Thesis Template

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Template TAXONOMY, DISTRIBUTION AND PEST STATUS OF PLUTELLA SPECIES (LEPIDOPTERA: PLUTELLIDAE) IN AUSTRALIA AND NEW ZEALAND Kariyawasam Haputhanthri Kankanamge Tharanga Niroshini Submitted in fulfilment of the requirements for the degree of Master of Applied Sciences (Research) School of Earth Environmental and Biological Sciences Science and Engineering Faculty Queensland University of Technology 2018 Keywords Adults, ANOVA, Bayesian analysis, CO1 barcode gene, crops, DNA, genitalia morphological features, host plant, larvae, light trap, maximum likelihood, measurements, PCR, phylogenetic analyses, Plutella australiana, Plutella xylostella, R statistical analyses, Sanger sequencing, taxonomy. i Abstract The diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), is the most destructive agricultural pest in the word causing damage to brassica crops such as cabbage, kale, broccoli, and cauliflower. Its global distribution, movement over long distances and rapid evolution of insecticide resistance make this a key pest of international importance. P. xylostella was introduced to Australia in 1882 and has become widely distributed in Australia. Despite reports of low levels of genetic variation in the Australian population (Endersby et al., 2006), more recent molecular studies indicated the presence of variants within the Australian Plutella population. A study of allozymes in P. xylostella populations from 14 locations worldwide included specimens from 5 different locations in Australia (Adelaide, Brisbane, North Queensland, Melbourne and Sydney), and found significant differences within the samples from Australia (Pichon et al., 2006). Similarly, Roux et al. (2007) using the inter simple sequence repeat (ISSR) marker showed a genetic differentiation between Melbourne and Sydney P. xylostella populations. In 2013, a new taxon, Plutella australiana, was described (Landry & Hebert, 2013) based on 8.6% sequence divergence in the ‘barcode’ region of the mitochondrial cytochrome c oxidase 1 gene (CO1) and differences in the morphology of the genitalia in both males and females. The new taxon was identified as broadly distributed in southern and eastern Australia. However, there were no larval collections, leaving the host plants and possible pest status unknown. In addition, the description of the new and potentially endemic taxon created difficulties in the import and release of biological control applications, and potential difficulties in pest management practices and market access. This study identified and addressed gaps in knowledge, with the main aim being to clarify the differentiation of P. australiana from P. xylostella and to increase knowledge of its distribution and host plants. CO1 barcode sequence data were used in the identification of both taxa, including phylogenetic analyses (Maximum ii likelihood and Bayesian inference). Morphological features of female and male genitalia were measured to determine statistical variance and examined to identify reliable diagnostic features. Distribution of P. australiana at the regional scale was evaluated from field collections, including individuals from New Zealand. Collections of larvae from both crops and wild brassicas were conducted to identify host plants and contribute to knowledge of the possible pest status of P. australiana. These examinations contribute to the better understanding of possible risks to Australian brassica production, and to inform potential pest management strategies. The results showed that P. xylostella and P. australiana are two distinct taxa based on CO1 data. Examination of key morphological features showed that only two features, the curvature of the tubular projection in P. australiana and the presence of raised folds surrounding the antrum in P. xylostella, and both only in females, are reliable as diagnostic tools. Although some measured features are statistically significantly different overall between the two populations, the overlap in the variance indicates that those features cannot be used as diagnostic tools. Similarly, other characteristic features proposed by Landry and Hebert (example: sinuation in the ventral margin of the valva) were found to be not reliable for identification of the two taxa. Light trap collections of adults show that the two taxa are sympatric in most locations, including Tasmania. However, larvae of P. australiana were present in only two collections: on cabbage (Brassica oleracea) in Theresa Park, NSW in 2015 and on field mustard weeds (Brassica rapa) amongst a kale crop in Werombi NSW in 2015. This study is the first to describe the occurrence of P. australiana larvae on cabbage and field mustard. The preference of P. australiana for weedy B. rapa over kale in one site suggests that emergence of P. australiana as a pest of canola requires investigation. The outcomes of this thesis have been to broaden the knowledge of the new taxon, P. australiana including morphological features that can be used in order to differentiate P. xylostella and P. australiana. The results contribute to the better understanding of possible risks of the new taxon to Australian brassica production, and to inform potential pest management strategies. iii iv Table of Contents Keywords .................................................................................................................................. i Abstract .................................................................................................................................... ii Table of Contents ......................................................................................................................v List of Figures ....................................................................................................................... viii List of Tables ........................................................................................................................ xiii List of Abbreviations ........................................................................................................... xvii Statement of Original Authorship ....................................................................................... xviii Acknowledgements ............................................................................................................... xix Chapter 1: General Introduction and Literature Review ................................ 1 1.1 Background .....................................................................................................................1 1.1.1 Research problem and aims ..................................................................................2 1.1.2 Thesis outline .......................................................................................................3 1.2 Literature Review ...........................................................................................................4 1.2.1 Life history ...........................................................................................................4 1.2.2 Distribution ...........................................................................................................8 1.2.3 Host plants ..........................................................................................................10 1.2.4 Pest management ................................................................................................14 1.2.5 Taxonomy ...........................................................................................................17 1.2.6 A new Plutella taxon in Australia........................................................................19 Chapter 2: Molecular and morphological examination of Plutella species in Australia and New Zealand ..................................................................................... 25 v 2.1 Introduction .................................................................................................................. 25 2.2 Materials and Methods ................................................................................................. 28 2.2.1 Sampling ............................................................................................................ 28 2.2.2 Molecular analysis ............................................................................................. 31 2.2.3 Morphology ....................................................................................................... 33 2.3 Results .......................................................................................................................... 39 2.3.1 CO1 sequence data............................................................................................. 39 2.3.2 Morphology ....................................................................................................... 43 2.4 Discussion .................................................................................................................... 49 Chapter 3: Host plants and distribution of Plutella species in Australia ...... 53 3.1 Introduction .................................................................................................................. 53 3.2 Materials and Methods ................................................................................................. 56 3.2.1 Sampling ............................................................................................................ 56 3.2.2 Molecular Analysis ...........................................................................................
Recommended publications
  • Analysis of the Evolutionary Relationship and Geographical Patterns of Genetically Varied Populations of Diamondback Moth, Plutella Xylostella (L.)
    Analysis of the evolutionary relationship and geographical patterns of genetically varied populations of diamondback moth, Plutella xylostella (L.) by Shijun You MSc., The University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2017 © Shijun You, 2017 Abstract The diamondback moth (DBM), Plutella xylostella, is well known for its extensive adaptation and distribution, high level of genetic variation and polymorphism, and strong resistance to a broad range of synthetic insecticides. Although understanding of the P. xylostella biology and ecology has been considerably improved, knowledge on the genetic basis of these traits remains surprisingly limited. Based on data generated by different sets of molecular markers, we uncovered the history of evolutionary origin and regional dispersal, identified the patterns of genetic diversity and variation, characterized the demographic history, and revealed natural and human-aided factors that are potentially responsible for contemporary distribution of P. xylostella. These findings rewrite our understanding of this exceptional system, revealing that South America might be a potential origin of P. xylostella, and recently colonized across most parts of the world resulting possibly from intensified human activities. With the data from selected continents, we demonstrated signatures of localized selection associated with environmental adaptation and insecticide resistance of P. xylostella. This work brings us to a better understanding of the regional movement and genetic bases on rapid adaptation and development of agrochemical resistance, and provides a solid foundation for better monitoring and management of this worldwide herbivore and forecast of regional pest status of P.
    [Show full text]
  • Nuevos Datos Sobre Megabunus Diadema (Fabricius, 1779) (Opiliones: Phalangiidae)
    Revista Ibérica de Aracnología, nº 22 (30/06/2013): 102–106. NOTA CIENTÍFICA Grupo Ibérico de Aracnología (S.E.A.). ISSN: 1576 - 9518. http://www.sea-entomologia.org/ Nuevos datos sobre Megabunus diadema (Fabricius, 1779) (Opiliones: Phalangiidae) Izaskun Merino-Sáinz1, Fernando A. Fernández-Álvarez1 & Carlos E. Prieto2 1 Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo. C/Catedrático Uría s/n 33071 Oviedo (España) – [email protected][email protected] 2 Departamento de Zoología y Biología Celular Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU). Apdo. 644, 48080 Bilbao (España) – [email protected] Resumen: Megabunus diadema (Fabricius, 1779) es un falángido inconfundible con distribución europea occidental. Es conocido de Islandia, Noruega, Islas Feroe, Islas Británicas, Normandía y Península Ibérica, donde se extiende a lo largo de los Pirineos y la Cordille- ra Cantábrica. Los nuevos registros aportados (primeras citas para Andorra, Álava, Bizkaia, Burgos, La Rioja y Zamora) dan continuidad a la distribución ya conocida, extienden su área conocida al extremo norte del Sistema Ibérico y aportan nueva información sobre su fenología. Palabras clave:Opiliones, Phalangiidae, distribución, fenología, Península Ibérica. New data on Megabunus diadema (Fabricius, 1779) (Opiliones: Phalangiidae) Abstract: Megabunus diadema (Fabricius, 1779) is an unmistakable phalangiid with a West-European distribution range. It has been re- corded from Iceland, Norway, the Faroe Islands, the British Isles, Normandy and the Iberian Peninsula, where it occurs along the Pyre- nees and Cantabrian Mountains. The new data (first records from Andorra, Alava, Bizkaia, Burgos, La Rioja and Zamora) give continuity to the distribution already known, extend its known range to the northern end of the Sistema Ibérico mountains and provide new informa- tion on the phenology of the species.
    [Show full text]
  • Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
    War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides.
    [Show full text]
  • De Hooiwagens 1St Revision14
    Table of Contents INTRODUCTION ............................................................................................................................................................ 2 CHARACTERISTICS OF HARVESTMEN ............................................................................................................................ 2 GROUPS SIMILAR TO HARVESTMEN ............................................................................................................................. 3 PREVIOUS PUBLICATIONS ............................................................................................................................................. 3 BIOLOGY ......................................................................................................................................................................... 3 LIFE CYCLE ..................................................................................................................................................................... 3 MATING AND EGG-LAYING ........................................................................................................................................... 4 FOOD ............................................................................................................................................................................. 4 DEFENCE ........................................................................................................................................................................ 4 PHORESY,
    [Show full text]
  • Arachnida, Opiliones)
    34 Revue arachnologique, série 2, n° 2, mai 2015 Polymorphisme de l’épine frontale et du diadème oculaire chez Megabunus diadema (Fabricius, 1779) (Arachnida, Opiliones) Frank D’Amico 64260 Bilhères-en-Ossau (France), Frank.Damico(at)univ-pau.fr Résumé. - Megabunus diadema (Fabricius, 1779) est une espèce européenne, atlantique, dont la distribution est discontinue depuis la Scandinavie jusqu’à la Péninsule ibérique. Considérée jusqu’à présent comme parthénogénétique facultative sur l’ensemble de son aire de distribution, cette espèce possède des populations sexuées, localement caractérisées par un sex-ratio nettement en faveur des mâles. Elle possède un polymorphisme portant sur les épines du bord antérieur du céphalothorax (source historique de confusion taxinomique) et du mamelon oculaire. Ce polymorphisme est décrit pour la première fois ici. L’examen de 615 individus adultes (438 mâles et 177 femelles) de la population de la vallée d’Ossau (Pyrénées) indique que la fréquence d’individus porteurs de l’épine frontale diffère significativement entre sexes (27,12 % vs 17,81 % chez les femelles et les mâles respectivement). Il n’y a pas de dimorphisme sexuel dans le polymorphisme du mamelon oculaire, mesuré par le nombre d’épines du diadème caractéristique de l’espèce, variant de 10 à 15. Mots-clés. - Dimorphisme sexuel, Pyrénées, épines, ocularium, sélection sexuelle. Polymorphism of front spine and ocularium crown in Megabunus diadema (Fabricius, 1779) (Arachnida, Opiliones) Summary. - Megabunus diadema (Fabricius, 1779) is an Atlantic and European harvestman species characterized by a discontinuous distribution from Scandinavia to the Iberian Peninsula. Hitherto regarded as asexual, facultative parthenogenetic, this species has however sexual populations locally characterized by a strong bias in favor of males.
    [Show full text]
  • Variation Among 532 Genomes Unveils the Origin and Evolutionary
    ARTICLE https://doi.org/10.1038/s41467-020-16178-9 OPEN Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore ✉ Minsheng You 1,2,20 , Fushi Ke1,2,20, Shijun You 1,2,3,20, Zhangyan Wu4,20, Qingfeng Liu 4,20, ✉ ✉ Weiyi He 1,2,20, Simon W. Baxter1,2,5, Zhiguang Yuchi 1,6, Liette Vasseur 1,2,7 , Geoff M. Gurr 1,2,8 , Christopher M. Ward 9, Hugo Cerda1,2,10, Guang Yang1,2, Lu Peng1,2, Yuanchun Jin4, Miao Xie1,2, Lijun Cai1,2, Carl J. Douglas1,2,3,21, Murray B. Isman 11, Mark S. Goettel1,2,12, Qisheng Song 1,2,13, Qinghai Fan1,2,14, ✉ Gefu Wang-Pruski1,2,15, David C. Lees16, Zhen Yue 4 , Jianlin Bai1,2, Tiansheng Liu1,2, Lianyun Lin1,5, 1234567890():,; Yunkai Zheng1,2, Zhaohua Zeng1,17, Sheng Lin1,2, Yue Wang1,2, Qian Zhao1,2, Xiaofeng Xia1,2, Wenbin Chen1,2, Lilin Chen1,2, Mingmin Zou1,2, Jinying Liao1,2, Qiang Gao4, Xiaodong Fang4, Ye Yin4, Huanming Yang4,17,19, Jian Wang4,18,19, Liwei Han1,2, Yingjun Lin1,2, Yanping Lu1,2 & Mousheng Zhuang1,2 The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin.
    [Show full text]
  • The Origins of Infestations of Diamondback Moth, Plutella Xylostella (L.), in Canola in Western Canada L.M. Dosdall1, P.G. Mason
    The management of diamondback moth and other crucifer pests The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada L.M. Dosdall1, P.G. Mason2, O. Olfert3, L. Kaminski3, and B.A. Keddie4 1Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 2Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, Canada K1A 0C6 3Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2 4Dept. of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 Corresponding author: [email protected] Abstract Recent evidence that a population of Plutella xylostella (L.) overwintered successfully in western Canada prompted studies to evaluate overwintering survival of diamondback moth under field conditions in Alberta and Saskatchewan. Successful overwintering was not demonstrated at either site for any life stage under a variety of tillage and organic matter treatments, using either laboratory-reared or field-acclimated specimens of diamondback moth. Diamondback moth infestations in western Canada evidently originate primarily from southern U.S.A. or Mexico when strong winds carry adults northward in spring. To provide early warning predictions of infestations, air parcel trajectories into western Canada were investigated for monitoring long-range movement of P. xylostella early in the season. Using wind fields generated by the Canadian Meteorological Centre’s Global Environmental Multiscale model, three-dimensional air parcel trajectories were calculated using time-forward (prognostic) and time-backward (diagnostic) modes for several sites in North America. The model predicted strong northerly airflow in May 2001 which coincided with the occurrence of massive infestations of diamondback moth in canola in western Canada.
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Checklist of Texas Lepidoptera Knudson & Bordelon, Jan 2018 Texas Lepidoptera Survey
    1 Checklist of Texas Lepidoptera Knudson & Bordelon, Jan 2018 Texas Lepidoptera Survey ERIOCRANIOIDEA TISCHERIOIDEA ERIOCRANIIDAE TISCHERIIDAE Dyseriocrania griseocapitella (Wlsm.) Eriocraniella mediabulla Davis Coptotriche citripennella (Clem.) Eriocraniella platyptera Davis Coptotriche concolor (Zell.) Coptotriche purinosella (Cham.) Coptotriche clemensella (Cham). Coptotriche sulphurea (F&B) NEPTICULOIDEA Coptotriche zelleriella (Clem.) Tischeria quercitella Clem. NEPTICULIDAE Coptotriche malifoliella (Clem.) Coptotriche crataegifoliae (Braun) Ectoedemia platanella (Clem.) Coptotriche roseticola (F&B) Ectoedemia rubifoliella (Clem.) Coptotriche aenea (F&B) Ectoedemia ulmella (Braun) Asterotriche solidaginifoliella (Clem.) Ectoedemia obrutella (Zell.) Asterotriche heliopsisella (Cham.) Ectoedemia grandisella (Cham.) Asterotriche ambrosiaeella (Cham.) Nepticula macrocarpae Free. Asterotriche helianthi (F&B) Stigmella scintillans (Braun) Asterotriche heteroterae (F&B) Stigmella rhoifoliella (Braun) Asterotriche longeciliata (F&B) Stigmella rhamnicola (Braun) Asterotriche omissa (Braun) Stigmella villosella (Clem.) Asterotriche pulvella (Cham.) Stigmella apicialbella (Cham.) Stigmella populetorum (F&B) Stigmella saginella (Clem.) INCURVARIOIDEA Stigmella nigriverticella (Cham.) Stigmella flavipedella (Braun) PRODOXIDAE Stigmella ostryaefoliella (Clem.) Stigmella myricafoliella (Busck) Tegeticula yuccasella (Riley) Stigmella juglandifoliella (Clem.) Tegeticula baccatella Pellmyr Stigmella unifasciella (Cham.) Tegeticula carnerosanella Pellmyr
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Lindfield Rural and Urban Parishes ESD/14/65 Prepared for Terry Oliver 10th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Lindfield Rural and Urban Parishes 10/02/2014 Prepared for Terry Oliver ESD/14/65 The following information is enclosed within this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI L61 - Waspbourne Wood; M08 - Costells, Henfield & Nashgill Woods; M10 - Scaynes Hill Common; M18 - Walstead Cemetery; M25 - Scrase Valley Local Nature Reserve; M49 - Wickham Woods. SSSI Chailey Common. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; Notable Road Verge; Woodland Trust Site. Habitats Ancient tree; Ancient woodland; Coastal and floodplain grazing marsh; Ghyll woodland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from the SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas
    Special Publications Museum of Texas Tech University Number xx67 xx17 XXXX July 20182010 Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas James C. Cokendolpher and Robert G. Holmberg Front cover: Opilio parietinus in copula (male on left with thicker legs and more spines) from Baptiste Lake, Athabasca County, Alberta. Photograph by Robert G. Holmberg. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 67 Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas JAMES C. COKENDOLPHER AND ROBERT G. HOLMBERG Layout and Design: Lisa Bradley Cover Design: Photograph by Robert G. Holmberg Production Editor: Lisa Bradley Copyright 2018, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 17 July 2018 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 67 Series Editor: Robert D. Bradley Harvestmen of the Family Phalangiidae (Arachnida, Opiliones) in the Americas James C.
    [Show full text]