Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma, -
Synchronous Morphologically Distinct Craniopharyngioma and Pituitary
orders & is T D h e n r Bhatoe et al., Brain Disord Ther 2016, 5:1 i a a p r y B Brain Disorders & Therapy DOI: 10.4172/2168-975X.1000207 ISSN: 2168-975X Case Report Open Access Synchronous Morphologically Distinct Craniopharyngioma and Pituitary Adenoma: A Rare Collision Entity Harjinder S Bhatoe*, Prabal Deb and Sudip Kumar Sengupta Institute of Neuroscience, Max Super Speciality Hospital, New Delhi, India Abstract While pituitary tumors and craniopharyngiomas share a common lineage, their simultaneous occurrence is distinctly rare. We present one such patient, an adult male with two distinct tumors, that were excised by two different approaches. Relevant literature is briefly reviewed. Keywords: Brain tumor; Collision tumor; Craniopharyngioma; Pituitary tumor Introduction Simultaneous occurrence of morphological distinct, discreet intracranial tumors sharing the same cell lineage is a rarity. Pituitary tumors and craniopharyngiomas share a common lineage. Simultaneous occurrence of these two tumors in the same patient is rare and has been reported only nine times so far (Table 1). While pituitary tumours are centred in the sella, craniopharyngiomas may occur anywhere from the pituitary gland to the third ventricle. Association of intra-third ventricular craniopharyngioma and growth hormone- Figure 1: Contrast MRI (T1-weighted sagittal) showing intra-third-ventricular secreting pituitary macroadenoma as two distinct, unconnected tumors craniopharyngioma and pituitary adenoma. occurring synchronously has not been reported so far. Case Report A 35-year-old male was admitted with six-month-history of generalized headache, gradual loss of vision and intermittent generalized tonic clonic seizures. Clinically, he had acromegaly and optic atrophy with no perception of light. -
Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome
cancers Article Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome Matilde Taddei 1 , Alessandra Erbetta 2 , Silvia Esposito 1, Veronica Saletti 1, 1, , 1, Sara Bulgheroni * y and Daria Riva y 1 Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; [email protected] (M.T.); [email protected] (S.E.); [email protected] (V.S.); [email protected] (D.R.) 2 Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2215; Fax: +39-02-2394-2176 These authors contributed equally to this work. y Received: 30 September 2019; Accepted: 5 November 2019; Published: 11 November 2019 Abstract: Neurofibromatosis type-1 (NF1) is a monogenic tumor-predisposition syndrome creating a wide variety of cognitive and behavioral abnormalities, such as decrease in cognitive functioning, deficits in visuospatial processing, attention, and social functioning. NF1 patients are at risk to develop neurofibromas and other tumors, such as optic pathway gliomas and other tumors of the central nervous system. Few studies have investigated the impact of an additional diagnosis of brain tumor on the cognitive outcome of children with NF1, showing unclear results and without controlling by the effect of surgery, radio- or chemotherapy. In the present mono-institutional study, we compared the behavioral and cognitive outcomes of 26 children with neurofibromatosis alone (NF1) with two age-matched groups of 26 children diagnosed with NF1 and untreated optic pathway glioma (NF1 + OPG) and 19 children with NF1 and untreated other central nervous system tumors (NF1 + CT). -
Clinical Radiation Oncology Review
Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian -
Germinoma of the Pineal Its Identity with Gcrminoma ( Scminoma") of the Testis
Germinoma of the Pineal Its Identity with Gcrminoma ( Scminoma") of the Testis Major Nathan B. Friedman, MC, AUS (From the Army Institute ot Pathology, \X/ashillgto~L D. C.) (Received for publication December 10, 1946) In 1944 Dorothy Russell (15) published the re- gcrminonmtous elements. Only 2 tulnors in this suits of a study of pineal tumors. She presented a group of 8 appeared to bc of neural origin; one, rational explanation for the well known similarity which had the pattern of a classic pinealoma, was in histologic appearance of "pinealomas" and "semi- TABLE l: DATA IN T\VENTY-THREt CASES OF PlNEAL nomas." She suggested that in'any "pincalomas" NEOPI.ASM ucre in truth teratoid tumors. The present report Case Age, Type of proposes to confirln h er.~obscrvations and to extend No. Sex years npoplasm s features her interpretations in accord with the teratologic CRovP 1 concepts gained through study of nearly 1,000 tu- 1 M 29 Neural mors of the testis at the Army Institute of Patho- 2 XI 22 Germinoma Extrapineal. Pitui- logy (6). tary involved. Dia- The files of the Institute contain pathologic ma- betes insipidus. Hypogonadism. terial from 23 patients with tumors of the pineal or ectopic "pinealomas." Fifteen tumors were submit- 3 1~i 17 Neural ted by military installations ~ (Group 1), and 8 were 4 1~I 18 Germinoma Pituitary involved. obtained from civilian sources e (Group 2). The Diabetes insipidus. _~I 21 essential data in all 23 cases arc listed in Table I. Puhnonary metas- tases. Radiosensi- Seven of the 15 tumors in group 1 were identical tMty. -
Introduction to Neurosurgical Subspecialties
Introduction to Neurosurgical Subspecialties: Tumor and Skull Base Neurosurgery Brian L. Hoh, MD1 and Gregory J. Zipfel, MD2 1University of Florida, 2Washington University THE SOCIETY OF NEUROLOGICAL SURGEONS Tumor / Skull Base Neurosurgery • Brain tumor / skull base neurosurgeons treat patients with: • Intrinsic primary brain tumors • Astrocytoma, ependymoma, oligodendroglioma, pineal region tumor, craniopharyngioma, hemangioblastoma,, etc. • Extrinsic brain tumor tumors • Meningioma, schwannoma, pituitary adenoma, etc. • Skull tumors • Chordoma, chondrosarcoma, etc. • Brain metastases Rhoton collection THE SOCIETY OF NEUROLOGICAL SURGEONS Tumor / Skull Base Neurosurgery • Fellowship not required, but some neurosurgeons opt for further specialized training in neurosurgical oncology and/or skull base surgery via fellowship • Skull base fellowship • Surgical Neuro-Oncology fellowship • Postdoctoral lab fellowship THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #1 • 36 yo female with headaches and diplopia; large petroclival meningioma on MRI THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #1 Subtemporal approach with petrosectomy Post-op MRI THE SOCIETY OF(-) NEUROLOGICALGad (+) Gad SURGEONS Case Illustration #2 • 72 yo right handed female with large right insular tumor presented with headache THE SOCIETY OF NEUROLOGICAL SURGEONS Case Illustration #2 • Gross total resection was achieved via right pterional transsylvian approach using continuous transcranial MEP/SSEP monitoring • Pathology = glioblastoma THE SOCIETY OF NEUROLOGICAL -
Points of Consideration in Diagnosis of Brain Tumors
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Points of consideration in diagnosis of brain tumors Robert J. Stein University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Stein, Robert J., "Points of consideration in diagnosis of brain tumors" (1934). MD Theses. 356. https://digitalcommons.unmc.edu/mdtheses/356 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. POINTS OF CONSIDERATION IN DIAGNOSIS OF BRAIN TUMORS by Robert J. Stein University of Nebraska College of Medicine Omaha Page I. Introduction ••.••••••••••.••.••••••••••••••••••••••• 1. II. Histogenes is of the Brain ••••••••••••.•••••••••••••• I. III.Classification of Intracranial Tumors............ 11. IV. Outllne of Methods of Examination ••••••••••••••••••• 31. V. General Symutoms and Signs of Increased Intra- cran~al Pressure ••. ••• .••••••••••••••••••••• • • • :J •••• 36. VI. Focal Signs and Symptoms of Brain Tumor ••••••••••••• 45. Cerebral Tumors ••••••••••, •••••••••••••••••••••••••• 47. Tumors of Cerebellum, Pons and Medulla ••••••••••• •• 57. Tumors of the Pi tui tary Body ••••••••••••••••.•••• .'. 61. VI I. Summary. • • • • • • . • • • • • . • • • • • . • • • . • • • • • • • • . • . • • • • • • • •• 65. Bibliogranhy •••••••••••••••••••••••••• • • • • • • • • • • • • • 69. 1. I. INTRODUCTION The progress of the surgery of intracranial tumors has been asso ciated intimately wi th the advenae ment of asepsis and surgical technique in genera.l i methods of more accurate diagnosis and a correlation of the pathology of tumors encountered with the clini cal course of the patient. -
Molecular Pathology of Adamantinomatous
Publisher: JNS; Journal: FOCUS:Neurosurgical Focus; Copyright: , ; Volume: 00; Issue: 0; Manuscript: 16307; Month: ; Year: 2016 DOI: ; TOC Head: ; Section Head: Article Type: Clinical Article; Collection Codes: , , , , , Molecular pathology of adamantinomatous craniopharyngioma: review and opportunities for practice John Richard Apps, BM BCh, MSc, and Juan Pedro Martinez-Barbera, PhD Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom Since the first identification of CTNNB1 mutations in adamantinomatous craniopharyngioma (ACP), much has been learned about the molecular pathways and processes that are disrupted in ACP pathogenesis. To date this understanding has not translated into tangible patient benefit. The recent development of novel techniques and a range of preclinical models now provides an opportunity to begin to support treatment decisions and develop new therapeutics based on molecular pathology. In this review the authors summarize many of the key findings and pathways implicated in ACP pathogenesis and discuss the challenges that need to be tackled to translate these basic findings for the benefit of patients. Key Words adamantinomatous craniopharyngioma; molecular therapeutics; targeted therapies Abbreviations ACP = adamantinomatous craniopharyngioma; cfDNA = cell-free DNA; EGFR = epidermal growth factor receptor; PCP = papillary craniopharyngioma. SUBMITTED August 1, 2016. ACCEPTED August 25, 2016. THE last 2 decades have seen -
Hamartoma of the Tuber Cinereum: a Comparison of MR and CT Findings in Four Cases
497 Hamartoma of the Tuber Cinereum: A Comparison of MR and CT Findings in Four Cases 1 2 Edward M. Burton " Hamartoma of the tuber cinereum is a well-recognized cause of central precocious WilliamS. Ball, Jr.1 puberty. We report three patients with an isodense, nonenhancing mass within the Kerry Crone3 interpeduncular cistern identified by CT. In a fourth patient, the CT scan was normal. Lawrence M. Dolan4 MR imaging was obtained in all cases and demonstrated a sessile or pedunculated mass of the posterior hypothalamus arising from the region of the tuber cinereum. The smallest mass was 2 mm in diameter and was found in the patient in whom the CT scan was normal. The signal intensity of the masses was generally homogeneous and isointense relative to gray matter on T1- and intermediate-weighted images, and hyper intense on T2-weighted images. MR imaging accurately diagnoses hypothalamic hamartomas, identifies small hamar tomas of the tuber cinereum more sensitively than CT does, and provides optimal imaging for serial evaluation while the patient is being treated medically. Central (neurogenic or true) precocious puberty is caused by premature activation of the hypothalamic-pituitary axis, resulting in sexual maturation prior to age 7112 years in females and age 9 years in males . Hamartoma of the tuber cinereum is a well-recognized cause of central precocious puberty [1 , 2] , with approximately 90 cases previously reported in the radiologic literature [3-9]. There are, however, few reports describing its appearance on CT [6-12] and MR imaging [9, 13]. We report four cases of hypothalamic hamartoma causing precocious puberty, and describe their pertinent CT and MR characteristics. -
A Glioma in a Dog and a Pinealoma in a Silver Fox (Vulpes Fulvus)
A GLIOMA IN A DOG AND A PINEALOMA IN A SILVER FOX (VULPES FULVUS) CARL F. SCHLOTTHAUER, D.V.M., Division of E.aperinienta1 Medicine, The Mauo Foundation JAMES W. KERNOHAN, M.D., Section on Pathologic Anatomy, The Mayo Clinic, Rochester, Minnesota Only a small number of primary intracranial neoplasms have been observed in mammals and birds. Either they do not occur as fre- quently in lower animals as they do in man or they are overlooked. The latter is a probable explanation, as only a small number of animals that die of natural causes come to necropsy and because of the dif- ficulty of opening the cranium with inadequate equipment this part of the examination generally is omitted. Slye, Holmes and Wells, in 1931, reviewed the literature 011 intrn- cranial and cord tumors of lower animals and found only 36 cases re- ported. Twenty-six of these were intracraiiial tumors, 11 of which were in the hypophysis. They at that time reported 4 new cases of primary intracranial neoplasms, 3 occurring in mice of the Slye stock and one in a green parrakeet (Agatomis puEZuriu). The neoplasms found in tlie mice were : an endothelioma of a cerebral peduncle, a papil- lomatous growth in the ependyma of the lateral ventricle, and an in- filtrating adenoma of the hypophysis. The tumor observed in the parrakeet was an adeiioma in tlie hypophysis. Iii their summary thew writers mention that it is especially noteworthy that only one seemingly conclusive report of a cerebral glioma in an animal could be found. Dawes, in 1930, reported two intracrunial neoplasms in dogs. -
Excess Morbidity and Mortality in Patients with Craniopharyngioma
178:1 M Wijnen and others Morbidity and mortality in 178:1 93–102 Clinical Study craniopharyngioma Excess morbidity and mortality in patients with craniopharyngioma: a hospital-based retrospective cohort study Mark Wijnen1,2,*, Daniel S Olsson3,4,*, Marry M van den Heuvel-Eibrink2,5,*, Casper Hammarstrand3,4,*, Joseph A M J L Janssen1, Aart J van der Lely1, Gudmundur Johannsson3,4,* and Sebastian J C M M Neggers1,2,* 1Department of Medicine, Section Endocrinology, Pituitary Centre Rotterdam, Erasmus University Medical Centre, Rotterdam, The Netherlands, 2Department of Paediatric Oncology/Haematology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands, 3Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden, 4Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Correspondence Gothenburg, Gothenburg, Sweden, 5Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands, and should be addressed *(M Wijnen, D S Olsson, M M van den Heuvel-Eibrink, C Hammarstrand, G Johannsson and S J C M M Neggers to M Wijnen contributed equally to this work) Email [email protected] Abstract Objective: Most studies in patients with craniopharyngioma did not investigate morbidity and mortality relative to the general population nor evaluated risk factors for excess morbidity and mortality. Therefore, the objective of this study was to examine excess morbidity and mortality, as well as their determinants in patients with craniopharyngioma. Design: Hospital-based retrospective cohort study conducted between 1987 and 2014. Methods: We included 144 Dutch and 80 Swedish patients with craniopharyngioma identified by a computer-based search in the medical records (105 females (47%), 112 patients with childhood-onset craniopharyngioma (50%), 3153 person- years of follow-up). -
PINEAL REGION TUMORS Onc28 (1)
PINEAL REGION TUMORS Onc28 (1) Pineal Region Tumors, Pineal Parenchymal Tumors Last updated: December 22, 2020 TERMINOLOGY......................................................................................................................................... 1 EPIDEMIOLOGY ........................................................................................................................................ 1 ETIOLOGY ................................................................................................................................................ 1 CLASSIFICATION, PATHOLOGY ............................................................................................................... 1 PINEAL PARENCHYMAL TUMORS ........................................................................................................... 1 Pineocytoma ..................................................................................................................................... 1 Pineoblastoma .................................................................................................................................. 3 Pineal parenchymal tumour of intermediate differentiation ............................................................ 5 Papillary tumour of pineal region ..................................................................................................... 6 GLIOMAS................................................................................................................................................ 7 MISCELLANEOUS