What Can the Neuroradiologist Really Say?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma, -
Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum
415 Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum Nancy N. Futrell' While several computed tomographic (CT) studies of posterior third ventricular Anne G. Osborn' neoplasms have included descriptions of pineal tumors, few reports have concentrated Bruce D. Cheson 2 on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attenuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning. Tumors of the pineal region account for less th an 2% of all intracrani al neoplasms [1]. While several reports of computed tomography (CT) of third ventricular neoplasms have in cluded an occasi onal pineal tumor [2 , 3], few have focused on the radiographic spectrum of th ese uncommon lesions [4]. Some authors have asserted that the CT appearance of many pineal tumors is virtuall y pathognomonic [5]. We studied a series of nine biopsy-proven pineal gland tumors that demonstrated remarkable heterogeneity in both histopath ologic and CT appearance. Materials and Methods A total of 17 pineal gland tumors were detected in 15,000 consecutive CT scans. Four patients were female and 13 were male. Mean age for the fe males was 27 years; for the males, 15 years. Initial symptoms ranged from headache, nausea, and vomiting, to Parinaud syndrome, vi sual field defects, diabetes insipidus, and hypopituitari sm (table 1). -
Clinical Radiation Oncology Review
Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian -
Malignant CNS Solid Tumor Rules
Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma. -
PINEAL REGION TUMORS Onc28 (1)
PINEAL REGION TUMORS Onc28 (1) Pineal Region Tumors, Pineal Parenchymal Tumors Last updated: December 22, 2020 TERMINOLOGY......................................................................................................................................... 1 EPIDEMIOLOGY ........................................................................................................................................ 1 ETIOLOGY ................................................................................................................................................ 1 CLASSIFICATION, PATHOLOGY ............................................................................................................... 1 PINEAL PARENCHYMAL TUMORS ........................................................................................................... 1 Pineocytoma ..................................................................................................................................... 1 Pineoblastoma .................................................................................................................................. 3 Pineal parenchymal tumour of intermediate differentiation ............................................................ 5 Papillary tumour of pineal region ..................................................................................................... 6 GLIOMAS................................................................................................................................................ 7 MISCELLANEOUS -
New Jersey State Cancer Registry List of Reportable Diseases and Conditions Effective Date March 10, 2011; Revised March 2019
New Jersey State Cancer Registry List of reportable diseases and conditions Effective date March 10, 2011; Revised March 2019 General Rules for Reportability (a) If a diagnosis includes any of the following words, every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report the case to the Department in accordance with the provisions of N.J.A.C. 8:57A. Cancer; Carcinoma; Adenocarcinoma; Carcinoid tumor; Leukemia; Lymphoma; Malignant; and/or Sarcoma (b) Every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report any case having a diagnosis listed at (g) below and which contains any of the following terms in the final diagnosis to the Department in accordance with the provisions of N.J.A.C. 8:57A. Apparent(ly); Appears; Compatible/Compatible with; Consistent with; Favors; Malignant appearing; Most likely; Presumed; Probable; Suspect(ed); Suspicious (for); and/or Typical (of) (c) Basal cell carcinomas and squamous cell carcinomas of the skin are NOT reportable, except when they are diagnosed in the labia, clitoris, vulva, prepuce, penis or scrotum. (d) Carcinoma in situ of the cervix and/or cervical squamous intraepithelial neoplasia III (CIN III) are NOT reportable. (e) Insofar as soft tissue tumors can arise in almost any body site, the primary site of the soft tissue tumor shall also be examined for any questionable neoplasm. NJSCR REPORTABILITY LIST – 2019 1 (f) If any uncertainty regarding the reporting of a particular case exists, the health care facility, physician, dentist, other health care provider or independent clinical laboratory shall contact the Department for guidance at (609) 633‐0500 or view information on the following website http://www.nj.gov/health/ces/njscr.shtml. -
Lesions of the Sellar Region Which May Resemble Macroadenomas Lesiones De La Región Selar Que Pueden Parecerse a Macroadenomas
www.analesderadiologiamexico.com PERMANYER Anales de Radiología México 2016;15(4):251-259 www.permanyer.com ORIGINAL ARTICLE Lesions of the sellar region which may resemble macroadenomas Lesiones de la región selar que pueden parecerse a macroadenomas Stelios Cedi-Zamudio1, M. Gray-Lugo1, A.E. Vega-Gutiérrez2, V.H. Ramos-Pacheco3, L. Manola-Aguilar4 and G.M. Guerrero-Avendaño5 1Médico Residente del Servicio de Radiología e Imagen; 2Medico Radiólogo especialista en Resonancia Magnética; 3Médico Residente de Curso de Alta Especialidad en el servicio de Resonancia Magnética; 4Médico Residente del Servicio de Neuropatología; 5Medico Radiólogo Intervencionista. Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México ABSTRACT Correspondence to: Stelios Cedi-Zamudio Médico Residente del Servicio de Radiología e Imagen Hospital General de México Dr. Eduardo Liceaga Ciudad de México, México Received in original form: 22-07-2016 E-mail: [email protected] Accepted in final form: 17-09-2016 1665-2118/©2018 Sociedad Mexicana de Radiologia e Imagen, AC. Publicado por Permanyer México SA de CV. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Anales de Radiología México. 2016;15 INTRODUCTION are headache, endocrinological disturbances that can be associated to hypopituitarism, hy- The study of the sellar region has had import- perprolactinemia, hypersecretion of growth ant changes throughout time with the evolu- hormone, pituitary apoplexy, and III, IV, and tion of imaging methods that have growingly VI cranial nerve disorders with optic neurop- improved the resolution of images and have athy leading to diplopia with cavernous sinus displaced diagnostic studies used in the 70s syndrome.1 and 80s last century, such as angiography or pneumoencephalography as the first choice The use of MRI as a standard method pro- methods for diagnosis; computed tomogra- vides more information about disorders in phy and magnetic resonance imaging (MRI) the sellar region. -
Rosettes and Pseudorosettes and Their Significance
Journal of Enam Medical College Vol 7 No 2 May 2017 Review Article Rosettes and Pseudorosettes and Their Significance Mahtab Uddin Ahmed1 Received: April 15, 2016 Accepted: April 30, 2017 doi: http://dx.doi.org/10.3329/jemc.v7i2.32656 Abstract Rosettes are round assemblage of cells found in tumors. They usually consist of cells in a spoke circle, a halo collection surrounding a central or a cellular lumen. Rosettes are so named for their similarity to the rose casement found in gothic cathedrals. There are clusters of different kinds of rosettes in pathology, each with different kind of cells and dissimilar names. Most of them are found in tumors of the nervous system. The detection of rosettes help in diagnosis of different tumors. Key words: Rosettes; Tumors; Pathology J Enam Med Col 2017; 7(2): 101−106 What are rosettes? Rosettes may be considered primary or secondary Rosettes consist of a halo or spoken-wheel manifestations of tumor architecture. Primary rosettes arrangement of cells surrounding a central core or hub. form as a characteristic growth pattern of a given The central hub may consist of an empty-appearing tumor type whereas secondary rosettes result from lumen or a space filled with cytoplasmic processes. the influence of external factors on tumor growth. The cytoplasm of each of the cells in the rosette is For example, in the latter instance, regressive cell often wedge-shaped with the apex directed toward swelling may centripetally displace the cytoplasm as the central core: the nuclei of the cells participating the nucleus is squeezed to the periphery. -
Pituicytoma with Significant Tumor Vascularity Mimicking Pituitary Macroadenoma
Brain Tumor Res Treat 2017;5(2):110-115 / pISSN 2288-2405 / eISSN 2288-2413 CASE REPORT https://doi.org/10.14791/btrt.2017.5.2.110 Pituicytoma with Significant Tumor Vascularity Mimicking Pituitary Macroadenoma Hyuk Ki Shim1, Seung Heon Cha1, Won Ho Cho1, Sung-Hye Park2 1Department of Neurosurgery, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea 2Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea A 19-year-old man presented with bitemporal hemianopsia and was found to have a large sellar and Received July 23, 2017 suprasellar tumor, resembling a pituitary macroadenoma. Emergency transsphenoidal approach was Revised August 19, 2017 attempted because of rapid visual deterioration with headache. However, the approach was compli- Accepted August 21, 2017 cated and stopped by uncontrolled hemorrhage from the tumor. After conventional cerebral angiogra- Correspondence phy and recognition of an unusual pathology, transcranial approach was achieved to prevent permanent Seung Heon Cha visual loss. The final pathological diagnosis was pituicytoma with epithelioid features. Pituicytoma is a Department of Neurosurgery, rare low-grade tumor (WHO Grade I) of pituicytes involving the sellar and suprasellar region, and origi- Pusan National University nating from special glial cells of the neurohypophysis. Because of the high vascularity, the firm consis- School of Medicine, tency, and invasion to surrounding neurovascular structures, a pituicytoma should be included in the Pusan National University Hospital, differential diagnosis of a mass in the sellar and suprasellar area if the tumor shows high enhancement 179 Gudeok-ro, Seo-gu, Busan 49241, Korea with vascular components. -
Pilomyxoid Astrocytomas: a Short Review
Brain Tumor Pathology (2019) 36:52–55 https://doi.org/10.1007/s10014-019-00343-0 REVIEW ARTICLE Pilomyxoid astrocytomas: a short review Ibrahim Kulac1,2 · Tarik Tihan2 Received: 23 January 2019 / Accepted: 26 March 2019 / Published online: 3 April 2019 © The Japan Society of Brain Tumor Pathology 2019 Abstract Pilomyxoid astrocytoma is a variant of pilocytic astrocytoma and the clinical, histological and molecular data point to a very close relationship as well as a more aggressive biological behavior for the former. WHO 2016 classifcation does not provide a specifc grade for these neoplasms, but there is sufcient evidence in the literature that pilomyxoid astrocytoma has slightly worse prognosis than typical pilocytic astrocytoma. There is increasing evidence that in addition to the MAPK pathway alterations, pilomyxoid astrocytomas harbor genetic alterations that distinguish them from typical pilocytic astrocytoma Keywords Astrocytoma · BRAF · Pediatric glioma · Pilocytic · Pilomyxoid Introduction diencephalic region, but failed to recognize their histological distinction from typical PA. Although PMA could be seen Pilomyxoid astrocytoma (PMA) has been recognized as a anywhere in the central nervous system, the most common variant of pilocytic astrocytoma (PA), and was originally site is hypothalamic/chiasmatic region [1, 3–5]. The tumors classifed as a WHO grade II neoplasm in the 2007 WHO are less common in the spinal cord and cerebellum, with classifcation scheme. The WHO 2016 classifcation still only a handful of cases reported to date [6, 7]. recognizes PMA as a variant of PA, but a specifc grade has Radiologically, PMAs look very similar to PAs but they not been assigned [1, 2]. -
Primary Intracranial Germ Cell Tumor (GCT)
Primary Intracranial Germ Cell Tumor (GCT) Bryce Beard MD, Margaret Soper, MD, and Ricardo Wang, MD Kaiser Permanente Los Angeles Medical Center Los Angeles, California April 19, 2019 Case • 10 year-old boy presents with headache x 2 weeks. • Associated symptoms include nausea, vomiting, and fatigue • PMH/PSH: none • Soc: Lives with mom and dad. 4th grader. Does well in school. • PE: WN/WD. Lethargic. No CN deficits. Normal strength. Dysmetria with finger-to-nose testing on left. April 19, 2019 Presentation of Intracranial GCTs • Symptoms depend on location of tumor. – Pineal location • Acute onset of symptoms • Symptoms of increased ICP due to obstructive hydrocephalus (nausea, vomiting, headache, lethargy) • Parinaud’s syndrome: Upward gaze and convergence palsy – Suprasellar location: • Indolent onset of symptoms • Endocrinopathies • Visual field deficits (i.e. bitemporal hemianopsia) – Diabetes insipidus can present due to tumor involvement of either location. – 2:1 pineal:suprasellar involvement. 5-10% will present with both (“bifocal germinoma”). April 19, 2019 Suprasellar cistern Anatomy 3rd ventricle Pineal gland Optic chiasm Quadrigeminal Cistern Cerebral (Sylvian) aquaduct Interpeduncular Cistern 4th ventricle Prepontine Cistern April 19, 2019 Anatomy Frontal horn of rd lateral ventricle 3 ventricle Interpeduncular cistern Suprasellar cistern Occipital horn of lateral Quadrigeminal Ambient ventricle cistern cistern April 19, 2019 Case CT head: Hydrocephalus with enlargement of lateral and 3rd ventricles. 4.4 x 3.3 x 3.3 cm midline mass isodense to grey matter with calcifications. April 19, 2019 Case MRI brain: Intermediate- to hyper- intense 3rd ventricle/aqueduct mass with heterogenous enhancement. April 19, 2019 Imaging Characteristics • Imaging cannot reliably distinguish different types of GCTs, however non-germinomatous germ cell tumors (NGGCTs) tend to have more heterogenous imaging characteristics compared to germinomas. -
WHO Classification of Tumors of the Central Nervous System
Appendix A: WHO Classification of Tumors of the Central Nervous System WHO Classification 1979 • Ganglioneuroblastoma • Anaplastic [malignant] gangliocytoma and Zülch KJ (1979) Histological typing of tumours ganglioglioma of the central nervous system. 1st ed. World • Neuroblastoma Health Organization, Geneva • Poorly differentiated and embryonal tumours • Glioblastoma Tumours of Neuroepithelial tissue –– Variants: • Astrocytic tumours –– Glioblastoma with sarcomatous compo- • Astrocytoma nent [mixed glioblastoma and sarcoma] –– fibrillary –– Giant cell glioblastoma –– protoplasmic • Medulloblastoma –– gemistocytic –– Variants: • Pilocytic astrocytoma –– desmoplastic medulloblastoma • Subependymal giant cell astrocytoma [ven- –– medullomyoblastoma tricular tumour of tuberous sclerosis] • Medulloepithelioma • Astroblastoma • Primitive polar spongioblastoma • Anaplastic [malignant] astrocytoma • Gliomatosis cerebri • Oligodendroglial tumours • Oligodendroglioma Tumours of nerve sheath cells • Mixed-oligo-astrocytoma • Neurilemmoma [Schwannoma, neurinoma] • Anaplastic [malignant] oligodendroglioma • Anaplastic [malignant] neurilemmoma [schwan- • Ependymal and choroid plexus tumours noma, neurinoma] • Ependymoma • Neurofibroma –– Myxopapillary • Anaplastic [malignant]neurofibroma [neurofi- –– Papillary brosarcoma, neurogenic sarcoma] –– Subependymoma • Anaplastic [malignant] ependymoma Tumours of meningeal and related tissues • Choroid plexus papilloma • Meningioma • Anaplastic [malignant] choroid plexus papil- –– meningotheliomatous [endotheliomatous,