Annual Report for the Fiscal Year Julyl, 1984 -June 30, 1985
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY -
New Mathematics for Old Physics: the Case of Lattice Fluids Anouk Barberousse, Cyrille Imbert
New mathematics for old physics: The case of lattice fluids Anouk Barberousse, Cyrille Imbert To cite this version: Anouk Barberousse, Cyrille Imbert. New mathematics for old physics: The case of lattice fluids. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Elsevier, 2013, 44 (3), pp.231-241. 10.1016/j.shpsb.2013.03.003. halshs-00791435 HAL Id: halshs-00791435 https://halshs.archives-ouvertes.fr/halshs-00791435 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New Mathematics for Old Physics: The Case of Lattice Fluids AnoukBarberousse & CyrilleImbert ·Abstract We analyze the effects of the introduction of new mathematical tools on an old branch of physics by focusing on lattice fluids, which are cellular automata (CA)-based hydrodynamical models. We examine the nature of these discrete models, the type of novelty they bring about within scientific practice and the role they play in the field of fluid dynamics. We critically analyze Rohrlich', Keller's and Hughes' claims about CA-based models. We distinguish between different senses of the predicates “phenomenological” and “theoretical” for scientific models and argue that it is erroneous to conclude, as they do, that CA-based models are necessarily phenomenological in any sense of the term. -
The Design of "Living" Biomech Machines: How Low Can One Go?
The Design of "Living" Biomech Machines: How low can one go? VBUG 1.5 "WALKMAN" Single battery. 0.7Kg. metal/plastic construction. Unibody frame. 5 tactile, 2 visual sensors. Control Core: 8 transistor Nv. 4 tran. Nu, 22 tran. motor. Total: 32 transistors. Behaviors: - High speed walking convergence. - powerful enviro. adaptive abilities - strong, accurate phototaxis. - 3 gaits; stop, walk, dig. - backup/explore ability. Mark W. Tilden Physics Division, Los Alamos National Laboratory <[email protected]> 505/667-2902 July, 1997 "So... what you guys have done is find a way to get useful work out of non-linear dynamics?" - Dr. Bob Shelton, NASA. Abstract Following three years of study into experimental Nervous Net (Nv) control devices, various successes and several amusing failures have implied some general principles on the nature of capable control systems for autonomous machines and perhaps, we conjecture, even biological organisms. These systems are minimal, elegant, and, depending upon their implementation in a "creature" structure, astonishingly robust. Their only problem seems to be that as they are collections of non-linear asynchronous elements, only a very complex analysis can adequately extract and explain the emergent competency of their operation. On the other hand, this could imply a cheap, self-programing engineering technology for autonomous machines capable of performing unattended work for years at a time, on earth and in space. Discussion, background and examples are given. Introduction to Biomorphic Design A Biomorphic robot (from the Greek for "of a living form") is a self-contained mechanical device fashioned on the assumption that chaotic reaction, not predictive forward modeling, is appropriate and sufficient for sustained "survival" in unspecified and unstructured environments. -
HPM Newsletter 56 July 2004
ICME-10 Satellite meeting of HPM, to be No. 56 July 2004 held in Uppsala (authors: Florence Fasanelli HPM Advisory Board: and John Fauvel, 2004). Fulvia Furinghetti, Chair Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy Peter Ransom, Editor ([email protected]), The Mountbatten School and Language College, The interest for the use of history in Romsey, SO51 5SY, UK mathematics education has remote roots in the Masami Isoda, Webmaster work of famous historians such as Florian ([email protected]), Institute of Cajori, David Eugene Smith, Gino Loria and Education, University of Tsukuba, 305-8572 JAPAN Hieronymus Georg Zeuthen. In recent times the ideas outlined in a theoretical way by Jan van Maanen, The Netherlands, (former chair); those important historians of the past had Florence Fasanelli, USA, (former chair); Ubiratan D’Ambrosio, Brazil, (former chair) interesting applications in the classroom. Evelyne Barbin, France Teaching experiments are discussed in Luis Radford, Canada specific studies and doctoral dissertations are Gert Schubring, Germany written all over the world. All that assists in making the links of history and mathematics Report by HPM: The International education more rigorous and fruitful. Study Group on the Relations between the History and At the end of my four years (2000-2004) as Pedagogy of Mathematics the chairperson of HPM, I browse through my memories and the HPM Newsletter issues to pick up information on the activities of HPM HPM Activities 2000-2004 and, more generally, on relevant events related to the links between history and Together with the PME group (International pedagogy in mathematics. -
11. Cellular Automata
11. Cellular automata [Gould-Tobochnik 15, Tapio Rantala’s notes; http://www.wolframscience.com/; http://www.stephenwolfram.com/publications/books/ca- reprint/contents.html] Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J I II × 1 11.1. Basics Cellular automata (“soluautomaatit’ in Finnish) were invented and first used by von Neumann and Ulam in 1948 to study reproduction in biology. They called the basic objects in the system cells due to the biological analogy, which lead to the name “cellular automaton”. • Nowadays cellular automata are used in many other fields of science as well, including physics and engineering, so the name is somewhat misleading. • The basic objects used in the models can be called both “sites” or “cells”, which usually mean exactly the same thing. • The basic idea in cellular automata is to form a discrete “universe” with its own (discrete) set of rules and time determining how it behaves. – Following the evolution of this, often highly simplified, universe, then hopefully enables better understanding of our own. 11.1.1. Formal definition A more formal definition can be stated as follows. Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J I II × 2 1◦ There is a discrete, finite site space G 2◦ There is a discrete number of states each site can have P 3◦ Time is discrete, and each new site state at time t + 1 is determined from the system state G (t) 4◦ The new state at t + 1 for each site depends only on the state at t of sites in a local neighbourhood of sites V 5◦ There is a rule f which determines the new state based on the old one To make this more concrete, I’ll give examples of some common values of the quantities. -
Newsletter – Fall 2016
Newsletter – Fall 2016 President’s Message by Ashwini Mokashi Welcome to the new PRF academic year of 2016-2017. We are happy to welcome Professor Chiara Nappi, who has graciously agreed to join the Princeton Research Forum Advisory Council. She is currently Professor emeritus in the Department of Physics at Princeton University, and her research areas have included various aspects of particle physics, from mathematical physics to string theory. Professor Nappi has expressed her admiration of PRF’s work and her support for the cause of independent scholarship. Due to her efforts, the Institute for Advanced Study has agreed to advertise PRF to its new and old members. The IAS will also put the PRF members on the list of their public talks. The Princeton University League has agreed to offer membership to the PRF members for a small membership fee. We look forward to having Prof. Nappi fully engaged in PRF activities. The new Humanities Group started meeting at the Mary Jacobs Memorial Library in Rocky Hill, NJ and plans to continue meeting on the first Saturday of each month and to discuss select books in the Humanities area. The Science/Science History Group and the Poetry Group are meeting regularly and going strong. The new cards for the use of Princeton University have arrived. Anyone who needs an access to the Firestone Library should contact Eva Bodanszky and borrow cards from her. The Wine and Cheese event for the fall occurred on November 6 at the house of Winnie Hughes Spar. Thank you, Winnie and Fred for hosting! The fees for the new academic year are due by November 2016. -
Bois-Marie INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES
NEWSLETTER - APRIL 2010 bois-marie INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES director’s In fifty years, IHÉS, a private at the request of the Board of Directors, the Institute organised organisation dedicated to a strategy day, in which IHÉS scientific and administrative staff editorial fundamental research, has took part, together with Board members and a large number of managed to reinforce its position representatives from other research institutions. The intensive and to become an international and very frank debates which took place during the day point of reference. Over the proved to be very rewarding. They confirmed the validity and past few years, it has found ways of better securing its future, effectiveness of the model devised by Léon Motchane with the with a pro-active approach, evidenced by the international help of Robert Oppenheimer, when IHÉS was created. Certain fundraising campaigns it has engaged in since 2000. specific points did, however, emerge as areas for improvement, In 2009, against the difficult context of an economic crisis including how the Institute is perceived by the local scientific that shook the world, IHÉS gave further thought to its future community. development.Which is why, for the first time in its history, and The prizes awarded in 2009 are renewed proofs of the quality of the research undertaken at IHÉS, and the appropriateness of a model based on exceptional people, interacting with the global scientific community. This makes the Institute determined to carry on the mission it has pursued since its creation, that is, the development of science at the highest level, with no barriers between the theoretical disciplines studied here. -
Who Is Lennart Carleson?
The Abel Prize for 2006 has been awarded Lennart Carleson, The Royal Institute of Technology, Stockholm, Sweden Professor Lennart Carleson will accept the Abel Prize for 2006 from His Majesty King Harald in a ceremony at the University of Oslo Aula, at 2:00 p.m. on Tuesday, 23 May 2006. In this background paper, we shall give a description of Carleson and his work. This description includes precise discussions of his most important results and attempts at popular presentations of those same results. In addition, we present the committee's reasons for choosing the winner and Carleson's personal curriculum vitae. This paper has been written by the Abel Prize's mathematics spokesman, Arne B. Sletsjøe, and is based on the Abel Committee's deliberations and prior discussion, relevant technical literature and discussions with members of the Abel Committee. All of this material is available for use by the media, either directly or in an adapted version. Oslo, Norway, 23 March 2006 Contents Introduction .................................................................................................................... 2 Who is Lennart Carleson? ............................................................................................... 3 Why has he been awarded the Abel Prize for 2006? ........................................................ 4 Popular presentations of Carleson's results ...................................................................... 6 Convergence of Fourier series.................................................................................... -
• KUDOS for CHAOS "Highly Entertaining ... a Startling
• KUDOS FOR CHAOS "Highly entertaining ... a startling look at newly discovered universal laws" —Chicago Tribune Book World "I was caught up and swept along by the flow of this astonishing chronicle of scientific thought. It has been a long, long time since I finished a book and immediately started reading it all over again for sheer pleasure." —Lewis Thomas, author of Lives of a Cell "Chaos is a book that deserves to be read, for it chronicles the birth of a new scientific technique that may someday be important." —The Nation "Gleick's Chaos is not only enthralling and precise, but full of beautifully strange and strangely beautiful ideas." —Douglas Hofstadter, author of Godel, Escher, Bach "Taut and exciting ... it is a fascinating illustration of how the pattern of science changes." —The New York Times Book Review "Admirably portrays the cutting edge of thought" —Los Angeles Times "This is a stunning work, a deeply exciting subject in the hands of a first-rate science writer. The implications of the research James Gleick sets forth are breathtaking." —Barry Lopez, author of Arctic Dreams "An ambitious and largely successful popular science book that deserves wide readership" — Chicago Sun-Times "There is a teleological grandeur about this new math that gives the imagination wings." —Vogue "It is a splendid introduction. Not only does it explain accurately and skillfully the fundamentals of chaos theory, but it also sketches the theory's colorful history, with entertaining anecdotes about its pioneers and provocative asides about the philosophy of science and mathematics." —The Boston Sunday Globe PENGUIN BOOKS CHAOS James Gleick was born in New York City and lives there with his wife, Cynthia Crossen. -
Language Choice in Scientific Writing: the Case of Mathematics At
Normat. Nordisk matematisk tidskrift 61:2–4, 111–132 Published in March 2019 Language choice in scientific writing: The case of mathematics at Uppsala University and a Nordic journal Christer Oscar Kiselman Abstract. For several centuries following its founding in 1477, all lectures and dissertations at Uppsala University were in Latin. Then, during one century, from 1852 to 1953, several languages came into use: there was a transition from Latin to Swedish, and then to French, German, and English. In the paper this transition is illustrated by language choice in doctoral theses in mathematics and in a Nordic journal. 1. Introduction The purpose of this note is to show how language choice in mathematical disser- tations presented at Uppsala University changed during one century, from 1852 to 1953—a rapid change in comparison with the more stable situation during the cen- turies 1477–1852. We shall also take a look at languages chosen by mathematicians in Sweden in the journal Acta Mathematica from its start in 1882 and up to 1958. This study was presented at the Nitobe Symposium in Reykjav´ık(2013 July 18– 20) entitled Languages and Internationalization in Higher Education: Ideologies, Practices, Alternatives, organized by the Center for Research and Documentation on World Language Problems (CED). 2. A beginning in the vernacular of the learned In a bull dated 1477 February 27, Pope Sixtus IV granted permission to the Arch- bishop of Uppsala, Jakob Ulvsson, to establish a university there.1 The Archbishop was appointed Chancellor of the new university, which was the first in northern Europe and remained the northernmost for 163 years, until the founding in 1640 of Sweden’s third university in Abo˚ (now Turku in Finland). -
IAS Letter Spring 2004
THE I NSTITUTE L E T T E R INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY · SPRING 2004 J. ROBERT OPPENHEIMER CENTENNIAL (1904–1967) uch has been written about J. Robert Oppen- tions. His younger brother, Frank, would also become a Hans Bethe, who would Mheimer. The substance of his life, his intellect, his physicist. later work with Oppen- patrician manner, his leadership of the Los Alamos In 1921, Oppenheimer graduated from the Ethical heimer at Los Alamos: National Laboratory, his political affiliations and post- Culture School of New York at the top of his class. At “In addition to a superb war military/security entanglements, and his early death Harvard, Oppenheimer studied mathematics and sci- literary style, he brought from cancer, are all components of his compelling story. ence, philosophy and Eastern religion, French and Eng- to them a degree of lish literature. He graduated summa cum laude in 1925 sophistication in physics and afterwards went to Cambridge University’s previously unknown in Cavendish Laboratory as research assistant to J. J. the United States. Here Thomson. Bored with routine laboratory work, he went was a man who obviously to the University of Göttingen, in Germany. understood all the deep Göttingen was the place for quantum physics. Oppen- secrets of quantum heimer met and studied with some of the day’s most mechanics, and yet made prominent figures, Max Born and Niels Bohr among it clear that the most them. In 1927, Oppenheimer received his doctorate. In important questions were the same year, he worked with Born on the structure of unanswered. -
Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation
Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation Edited by Behram N. Kursunoglu Global Foundation, Inc. Coral Gables, Florida Stephan L. Mintz Florida International University Miami, Florida and Arnold Perlmutter University of Miami Coral Gables, Florida Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow eBook ISBN: 0-306-47094-2 Print ISBN: 0-306-46208-7 ©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://www.kluweronline.com and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com PREFACE Just before the preliminary program of Orbis Scientiae 1998 went to press the news in physics was suddenly dominated by the discovery that neutrinos are, after all, massive particles. This was predicted by some physicists including Dr. Behram Kusunoglu, who had a paper published on this subject in 1976 in the Physical Review. Massive neutrinos do not necessarily simplify the physics of elementary particles but they do give elementary particle physics a new direction. If the dark matter content of the universe turns out to consist of neutrinos, the fact that they are massive should make an impact on cosmology. Some of the papers in this volume have attempted to provide answers to these questions. We have a long way to go before we find the real reasons for nature’s creation of neutrinos.