2H Chemical Name: Hexafluorosilicic acid Hexafluorosilicate (2-), dihydrogen; Hydrofluorosilicic acid; Sili- Synonyms: cate(2-), hexafluoro-, dihydrogen; Fluorosilicic acid CAS Number: 16961-83-4 CAS Name: Hexafluorosilicic acid EC (EINECS) Number: 241-034-8 Revision Date: February 2019 • Hexafluorosilicic acid is used as a chemical intermediate, a disinfectant, a water fluoridating agent, a wood preservative, a masonry and ceramic hardener, and a glass additive. It is also used to treat hides and skins, to electroplate chromium, and to electrolytically refine lead. Further, it is used in technical paints, oil well acidizing, and to remove mold, rust, and stains from textiles or in biocidal products. • This product contains 34% hexafluorosilicic acid and 65% water. Workers may come in contact with hexafluorosilicic acid during manufacturing or use at industrial sites via inhalation or skin contact. Consumer might have contact with this substance while using products containing hexafluorosilicic acid by inhaling mists or direct skin contact. For workers, good manufacturing and industrial hygiene practices should be followed to prevent or reduce exposure. Workplace exposure limits for hexafluorosilicic acid have been established for use in worksite safety programs. See the Safety Data Sheet (SDS) for additional information. Users of products containing hexafluorosilicic acid should follow manufacturer’s use and/or label instructions. • Hexafluorosilicic acid 34% is a colorless liquid with a stinging odor. Hexafluorosilicic acid 34% is completely miscible in water and stable under normal conditions. In contact with fire, hexafluorosilicic acid 34% decomposes to release hydrogen fluoride. It is corrosive to metals and attacks glass and silicate-containing materials.
    [Show full text]
  • Fluorosilicic Acid, 23-25%
    SAFETY DATA SHEET North American Version FLUOROSILICIC ACID, 23-25% 1. PRODUCT AND COMPANY IDENTIFICATION 1.1. Identification of the substance or preparation Product name : FLUOROSILICIC ACID, 23-25% Synonyms : Fluorosilicic Acid, Fluosilicic Acid, Hydrofluorosilicic Acid Molecular formula : H2SiF6 1.2. Use of the Substance/Preparation Recommended use : - Chemical intermediate - Water treatment 1.3. Company/Undertaking Identification Address : SOLVAY FLUORIDES, LLC 3333 RICHMOND AVENUE HOUSTON TX 77098-3099 United States 1.4. Emergency and contact telephone numbers Emergency telephone : 1 (800) 424-9300 CHEMTREC ® (USA & Canada) 01-800-00-214-00 (MEX. REPUBLIC) Contact telephone number : US: +1-800-765-8292 (Product information) (product information): US: +1-713-525-6500 (Product information) 2. HAZARDS IDENTIFICATION 2.1. Emergency Overview: NFPA : H= 3 F= 0 I= 0 S= None HMIS : H= 3 F= 0 R= 0 PPE = Supplied by User; dependent on local conditions General Information Appearance : liquid Colour : colourless Odour : pungent Main effects - Hazardous decomposition products formed under fire conditions. - Corrosive - Harmful by inhalation, in contact with skin and if swallowed. 2.2. Potential Health Effects: Inhalation - Inhalation of vapours is irritating to the respiratory system, may cause throat pain and cough. - Breathing difficulties P 28861 / USA Issuing date 07/06/2009 / Report version 1.0 Copyright 2009, SOLVAY FLUORIDES, LLC A subsidiary of SOLVAY Chemicals All Rights Reserved www.solvaychemicals.us FLUOROSILICIC ACID, 23-25% SAFETY DATA SHEET - Aspiration may cause pulmonary oedema and pneumonitis. - At high concentrations, risk of hypocalcemia with nervous problems (tetany) and cardiac arrhythmia. - Repeated or prolonged exposure: sore throat, Nose bleeding, chronic bronchitis. Eye contact - May cause permanent eye injury.
    [Show full text]
  • A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors
    Chemical Society Reviews A Review of Electrolyte Materials and Compositions for electrochemical supercapacitors Journal: Chemical Society Reviews Manuscript ID: CS-REV-04-2015-000303 Article Type: Review Article Date Submitted by the Author: 13-Apr-2015 Complete List of Authors: Zhong, Cheng; Tianjin University, School of Materials Science and Engineering Yida, Deng; Tianjin University, School of Materials Science and Engineering Hu, Wenbin; Tianjin University, School of Materials Science and Engineering Qiao, Jinli; Donghua University, School of Environmental Engineering Zhang, Lei; National Research Council of Canada, Zhang, Jiujun; Inst Fuel Cell Innovat, National Research Council Canada Page 1 of 114 Chemical Society Reviews A review of electrolyte materials and compositions for electrochemical supercapacitors Cheng Zhong, a Yida Deng, b Wenbin Hu, a,b, ∗ Jinli Qiao, c Lei Zhang, d Jiujun Zhang d,* a Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China b Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China c School of Environmental Engineering, Donghua University, Shanghai, China d Department of Chemical & Biochemical Engineering, University of British Columbia, Vancouver, BC, Canada Abstract: Electrolytes have been identified as one of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail.
    [Show full text]
  • FLUOROSILICIC ACID, 22-25% in Water
    SIF4920.0 - FLUOROSILICIC ACID, 22-25% in water FLUOROSILICIC ACID, 22-25% in water Safety Data Sheet SIF4920.0 Date of issue: 12/06/2016 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : FLUOROSILICIC ACID, 22-25% in water Product code : SIF4920.0 Product form : Mixtures Physical state : Liquid Formula : H2F6Si . H2O Synonyms : FLUOSILICIC ACID HEXAFLUOROSILICIC ACID Chemical family : FLUOROSILICATE 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) Category 4 H302 Acute toxicity (inhalation:dust,mist) Category 4 H332 Skin corrosion/irritation Category 1B H314 Serious eye damage/eye irritation Category 1 H318 Hazardous to the aquatic environment - Acute Hazard Category 3 H402 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS05 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H302+H332 - Harmful if swallowed or if inhaled H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H402 - Harmful to aquatic life Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P260 - Do not breathe vapors P264 - Wash hands thoroughly after handling P270 - Do not eat, drink or smoke when using this product P271 - Use only outdoors or in a well-ventilated area P301+P312 - If swallowed: Call a doctor if you feel unwell P273 - Avoid release to the environment P301+P330+P331 - If swallowed: rinse mouth.
    [Show full text]
  • Chemical Resistance of SIGRATHERM® Foil and Sheets
    Chemical resistance of SIGRATHERM® foil and sheets This technical information is valid for SIGRATHERM flexible graphite foil and sheets, including SIGRATHERM L (lightweight graphite board), which are ● manufactured from expanded natural graphite ● free from additives, e.g. PCM's (Phase Change Material). Chemical properties Graphite is insoluble and infusible. It counts as one of the most chemically resistant materials. Organic chemistry Graphite is resistant to virtually all media in the field of organic chemistry. These typically include, for example, the intermedi- ate and/or final products of the following industries: ● Petrochemistry ● Coal conversion ● Synthetics ● Varnish and paint ● Cosmetics ● Food and stimulants industry ● Photochemicals ● Cooling agents ● Anti-freezing agents Inorganic chemistry Graphite is resistant to almost all inorganic media as well, for example to many acids and bases, as well as probably all ↑ SIGRATHERM flexible graphite foil aqueous salt solutions and to most technical gases. The following media resistance list shall provide an overview. individual cases. It should be noted, that mixtures can be For media which are not included it is generally advised to partly more critical than pure media or vice versa. confer with SGL Carbon. Four different cases can be distinguished: 1. resistant The resistance data apply to operating temperatures of the 2. not resistant medium mentioned which are known to us. However for media 3. limited resistance being operated at above 400 °C or 752 °F, we generally ask for 4. insufficient data – consultation. The third case depends on the stability of operation, operating The information is based on experience, laboratory tests and is temperatures or the concentration.
    [Show full text]
  • WO 2012/127183 Al 27 September 2012 (27.09.2012) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/127183 Al 27 September 2012 (27.09.2012) W P O P C T (51) International Patent Classification: Thornton & Co, 235 High Holborn, London WC1V 7LE C09K 8/528 (2006.01) C09K 8/78 (2006.01) (GB). C09K 8/68 (2006.01) (74) Agent: COTTRILL, Emily, Elizabeth, Helen; A A (21) International Application Number: Thornton & Co, 235 High Holborn, London, WC1V 7LE PCT/GB20 12/000247 (GB). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 16 March 2012 (16.03.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 13/05 1,827 18 March 201 1 (18.03.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant (for all designated States except US): OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, HALIBURTON ENERGY SERVICES, INC. [GB/GB]; SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 10200 Bellaire Boulevard, Houston, Texas 77072 (GB).
    [Show full text]