Neurocutaneous Syndromes Maria A

Total Page:16

File Type:pdf, Size:1020Kb

Neurocutaneous Syndromes Maria A 6 Neurocutaneous Syndromes Maria A. Musarella he neurocutaneous disorders are a group of clinically and Tgenetically heterogeneous diseases that are characterized mainly by harmatomas and tumor growth, involving tissues derived by the embryonic germ layer. Older literature has called these disorders “phakomatoses” (mother-spot). The modern nomenclature and traditional eponyms of these entities are given in Table 6-1. Each of the neurocutaneous diseases is rec- ognized as a distinct clinical disorder. This chapter covers the ophthalmic aspects of these syn- dromes, as well as the numerous and varied multisystemic man- ifestations. Although Proteus syndrome and multiple endocrine neoplasia (MEN) 2B are considered separate from the neurocu- taneous diseases, they are covered here because of the clinical resemblance to classic phakomatoses. NEUROFIBROMATOSIS 1 Historical Perspective Dr. Robert William Smith first described neurofibromatosis 1 (NF1) in 1849 in his treatise on Pathology Diagnosis and Treat- ment of Neuroma.100 However, this work received little atten- tion. Neurofibromatosis is most closely linked with the German pathologist, von Recklinghausen, who described the main fea- tures of this entity in his classic paper of 1882.111 Etiology About 50% of cases of NF1 result from new mutations. The NF1 gene has been mapped to 17q11.2 and positionally cloned. The 291 292 handbook of pediatric eye and systemic disease TABLE 6-1. Neurocutaneous Syndromes. Modern nomenclature Eponyms Neurofibromatosis 1 von Recklinghausen disease Peripheral neurofibromatosis Neurofibromatosis 2 Central neurofibromatosis Tuberous sclerosis Bourneville disease von Hippel–Lindau Disease Ataxia telangiectasia Louis–Bar syndrome Sturge–Weber Encephalotrigeminal angiomatosis Klippel–Trenaunay Angiosteohypertrophy Wyburn-Mason syndrome Racemose angiomatosis Multiple endocrine neoplasia 2B Mucosal neuroma syndrome (Wagenmann–Froboese) Proteus syndrome NF1 gene is one of the largest genes in which mutations lead to a disease in humans. It is approximately 350 kb in size, consists of 60 exons, and encodes for 11 to 13 transcripts with an open reading frame coding for 2818 amino acids.14 In 1990, the NF1 gene and its protein product, neurofibromin, were identified. The gene product is as a tumor suppressor protein.27,42,108 The protein encoded by NF1 has structural and functional similarity to a family of GTPase-activating proteins (GAPs) that down-reg- ulate a cellular proto-oncogene, p21-ras. ras has been implicated in the control of cell growth and differentiation, and the capa- bility of neurofibromin to down-regulate p21-ras suggests that the loss of neurofibromin may lead to uncontrolled cell growth and tumor formation.4,40,73 Incidence NF1 is estimated to affect 1 in 3500 individuals.46 Ophthalmologic FEatures Ophthalmologic features of NF1 are listed in Table 6-2. The most common uveal finding in NF1 is the Lisch nodule, which is a melanocytic harmatoma of the iris.63 These harmatomas appear as elevated, smooth, clear to yellowish or brown, gelati- nous, dome-shaped lesions (Fig. 6-1). Lisch nodules are usually multiple, bilateral, and discrete, measuring up to 2 mm in diam- eter. Lubs and associates examined the prevalence of Lisch nodules in children. Lisch nodules were found in only 5% of NF1 chapter 6: neurocutaneous syndromes 293 in children younger than 3 years of age, 42% among 3- to 4-year- olds, 55% among 5- to 6-year-olds, and in all adults over 21 years of age.66 Lewis and Riccardi reported that Lisch nodules occur in 92% of patients over age 6 years and that the number of Lisch nodules is correlated to the age but not to the number of neu- rofibromas and café au lait spots.59 Thus, Lisch nodules are spe- cific for NF1 but their absence in children does not exclude the diagnosis. Lisch nodules have been described unilaterally in seg- mental neurofibromatosis with findings that include café au lait spots confined to one side or segment of the body. Glaucoma is infrequent but may be present at birth or in early childhood. The most common cause is neurofibromatous infiltration and obstruction of the aqueous drainage pathways.39 Neurofibromatous infiltration of the ciliary body may cause sec- ondary angle closure; neovascular and synechiae closure of the angle may occur. Gluacoma is more likely in the presence of a plexiform neuroma of the ipsilateral upper eyelid. Retinal astrocytic hamartomas occur in NF1, sometimes causing retinal dialysis and traction retinal detachment.29 Other retinal manifestations include combined hamartomas of the retina and retina pigment epithelium (RPE), capillary heman- giomas, choroidal neourofibromas, congenital hypertrophy of the RPE, epiretinal membranes, sectoral retinitis pigmentosa, and myelinated nerve fibers. Choroidal neurofibromas are flat yellow and are typically recognized in the posterior pole as single or multiple lesions; these occur in as many as half of affected patients.29 Conjuncti- val hamartomas are painless lesions appearing as salmon-pink growths on the bulbar surface and may infiltrate corneoscleral limbus.48 Prominent corneal nerves have been reported in up to 25% of patients. Plexiform neuromas typically enlarge the upper eyelid with an S-shaped deformity and ptosis (Fig. 6-2).54 These lesions are difficult to excise satisfactorily because they are invested within the lid structures without defined margins. Regrowth is likely following excision. Proptosis in NF1 signals orbital neurofibroma, optic glioma, or congenital absence/dysplasia of the greater wing of the sphe- noid bone.54 In the latter case, pulsatile proptosis may be evident. Optic pathway gliomas are the predominant central nervous system manifestation of NF1 (Figs. 6-3, 6-4). The natural history of the optic gliomas is an area of intense study and great clinical interest. However, the gliomas in NF1 are probably more indolent than sporadic ones.64 Most develop in the first 6 years 294 handbook of pediatric eye and systemic disease TABLE 6-2. Ocular Manifestations of Neurofibromatosis Type 1 (NF1). 1. Orbital General Plexiform neurofibroma Neurilemoma (schwannoma) Proptosis Displacement of the globe Pulsation of the globe synchronous with pulse but no bruit Enlargement of the optic foramen Underdevelopment of the orbital bones Absence of the greater wing of sphenoid Optic nerve gliomas Neurofibromas and the ciliary nerves Lids Ptosis Café au lait spots Plexiform neuromas Neurofibroma of the eyelid 2. Extraocular Conjunctiva Neurofibroma Nodules Thickening of the conjunctival nerves Sclera Nodular swelling of the ciliary nerves 3. Intraocular Anterior segment Nodular swelling of the corneal nerves Medullated/myelinated corneal nerves Posterior embryotoxin Unilateral keratoconus Buphthalmos Dense abnormal tissue in the chamber angle Defects of Schlemm’s canal Focal iris (Lisch) nodules/hamartomas Neurofibroma of the iris Congenital extropion uveae Iris neovascularization Media Cataract (rare) Anterior subcapsular cataract Neurofibroma of the ciliary body Choroid Choroidal ganglioneuromas Diffuse neurofibroma of choroid Diffuse and nodular involvement neurofibroma Uveal malignant melanoma Choroidal nevi Retina Hamartoma of the retina Café au lait spots on the retina chapter 6: neurocutaneous syndromes 295 TABLE 6-2. (continued). Sectoral retinal pigmentation Sectoral chorioretinal scar Myelinated/medullated nerve fibers Typical peripheral retinoschisis Congenital hypertrophy of the retinal pigmented epithelium (RPE) Optic nerve Optic nerve drusen Hamartoma of the optic disc Primary optic atrophy due to tumor pressure Secondary atrophy due to papilledema Glioma of optic nerve head (rare) 4. Other Extraocular muscle palsies Congenital glaucoma Secondary glaucoma Strabismus of life, and 50% to 75% of patients are asymptomatic at diag- nosis. Presenting symptoms depend on the location: Orbital tumors can cause proptosis, reduction in visual acuity, visual field defects, optic nerve dysfunction, relative afferent pupillary defect, optic disc edema (Fig. 6-2) or optic disc atrophy and stra- bismus. Chiasmal invasion and expansion may lead to hydro- cephalus or, in 39% of patients, precocious puberty.43,78 FIGURE 6-1. Numerous iris hamartomas on a lightly colored iris in a teenage boy. 296 handbook of pediatric eye and systemic disease FIGURE 6-2. Plexiform neuroma is the right upper lid giving an S-shaped configuration in a 5-year-old boy with neurofibromatosis 1 (NF1). FIGURE 6-3. Optic disc edema from optic nerve glioma. chapter 6: neurocutaneous syndromes 297 FIGURE 6-4. Optic glioma: gross pathology. Clinical Assessment Diagnostic criteria for NF1 developed by NIH Consensus Con- ferences are listed in Table 6-3.78 The focus of the clinical assess- ment depends on the age of the patient. In the first 2 years of life, the presence and consequences of plexiform neuromas, glaucoma, sphenoid wing dysplasia, and pseudoarthroses are sought. Psychological assessment becomes important in pre- school children. The possibility of hypertension from renal artery stenosis or pheochromocytoma demands annual meas- urement of blood pressure in all patients. Screening brain MRI scans in children with NF1 will detect optic nerve gliomas in 15%. In comparison to other conditions, the application of DNA testing in NF1 is relatively limited. The inability of present techniques to identify the numerous NF1 mutations limits their application. Even the most sensitive technique detects only 70% of mutations.86 However, because clinical 298 handbook of pediatric eye and systemic disease
Recommended publications
  • Drug Mechanisms
    REVIEW OF OPTOMETRY EARN 2 CE CREDITS: Don’t Be Stumped by These Lumps and Bumps, Page 70 ■ VOL. 154 NO. 4 April 15, 2017 www.reviewofoptometry.com TH ■ 10 ANNUAL APRIL 15, 2017 PHARMACEUTICALS REPORT ■ ANNUAL PHARMACEUTICALS REPORT An Insider’s View of DRUG MECHANISMS ■ CE: DIFFERENTIAL DIAGNOSIS OF EYELID LESIONS CE: DIFFERENTIAL DIAGNOSIS OF EYELID LESIONS You can choose agents with greater precision—and evaluate their performance better—when you know what makes them tick. • How Antibiotics Work—and Why They Sometimes Don’t, Page 30 • Glaucoma Therapy: Finding the Right Combination, Page 46 • Anti-inflammatories: Sort Out Your Many Steroids and NSAIDs, Page 40 • Dry Eye: Master the Science Beneath the Surface, Page 56 • Resist the Itch: Managing Allergic Conjunctivitis, Page 64 001_ro0417_fc.indd 1 4/4/17 2:21 PM . rs ke ee S t S up r po fo rtiv Com e. Nature Lovers. Because I know their eyes are prone to discomfort, I prescribe the 1-DAY ACUVUE® MOIST Family. § 88% of all BLINK STABILIZED® Design contact lenses were fi tted in the fi rst attempt, and 99.5% within 2 trial fittings. ** Based on in vitro data. Clinical studies have not been done directly linking differences in lysozyme profi le with specifi c clinical benefi ts. * UV-blocking percentages are based on an average across the wavelength spectrum. † Helps protect against transmission of harmful UV radiation to the cornea and into the eye. ‡ WARNING: UV-absorbing contact lenses are NOT substitutes for protective UV-absorbing eyewear such as UV-absorbing goggles or sunglasses because they do not completely cover the eye and surrounding area.
    [Show full text]
  • The Ophthalmology Examinations Review
    The Ophthalm logy Examinations Review Second EditionSecond Edition 7719tp.indd 1 1/4/11 8:13 PM FA B1037 The Ophthalmology Examinations Review This page intentionally left blank BB1037_FM.indd1037_FM.indd vvii 112/24/20102/24/2010 22:31:16:31:16 PPMM The Ophthalm logy Examinations Review Second Edition Tien Yin WONG National University of Singapore, Singapore & University of Melbourne, Australia With Contributions From Chelvin SNG National University Health System, Singapore Laurence LIM Singapore National Eye Centre, Singapore World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI 7719tp.indd 2 1/4/11 8:13 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Wong, Tien Yin. The ophthalmology examinations review / Tien Yin Wong ; with contributions from Chelvin Sng, Laurence Lim. -- 2nd ed. p. ; cm. Includes index. ISBN-13: 978-981-4304-40-5 (hardcover : alk. paper) ISBN-10: 981-4304-40-9 (hardcover : alk. paper) ISBN-13: 978-981-4304-41-2 (pbk. : alk. paper) ISBN-10: 981-4304-41-7 (pbk. : alk. paper) 1. Ophthalmology--Outlines, syllabi, etc. 2. Ophthalmology--Examinations, questions, etc. I. Sng, Chelvin. II. Lim, Laurence. III. Title. [DNLM: 1. Eye Diseases--Examination Questions. 2. Ophthalmologic Surgical Procedures--Examination Questions. WW 18.2] RE50.W66 2011 617.7--dc22 2010054298 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • An Unusual Case of Cowden Syndrome Associated With
    Pistorius et al. Hereditary Cancer in Clinical Practice (2016) 14:11 DOI 10.1186/s13053-016-0051-8 CASE REPORT Open Access An unusual case of Cowden syndrome associated with ganglioneuromatous polyposis Steffen Pistorius1,6*†, Barbara Klink2,7*†, Jessica Pablik3, Andreas Rump2, Daniela Aust3,7, Marlene Garzarolli4, Evelin Schröck2,7 and Hans K. Schackert5,6,7 Abstract Background: Ganglioneuromatous polyposis (GP) is a very rare disorder which may be associated with other clinical manifestations and syndromes, such as Cowden syndrome, multiple endocrine neoplasia (MEN) type II and neurofibromatosis (NF) 1. The risk for malignant transformation of ganglioneuromas is unknown, and the combination of GP with colon cancer has been only very seldom reported. Methods and results: We report the case of a 60-year old male patient with adenocarcinoma, adenomas and lipomas of the colon and multiple gastroduodenal lesions combined with generalised lipomatosis and macrocephaly. Based on the initial endoscopic and histological findings, a (restorative) proctocolectomy was recommended but declined by the patient. Instead, a colectomy was performed. The histological examination revealed an unforeseen GP in addition to the colon cancer. Extensive molecular diagnostics allowed for the differential diagnosis of the causes of the clinical manifestations, and the clinical suspicion of Cowden syndrome could not be confirmed using Sanger Sequencing and MLPA for the analysis of PTEN. Finally, a pathogenic germline mutation in PTEN (heterozygous stop mutation in exon 2: NM_000314 (PTEN):c.138C > A; p.Tyr46*) could be detected by next-generation sequencing (NGS), confirming an unusual presentation of Cowden syndrome with GP. Conclusions: Cowden syndrome should be considered in cases of GP with extracolonic manifestation and verified by combined clinical and molecular diagnostics.
    [Show full text]
  • Scholars Journal of Medical Case Reports Neurofibromatosis Type 1
    Nurul AM et al.; Sch J Med Case Rep, November 2015; 3(11):1128-1132 Scholars Journal of Medical Case Reports ISSN 2347-6559 (Online) Sch J Med Case Rep 2015; 3(11):1128-1132 ISSN 2347-9507 (Print) ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) Neurofibromatosis Type 1 with Optic Nerve Glioma: A Case Report Nurul AM1, Joseph A2 1 4thyear resident, Department of Ophthalmology, Hospital University Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar TunRazak, 56000 Cheras, Wilayah Persekutuan Kuala Lumpur Malaysia. 2 Paediatric Ophthalmology Consultant, Department of Ophthalmology, Hospital Kuala Lumpur, Jalan Pahang, 50586 Kuala Lumpur Malaysia. *Corresponding author Ayn Masnon Email: [email protected] Abstract: Ocular manifestations are among the criteria included in diagnosing Neurofibromatosis Type 1. Ocular assessments in children with NF1 are important as young children may do not complain of visual impairment until it is advanced. Here in we report a case of Neurofibromatosis Type 1 with optic nerve glioma, in which the diagnosis are aided by imaging; namely B scan and MRI. Keywords: Neurofibromatosis Type 1, optic glioma, B scan, MRI. INTRODUCTION Ocular examination shows best corrected Neurofibromatosis type 1 (NF1) is a common vision for both eyes on first presentation were 6/7.5. inherited disorder with an approximate incidence of Refraction showed low refractive error and the child not 1:3000 [1]. It is an autosomal dominant disorder, with requiring glasses. Hirschberg Test was central and no the mutation of a tumor suppressor gene, located on the squint noted. No proptosis (Figure 1) and extra ocular long arm of chromosome 17q11 [2].
    [Show full text]
  • Uživatel:Zef/Output18
    Uživatel:Zef/output18 < Uživatel:Zef rozřadit, rozdělit na více článků/poznávaček; Název !! Klinický obraz !! Choroba !! Autor Bárányho manévr; Bonnetův manévr; Brudzinského manévr; Fournierův manévr; Fromentův manévr; Heimlichův manévr; Jendrassikův manévr; Kernigův manévr; Lasčgueův manévr; Müllerův manévr; Scanzoniho manévr; Schoberův manévr; Stiborův manévr; Thomayerův manévr; Valsalvův manévr; Beckwithova známka; Sehrtova známka; Simonova známka; Svěšnikovova známka; Wydlerova známka; Antonovo znamení; Apleyovo znamení; Battleho znamení; Blumbergovo znamení; Böhlerovo znamení; Courvoisierovo znamení; Cullenovo znamení; Danceovo znamení; Delbetovo znamení; Ewartovo znamení; Forchheimerovo znamení; Gaussovo znamení; Goodellovo znamení; Grey-Turnerovo znamení; Griesingerovo znamení; Guddenovo znamení; Guistovo znamení; Gunnovo znamení; Hertogheovo znamení; Homansovo znamení; Kehrerovo znamení; Leserovo-Trélatovo znamení; Loewenbergerovo znamení; Minorovo znamení; Murphyho znamení; Nobleovo znamení; Payrovo znamení; Pembertonovo znamení; Pinsovo znamení; Pleniesovo znamení; Pléniesovo znamení; Prehnovo znamení; Rovsingovo znamení; Salusovo znamení; Sicardovo znamení; Stellwagovo znamení; Thomayerovo znamení; Wahlovo znamení; Wegnerovo znamení; Zohlenovo znamení; Brachtův hmat; Credého hmat; Dessaignes ; Esmarchův hmat; Fritschův hmat; Hamiltonův hmat; Hippokratův hmat; Kristellerův hmat; Leopoldovy hmat; Lepagův hmat; Pawlikovovy hmat; Riebemontův-; Zangmeisterův hmat; Leopoldovy hmaty; Pawlikovovy hmaty; Hamiltonův znak; Spaldingův znak;
    [Show full text]
  • Cutaneous Findings in Neurofibromatosis Type 1
    cancers Review Cutaneous Findings in Neurofibromatosis Type 1 Bengisu Ozarslan 1 , Teresa Russo 2, Giuseppe Argenziano 2 , Claudia Santoro 3 and Vincenzo Piccolo 2,* 1 Dermatology Unit, Doku Medical Center, 34381 Istanbul, Turkey; [email protected] 2 Dermatology Unit, University of Campania Luigi Vanvitelli, 80100 Naples, Italy; [email protected] (T.R.); [email protected] (G.A.) 3 Department of Woman, Neurofibromatosis Referral Centre, Child and of General and Specialised Surgery, University of Campania Luigi Vanvitelli, 80100 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-08-1566-6834; Fax: +39-08-1546-8759 Simple Summary: Neurofibromatosis type 1 (NF1) is characterized by major and minor cutaneous findings, whose recognition plays a key role in the early diagnosis of the disease. The disease affects multiple systems and clinical manifestation has a wide range of variability. Symptoms and clinical signs may occur over the lifetime, and the complications are very diverse. Although significant progress has been made in understanding the pathophysiology of the disease, no specific treatment has been defined. Multidisciplinary approach is required to provide optimum care for the patients. The aim of this paper is to provide the clinician with a complete guide of skin findings of NF1. Abstract: Neurofibromatosis type 1 (NF1) is a complex autosomal dominant disorder associated with germline mutations in the NF1 tumor suppressor gene. NF1 belongs to a class of congenital anomaly syndromes called RASopathies, a group of rare genetic conditions caused by mutations in the Ras/mitogen-activated protein kinase pathway. Generally, NF1 patients present with dermatologic manifestations.
    [Show full text]
  • Neurofibromatosis Type 1 and Type 2 Associated Tumours: Current Trends in Diagnosis and Management with a Focus on Novel Medical Therapies
    Neurofibromatosis Type 1 and Type 2 Associated Tumours: Current trends in Diagnosis and Management with a focus on Novel Medical Therapies Simone Lisa Ardern-Holmes MBChB, MSc, FRACP A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Health Sciences, The University of Sydney February 2018 1 STATEMENT OF ORIGINALITY This is to certify that this submission is my own work and that, to the best of my knowledge, it contains no material previously published or written by another person, or material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgement has been made in the text. Simone L. Ardern-Holmes 2 SUMMARY Neurofibromatosis type 1 (NF1) and Neurofibromatosis type 2 (NF2) are distinct single gene disorders, which share a predisposition to formation of benign nervous system tumours due to loss of tumour suppressor function. Since identification of the genes encoding NF1 and NF2 in the early 1990s, significant progress has been made in understanding the biological processes and molecular pathways underlying tumour formation. As a result, identifying safe and effective medical approaches to treating NF1 and NF2-associated tumours has become a focus of clinical research and patient care in recent years. This thesis presents a comprehensive discussion of the complications of NF1 and NF2 and approaches to treatment, with a focus on key tumours in each condition. The significant functional impact of these disorders in children and young adults is illustrated, demonstrating the need for coordinated care from experienced multidisciplinary teams.
    [Show full text]
  • Table I. Genodermatoses with Known Gene Defects 92 Pulkkinen
    92 Pulkkinen, Ringpfeil, and Uitto JAM ACAD DERMATOL JULY 2002 Table I. Genodermatoses with known gene defects Reference Disease Mutated gene* Affected protein/function No.† Epidermal fragility disorders DEB COL7A1 Type VII collagen 6 Junctional EB LAMA3, LAMB3, ␣3, ␤3, and ␥2 chains of laminin 5, 6 LAMC2, COL17A1 type XVII collagen EB with pyloric atresia ITGA6, ITGB4 ␣6␤4 Integrin 6 EB with muscular dystrophy PLEC1 Plectin 6 EB simplex KRT5, KRT14 Keratins 5 and 14 46 Ectodermal dysplasia with skin fragility PKP1 Plakophilin 1 47 Hailey-Hailey disease ATP2C1 ATP-dependent calcium transporter 13 Keratinization disorders Epidermolytic hyperkeratosis KRT1, KRT10 Keratins 1 and 10 46 Ichthyosis hystrix KRT1 Keratin 1 48 Epidermolytic PPK KRT9 Keratin 9 46 Nonepidermolytic PPK KRT1, KRT16 Keratins 1 and 16 46 Ichthyosis bullosa of Siemens KRT2e Keratin 2e 46 Pachyonychia congenita, types 1 and 2 KRT6a, KRT6b, KRT16, Keratins 6a, 6b, 16, and 17 46 KRT17 White sponge naevus KRT4, KRT13 Keratins 4 and 13 46 X-linked recessive ichthyosis STS Steroid sulfatase 49 Lamellar ichthyosis TGM1 Transglutaminase 1 50 Mutilating keratoderma with ichthyosis LOR Loricrin 10 Vohwinkel’s syndrome GJB2 Connexin 26 12 PPK with deafness GJB2 Connexin 26 12 Erythrokeratodermia variabilis GJB3, GJB4 Connexins 31 and 30.3 12 Darier disease ATP2A2 ATP-dependent calcium 14 transporter Striate PPK DSP, DSG1 Desmoplakin, desmoglein 1 51, 52 Conradi-Hu¨nermann-Happle syndrome EBP Delta 8-delta 7 sterol isomerase 53 (emopamil binding protein) Mal de Meleda ARS SLURP-1
    [Show full text]
  • Case Report Neurofibromatosis Type I in Children: a Case Report and Literature Review
    Int J Clin Exp Pathol 2020;13(10):2656-2660 www.ijcep.com /ISSN:1936-2625/IJCEP0119042 Case Report Neurofibromatosis type I in children: a case report and literature review Jing Wang*, Yaqian Pang*, Feng Cao, Hao Zhu, Kai Zhang* Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, P. R. China. *Equal contributors. Received July 27, 2020; Accepted September 14, 2020; Epub October 1, 2020; Published October 15, 2020 Abstract: Neurofibromatosis is an autosomal dominant genetic disease that originates from neuroepithelial tissue and involves disorders of ectoderm and mesoderm. At present, there are relatively few reports of neurofibroma type I in children. Therefore, understanding the clinical manifestations, diagnosis, and treatment of neurofibromatosis is of great significance to the occurrence and development of neurofibroma type I. This study is a case of and literature review of neurofibromatosis type I in children. Keywords: Neurofibromatosis, autosomal dominant hereditary disease, literature review Introduction more than half a year”. Six months ago, the family members of the patient inadvertently Neurofibromatosis (NF) is a rare progressive found a “soybean” painless, hard mass on the disease, usually caused by mutations in a left face of the child. After seeing a doctor in specific gene. NF is mainly divided into three the local hospital, the patient was treated with types, and type I (NF1) and type II (NF2) are anti-inflammatory treatment (specific drugs are most common [1, 2]. The incidence of NF1 is unknown). The effect was poor, and the mass approximately 1/3,000 to 1/400, accounting gradually increased.
    [Show full text]
  • Clinical and Genetic Patterns Ofneurofibromatosis 1 and 2
    662 BritishJournalofOphthalmology 1993; 77: 662-672 PERSPECTIVE Br J Ophthalmol: first published as 10.1136/bjo.77.10.662 on 1 October 1993. Downloaded from Clinical and genetic patterns of neurofibromatosis 1 and 2 Nicola K Ragge General introduction to the neurofibromatoses Neurofibromatosis type 1 The diseases traditionally known as neurofibromatosis have now been formally separated into two types: neurofibromato- CLINICAL ASPECTS sis type 1 or NFl (the type described by von Recklinghausen) Neurofibromatosis type 1 (NFI) is the commonest form of and neurofibromatosis type 2 or NF2 (a much rarer form).' It neurofibromatosis and has a frequency of about 1 in 3000 to is now recognised that although they have overlapping 1 in 3500.192° Although the gene is almost 100% penetrant, features, including an inherited propensity to neurofibromas the disease itselfhas extremely variable expressivity.20 About and tumours of the central nervous system, they are indeed 50% ofindex cases and 30% ofall NFl cases are considered to separate diseases and map to different chromosomes - 17 for be new mutations. The high mutation rate may be due in part NFl and 22 for NF2. Furthermore, developmental abnor- to the large size of the gene and its transcript, or possibly to malities such as hamartomas occur in both types of neuro- the presence of sequences within the gene highly susceptible fibromatosis, illustrating a need to define the role of the to mutation. normal NF genes in development. There may also be further forms of neurofibromatosis, including NF3, NF4, multiple meningiomatosis, and spinal Clinicalfeatures schwannomatosis, that do not fit precisely into current Particular clinical features are critical for establishing the diagnostic classifications.
    [Show full text]
  • Neurofibromatosis Type 1
    Handbook of Clinical Neurology, Vol. 132 (3rd series) Neurocutaneous Syndromes M.P. Islam and E.S. Roach, Editors © 2015 Elsevier B.V. All rights reserved Chapter 4 Neurofibromatosis type 1 JACQUELINE L. ANDERSON AND DAVID H. GUTMANN* Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA INTRODUCTION background (Huson et al., 1989; Rasmussen and Friedman, 2000; Johnson et al., 2013). While NF1 is an History autosomal dominant condition, only 50% of people have Neurofibromatosis type 1 (NF1), previously known as an affected family member with NF1 (familial cases). As von Recklinghausen disease, is a common neurogenetic such, 50% of patients will be the first person in their fam- condition affecting 1:2500 people worldwide. NF1 prob- ily with NF1, arising from a sporadic NF1 gene mutation ably existed in ancient times, with art and literature from (De Luca et al., 2004; Evans et al., 2010). Life expectancy the 3rd century BCE documenting descriptions consistent is reduced by 8–15 years relative to the general popula- with the disease (Zanca, 1980). In 1849, an Irish surgeon tion, with malignancy constituting the major reason named Robert W. Smith differentiated patients with for death prior to the age of 30 (Rasmussen et al., traumatic neuromas from those with cases of multiple, 2001; Evans et al., 2011). With the establishment of an idiopathic neuromas (Smith, 1849). However, it was not online worldwide registry for patients with NF1, new until 1882 that the disease entity was fully recognized: the insights into the epidemiology of this common condition German pathologist Frederick von Recklinghausen first will likely emerge (Johnson et al., 2013).
    [Show full text]