Neurofibromatosis Type 1 and Type 2 Associated Tumours: Current Trends in Diagnosis and Management with a Focus on Novel Medical Therapies

Total Page:16

File Type:pdf, Size:1020Kb

Neurofibromatosis Type 1 and Type 2 Associated Tumours: Current Trends in Diagnosis and Management with a Focus on Novel Medical Therapies Neurofibromatosis Type 1 and Type 2 Associated Tumours: Current trends in Diagnosis and Management with a focus on Novel Medical Therapies Simone Lisa Ardern-Holmes MBChB, MSc, FRACP A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Health Sciences, The University of Sydney February 2018 1 STATEMENT OF ORIGINALITY This is to certify that this submission is my own work and that, to the best of my knowledge, it contains no material previously published or written by another person, or material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgement has been made in the text. Simone L. Ardern-Holmes 2 SUMMARY Neurofibromatosis type 1 (NF1) and Neurofibromatosis type 2 (NF2) are distinct single gene disorders, which share a predisposition to formation of benign nervous system tumours due to loss of tumour suppressor function. Since identification of the genes encoding NF1 and NF2 in the early 1990s, significant progress has been made in understanding the biological processes and molecular pathways underlying tumour formation. As a result, identifying safe and effective medical approaches to treating NF1 and NF2-associated tumours has become a focus of clinical research and patient care in recent years. This thesis presents a comprehensive discussion of the complications of NF1 and NF2 and approaches to treatment, with a focus on key tumours in each condition. The significant functional impact of these disorders in children and young adults is illustrated, demonstrating the need for coordinated care from experienced multidisciplinary teams. Response of the first Australian patients offered novel medications under careful prospective monitoring for safety and efficacy, is described. The approach to treatment trials including principles of patient selection, rationale for candidate medication choices, and identification of appropriate outcome measures are outlined. Treatment response is assessed utilizing multiple criteria including radiologic response, functional status and patient reported outcomes. Tumours considered include plexiform neurofibromas in NF1, treated with the protein tyrosine kinase inhibitor imatinib, with limited benefit. In NF2, vestibular schwannomas were treated using the vascular endothelial growth factor inhibitor bevacizumab, showing definite benefit in a proportion of patients. Refinements in the clinical approach to NF-associated tumours are discussed, considering results from this early experience. Optimizing tumour surveillance prior to intervention, identifying the most potent yet tolerable agents for use, determining when medical therapy should be utilized in concert with surgical and other approaches, and establishing ways of stratifying individual risk of disease complications and likelihood of treatment benefit, remain important questions for the future. 3 ACKNOWLEDGEMENTS I have greatly appreciated the support, advice and cooperation of many individuals over time while conducting the research outlined here, and in preparation of this thesis. My sincere thanks and acknowledgements are extended to the following people, in particular: Professor Kathryn North, as my primary supervisor, who established the clinical service for children with neurofibromatoses in 1990 at The Children’s Hospital at Westmead. Her vision to improve the care of Australian patients has been key to evolution of the treatment approaches presented here. My collaborations with experts in the field internationally, were facilitated by relationships established in the NF community by Professor North over many years. I have appreciated her advice in all aspects of the conduct of this research and preparation of the thesis. My associate supervisors, Dr Nigel Clarke for his support and encouragement especially in times of change, Drs Mark Wong and Geoffrey McCowage for their expert oncology advice and patient management, Dr Rachel Skinner for her practical and collegial support in the latter phases of research and thesis preparation. Other oncologists providing dedicated care for patients with complex NF1 and NF2 including Dr Luciano Dalla Pozza (Sydney), Professor Elizabeth Tovey (Sydney), Dr Simon Troon (Perth), Professor Paul De Souza (Sydney), Professor John Simes (Sydney), Dr Michael Slancar (Queensland) (Chapters 4, 8, 9). Radiologists Dr Jane Li, Dr Lavier Gomes and Dr Kristina Prelog, for their assistance with interpretation of neuroimaging, especially in assessment of target and off-target radiologic response to bevacizumab in a single patient (JL, LG, Chapter 9). 4 NFTumormetrics staff for assistance with tumour volumetry, under the direction of Dr Gordon Harris, with special thanks for his pro-active approach to international collaboration (Chapters 4, 8, 9). Members of the medical and surgical communities in Sydney involved in the multidisciplinary care of individuals with complex NF1 and NF2, especially colleagues from the Neurogenetics Clinic, The Children’s Hospital at Westmead, and at other institutions. Dr Gemma Fisher, for assistance with the literature review on NF2 (Chapter 5) including first draft of selected sections of the manuscript, and for support in obtaining ethics approval to evaluate the experience of NF2 in children at our centre (Chapter 6). Dr Fisher also contributed to extraction of data for children with NF2 from clinical notes (Chapter 6). Dr Manoj Kanhangad for assistance with application for ethics approval to evaluate spinal neurofibromas in children with NF1 at The Children’s Hospital at Westmead (Chapter 3). Ms Emma Scanlon (Hearing Australia) for her enthusiastic and accommodating participation in audiology surveillance of NF2 patients from around the country. Ms Rosemary Douglas, Ms Katie O’Brien and others providing audiology services for patients at The Children’s Hospital at Westmead. Ms Natalie Gabrael and Ms Carleen Fernandez for administrative support, including coordinating visits for interstate NF2 patients, and sendaways for volumetric MRI analysis. Dr Federica Barzi and Ms Elizabeth Barnes, for advice on study design and data interpretation. The Children’s Tumour Foundation, Australia for financial support, without which the advances in care for NF1 and NF2 patients described in this thesis 5 would not have been possible. This support funded administrative support for care coordination of complex patients with NF1 and NF2 (2010-2012), acquisition of 3D volumetric imaging data, and a stipend toward my employment during that time. Each and every patient, and family member, whose experiences have enriched my understanding of the presentation and complications of NF1 and NF2, and the potential for resilience in the face of significant medical challenges. I greatly valued the opportunity to contribute in working groups of the REiNS International Collaboration, for development of clinical trials recommendations. Advice from REiNs colleagues on management of complex clinical problems arising in the care of our patients has been appreciated. Finally, and most importantly, I thank my family, particularly my husband Connor, and our two sons Adair and Tierney, with whom I have the greatest pleasure and privilege to share the experience of family life. 6 PRESENTATIONS Ardern-Holmes, S.L., Wong, M, McCowage G, North, K.N. Novel medical treatment approaches to NF1/NF2 associated tumours. ANZCNS Scientific Meeting Sydney, May 2013 (Oral Presentation) Ardern-Holmes S.L., Kellie S. Treatment of the Oncologic Complications of NF1 and NF2. International Neurooncology Society Congress, Auckland NZ, Oct 2011 (Oral Presentation) Ardern-Holmes, S.L., Wong, M., McCowage, G., North, K.N. Avastin (bevacizumab) for target and non-target NF2 tumours: trigeminal and spinal tumours also demonstrate response. (Children’s Tumour Foundation Conference Jackson Hole June 2011, Poster Presentation) PUBLICATIONS Ardern-Holmes S.L. and North K.N. Therapeutics for Childhood Neurofibromatosis. Current Treatment Options in Neurology, 13 (6): 2011. (Chapter 2) Ardern-Holmes S. L., & North, K. N. Treatment for plexiform neurofibromas in patients with NF1. The Lancet Oncology, 2012. Ardern-Holmes S, Fisher, G, North, K. Neurofibromatosis type 2: presentation, major complications and management, with a focus on the pediatric age group. 2016. (Chapter 5) Mautner, V.F., Nguyen, R., Ardern-Holmes, S.L., Kluwe, L., Renard, M., Clarke, N., Denayer, E., Valeyrie-Allanore, L., Wolkenstein, P., Legius, E. Imatinib did not induce regression of plexiform neurofibromas in 7 pediatric NF1 patients. Blood e- letter, January 26, 2011. Lim, S, Ardern-Holmes S, McCowage G and de Souza, P. Systemic therapy in neurofibromatosis type 2. Cancer Treatment Reviews. 40: 857-861, 2014. 7 AUTHOR ATTRIBUTION STATEMENT Chapter 2 of this thesis is modified from the published manuscript [1], as I wrote drafts of the manuscript. Chapter 5 is published as [2], as I co-authored drafts of the manuscript. In addition to the statements above, in cases where I am not the corresponding author of a published item, permission to include the published material has been granted by the corresponding author (eg. Appendices). Dr Simone Ardern-Holmes, 26 February 2017 As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct. Professor Kathryn North, 28th February 2017 [1] Ardern-Holmes, S.L. and K.N. North,
Recommended publications
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum
    415 Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum Nancy N. Futrell' While several computed tomographic (CT) studies of posterior third ventricular Anne G. Osborn' neoplasms have included descriptions of pineal tumors, few reports have concentrated Bruce D. Cheson 2 on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attenuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning. Tumors of the pineal region account for less th an 2% of all intracrani al neoplasms [1]. While several reports of computed tomography (CT) of third ventricular neoplasms have in cluded an occasi onal pineal tumor [2 , 3], few have focused on the radiographic spectrum of th ese uncommon lesions [4]. Some authors have asserted that the CT appearance of many pineal tumors is virtuall y pathognomonic [5]. We studied a series of nine biopsy-proven pineal gland tumors that demonstrated remarkable heterogeneity in both histopath ologic and CT appearance. Materials and Methods A total of 17 pineal gland tumors were detected in 15,000 consecutive CT scans. Four patients were female and 13 were male. Mean age for the fe males was 27 years; for the males, 15 years. Initial symptoms ranged from headache, nausea, and vomiting, to Parinaud syndrome, vi sual field defects, diabetes insipidus, and hypopituitari sm (table 1).
    [Show full text]
  • Synchronous Morphologically Distinct Craniopharyngioma and Pituitary
    orders & is T D h e n r Bhatoe et al., Brain Disord Ther 2016, 5:1 i a a p r y B Brain Disorders & Therapy DOI: 10.4172/2168-975X.1000207 ISSN: 2168-975X Case Report Open Access Synchronous Morphologically Distinct Craniopharyngioma and Pituitary Adenoma: A Rare Collision Entity Harjinder S Bhatoe*, Prabal Deb and Sudip Kumar Sengupta Institute of Neuroscience, Max Super Speciality Hospital, New Delhi, India Abstract While pituitary tumors and craniopharyngiomas share a common lineage, their simultaneous occurrence is distinctly rare. We present one such patient, an adult male with two distinct tumors, that were excised by two different approaches. Relevant literature is briefly reviewed. Keywords: Brain tumor; Collision tumor; Craniopharyngioma; Pituitary tumor Introduction Simultaneous occurrence of morphological distinct, discreet intracranial tumors sharing the same cell lineage is a rarity. Pituitary tumors and craniopharyngiomas share a common lineage. Simultaneous occurrence of these two tumors in the same patient is rare and has been reported only nine times so far (Table 1). While pituitary tumours are centred in the sella, craniopharyngiomas may occur anywhere from the pituitary gland to the third ventricle. Association of intra-third ventricular craniopharyngioma and growth hormone- Figure 1: Contrast MRI (T1-weighted sagittal) showing intra-third-ventricular secreting pituitary macroadenoma as two distinct, unconnected tumors craniopharyngioma and pituitary adenoma. occurring synchronously has not been reported so far. Case Report A 35-year-old male was admitted with six-month-history of generalized headache, gradual loss of vision and intermittent generalized tonic clonic seizures. Clinically, he had acromegaly and optic atrophy with no perception of light.
    [Show full text]
  • Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome
    cancers Article Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome Matilde Taddei 1 , Alessandra Erbetta 2 , Silvia Esposito 1, Veronica Saletti 1, 1, , 1, Sara Bulgheroni * y and Daria Riva y 1 Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; [email protected] (M.T.); [email protected] (S.E.); [email protected] (V.S.); [email protected] (D.R.) 2 Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2215; Fax: +39-02-2394-2176 These authors contributed equally to this work. y Received: 30 September 2019; Accepted: 5 November 2019; Published: 11 November 2019 Abstract: Neurofibromatosis type-1 (NF1) is a monogenic tumor-predisposition syndrome creating a wide variety of cognitive and behavioral abnormalities, such as decrease in cognitive functioning, deficits in visuospatial processing, attention, and social functioning. NF1 patients are at risk to develop neurofibromas and other tumors, such as optic pathway gliomas and other tumors of the central nervous system. Few studies have investigated the impact of an additional diagnosis of brain tumor on the cognitive outcome of children with NF1, showing unclear results and without controlling by the effect of surgery, radio- or chemotherapy. In the present mono-institutional study, we compared the behavioral and cognitive outcomes of 26 children with neurofibromatosis alone (NF1) with two age-matched groups of 26 children diagnosed with NF1 and untreated optic pathway glioma (NF1 + OPG) and 19 children with NF1 and untreated other central nervous system tumors (NF1 + CT).
    [Show full text]
  • Clinical Radiation Oncology Review
    Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian
    [Show full text]
  • Inhibition of Mir-1193 Leads to Synthetic Lethality in Glioblastoma
    Zhang et al. Cell Death and Disease (2020) 11:602 https://doi.org/10.1038/s41419-020-02812-3 Cell Death & Disease ARTICLE Open Access Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs Jing Zhang1,LiJing1,SubeeTan2, Er-Ming Zeng3, Yingbo Lin4, Lingfeng He 1, Zhigang Hu 1, Jianping Liu1 and Zhigang Guo1 Abstract Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are ‘coincidental’ treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; de ciency. Introduction In response to DNA damage, cells activate the DNA Glioblastoma multiforme (GBM), exhibits highly damage response (DDR) network, allowing DNA repair aggressive invasion, a high mortality rate, and high resis- through the regulation of cell-cycle progression, DNA tance to radiation and cytotoxic chemotherapy, and thus damage repair or apoptosis4.
    [Show full text]
  • Pearls and Forget-Me-Nots in the Management of Retinoblastoma
    POSTERIOR SEGMENT ONCOLOGY FEATURE STORY Pearls and Forget-Me-Nots in the Management of Retinoblastoma Retinoblastoma represents approximately 4% of all pediatric malignancies and is the most common intraocular malignancy in children. BY CAROL L. SHIELDS, MD he management of retinoblastoma has gradu- ular malignancy in children.1-3 It is estimated that 250 to ally evolved over the years from enucleation to 300 new cases of retinoblastoma are diagnosed in the radiotherapy to current techniques of United States each year, and 5,000 cases are found world- chemotherapy. Eyes with massive retinoblas- Ttoma filling the globe are still managed with enucleation, TABLE 1. INTERNATIONAL CLASSIFICATION OF whereas those with small, medium, or even large tumors RETINOBLASTOMA (ICRB) can be managed with chemoreduction followed by Group Quick Reference Specific Features tumor consolidation with thermotherapy or cryotherapy. A Small tumor Rb <3 mm* Despite multiple or large tumors, visual acuity can reach B Larger tumor Rb >3 mm* or ≥20/40 in many cases, particularly in eyes with extrafoveal retinopathy, and facial deformities that have Macula Macular Rb location been found following external beam radiotherapy are not (<3 mm to foveola) anticipated following chemoreduction. Recurrence from Juxtapapillary Juxtapapillary Rb location subretinal and vitreous seeds can be problematic. Long- (<1.5 mm to disc) term follow-up for second cancers is advised. Subretinal fluid Rb with subretinal fluid Most of us can only remember a few interesting points C Focal seeds Rb with: from a lecture, even if was delivered by an outstanding, Subretinal seeds <3 mm from Rb colorful speaker. Likewise, we generally retain only a small and/or percentage of the information that we read, even if writ- Vitreous seeds <3 mm ten by the most descriptive or lucent author.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Metabolic Profiling of the Three Neural Derived Embryonal Pediatric Tumors
    Metabolic profiling of the three neural derived embryonal pediatric tumors retinoblastoma, neuroblastoma and medulloblastoma, identifies distinct metabolic profiles Kohe, Sarah; Bennett, Christopher; Gill, Simrandip; Wilson, Martin; McConville, Carmel; Peet, Andrew DOI: 10.18632/oncotarget.24168 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Kohe, SE, Bennett, CD, Gill, SK, Wilson, M, McConville, C & Peet, AC 2018, 'Metabolic profiling of the three neural derived embryonal pediatric tumors retinoblastoma, neuroblastoma and medulloblastoma, identifies distinct metabolic profiles', OncoTarget, vol. 9, no. 13, pp. 11336-11351. https://doi.org/10.18632/oncotarget.24168 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Introduction to Neurosurgical Subspecialties
    Introduction to Neurosurgical Subspecialties: Tumor and Skull Base Neurosurgery Brian L. Hoh, MD1 and Gregory J. Zipfel, MD2 1University of Florida, 2Washington University THE SOCIETY OF NEUROLOGICAL SURGEONS Tumor / Skull Base Neurosurgery • Brain tumor / skull base neurosurgeons treat patients with: • Intrinsic primary brain tumors • Astrocytoma, ependymoma, oligodendroglioma, pineal region tumor, craniopharyngioma, hemangioblastoma,, etc. • Extrinsic brain tumor tumors • Meningioma, schwannoma, pituitary adenoma, etc. • Skull tumors • Chordoma, chondrosarcoma, etc. • Brain metastases Rhoton collection THE SOCIETY OF NEUROLOGICAL SURGEONS Tumor / Skull Base Neurosurgery • Fellowship not required, but some neurosurgeons opt for further specialized training in neurosurgical oncology and/or skull base surgery via fellowship • Skull base fellowship • Surgical Neuro-Oncology fellowship • Postdoctoral lab fellowship THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #1 • 36 yo female with headaches and diplopia; large petroclival meningioma on MRI THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #1 Subtemporal approach with petrosectomy Post-op MRI THE SOCIETY OF(-) NEUROLOGICALGad (+) Gad SURGEONS Case Illustration #2 • 72 yo right handed female with large right insular tumor presented with headache THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #2 • Gross total resection was achieved via right pterional transsylvian approach using continuous transcranial MEP/SSEP monitoring • Pathology = glioblastoma THE SOCIETY OF NEUROLOGICAL
    [Show full text]
  • Meningioma ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Meningioma ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Meningioma Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit advocacy organization dedicated solely to brain tumor research. For nearly 45 years, the ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Santosh Kesari, MD, PhD, FANA, FAAN chair of department of translational neuro- oncology and neurotherapeutics, and Marlon Saria, MSN, RN, AOCNS®, FAAN clinical nurse specialist, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA; and Albert Lai, MD, PhD, assistant clinical professor, Adult Brain Tumors, UCLA Neuro-Oncology Program, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2017 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Meningioma INTRODUCTION Although meningiomas are considered a type of primary brain tumor, they do not grow from brain tissue itself, but instead arise from the meninges, three thin layers of tissue covering the brain and spinal cord.
    [Show full text]
  • Molecular Pathology of Adamantinomatous
    Publisher: JNS; Journal: FOCUS:Neurosurgical Focus; Copyright: , ; Volume: 00; Issue: 0; Manuscript: 16307; Month: ; Year: 2016 DOI: ; TOC Head: ; Section Head: Article Type: Clinical Article; Collection Codes: , , , , , Molecular pathology of adamantinomatous craniopharyngioma: review and opportunities for practice John Richard Apps, BM BCh, MSc, and Juan Pedro Martinez-Barbera, PhD Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom Since the first identification of CTNNB1 mutations in adamantinomatous craniopharyngioma (ACP), much has been learned about the molecular pathways and processes that are disrupted in ACP pathogenesis. To date this understanding has not translated into tangible patient benefit. The recent development of novel techniques and a range of preclinical models now provides an opportunity to begin to support treatment decisions and develop new therapeutics based on molecular pathology. In this review the authors summarize many of the key findings and pathways implicated in ACP pathogenesis and discuss the challenges that need to be tackled to translate these basic findings for the benefit of patients. Key Words adamantinomatous craniopharyngioma; molecular therapeutics; targeted therapies Abbreviations ACP = adamantinomatous craniopharyngioma; cfDNA = cell-free DNA; EGFR = epidermal growth factor receptor; PCP = papillary craniopharyngioma. SUBMITTED August 1, 2016. ACCEPTED August 25, 2016. THE last 2 decades have seen
    [Show full text]