European Mathematical Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Members
LIST OF MEMBERS, ALFRED BAKER, M.A., Professor of Mathematics, University of Toronto, Toronto, Canada. ARTHUR LATHAM BAKER, C.E., Ph.D., Professor of Mathe matics, Stevens School, Hpboken., N. J. MARCUS BAKER, U. S. Geological Survey, Washington, D.C. JAMES MARCUS BANDY, B.A., M.A., Professor of Mathe matics and Engineering, Trinit)^ College, N. C. EDGAR WALES BASS, Professor of Mathematics, U. S. Mili tary Academy, West Point, N. Y. WOOSTER WOODRUFF BEMAN, B.A., M.A., Member of the London Mathematical Society, Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. R. DANIEL BOHANNAN, B.Sc, CE., E.M., Professor of Mathematics and Astronomy, Ohio State University, Columbus, Ohio. CHARLES AUGUSTUS BORST, M.A., Assistant in Astronomy, Johns Hopkins University, Baltimore, Md. EDWARD ALBERT BOWSER, CE., LL.D., Professor of Mathe matics, Rutgers College, New Brunswick, N. J. JOHN MILTON BROOKS, B.A., Instructor in Mathematics, College of New Jersey, Princeton, N. J. ABRAM ROGERS BULLIS, B.SC, B.C.E., Macedon, Wayne Co., N. Y. WILLIAM ELWOOD BYERLY, Ph.D., Professor of Mathematics, Harvard University, Cambridge*, Mass. WILLIAM CAIN, C.E., Professor of Mathematics and Eng ineering, University of North Carolina, Chapel Hill, N. C. CHARLES HENRY CHANDLER, M.A., Professor of Mathe matics, Ripon College, Ripon, Wis. ALEXANDER SMYTH CHRISTIE, LL.M., Chief of Tidal Division, U. S. Coast and Geodetic Survey, Washington, D. C. JOHN EMORY CLARK, M.A., Professor of Mathematics, Yale University, New Haven, Conn. FRANK NELSON COLE, Ph.D., Assistant Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. -
The Bibliography
Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies]. -
The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series. -
BSHM Christmas Meeting 2020 Titles & Abstracts June Barrow-Green
BSHM Christmas Meeting 2020 Titles & Abstracts June Barrow-Green (Open University): “I found out myself by the triangles”: The mathematical progress of Robert Leslie Ellis (1817-1859) as told by himself. Abstract Robert Leslie Ellis was one of the most intriguing and wide-ranging intellectual figures of early Victorian Britain, his contributions ranging from advanced mathematical analysis to profound commentaries on philosophy and classics. From the age of nine he kept a journal in which, amongst other things, he recorded his mathematical progress. In this talk, I shall use Ellis’s journal to tell the story of his unconventional journey from home-tutored student in Bath in 1827 to Senior Wrangler in the Cambridge Mathematical Tripos of 1840. Philip Beeley (University of Oxford): Whither the history of mathematics? Historical reflections on a historical discipline Abstract Beginning with the Oberwolfach meetings in the 1970s, the talk will consider some of the profound perspectival changes in the history of mathematics that have taken place over the last half century. Initially, these changes focused on giving greater weight to social history alongside what came to be known as the internalist approach, but increasingly scholars have come to see mathematics as deeply woven into the fabric of human culture and its history thus as complementary to other historical disciplines. The talk will provide an overview of this remarkable development and seek to assess its success. Raymond Flood (Kellogg College, Oxford): John Fauvel: life, labours and legacy This talk is dedicated to the memory of my dear friend and colleague John Fauvel (1947- 2001) whose enthusiasm and support for the BSHM knew no bounds. -
Interview with Arild Stubhaug
Interview Interview with Arild Stubhaug Conducted by Ulf Persson (Göteborg, Sweden) Arild Stubhaug, who is known among mathematicians for his bio graphy of Abel, has also produced a noted biography of Sophus Lie and is now involved Arild Stubhaug with a statue of Gösta Mittag-Leffl er in the project of writing a bi- ography of the Swedish math- language turned out to be the most interesting subject of ematician Mittag-Leffl er and the work for me. After mathematics I studied Latin, history mathematical period in which he of literature and eastern religion purely out of personal was infl uential. Following up the curiosity and desire. At that time such a combination interview, we will also have the could never be part of a regular university degree, hence privilege of giving a sample of I have never been regularly employed. Arild Stubhaug the up-coming work in a forth- coming issue of the Newsletter. But why Mittag-Leffl er? Abel is one of the greatest mathematicians ever, this is an uncontroversial fact, You are an established literary writer in Norway, and if and his short life has all the ingredients of romantic I recall correctly you already had your fi rst work pub- tragedy. Lie may not be of the same exalted stature, lished by the age of twenty-two. You have written poetry but of course the notion of “Lie”, in group-theory and as well as novels, what made you start writing biogra- algebra, is a mathematical household word. But Mit- phies of Norwegian mathematicians in recent years? tag-Leffl er? I think that any mathematician would be In recent years…, that is not exactly correct. -
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637]. -
Sophie Germain (April 1, 1776-June 27, 1831)
Group 8 Sophie Germain (April 1, 1776-June 27, 1831) ● “Attended” École Polytechnique under the pseudonym “M. LeBlanc” ● In correspondence with Lagrange, Legendre, Gauss and Poisson ● Her interest in Number Theory sparked with Legendre’s Essai sur le Théorie des Nombres (1798) and Gauss’ Disquisitiones Arithmeticae (1801) ● Her interest in Elastic Theory sparked with the Institut de France’s competition in 1811 ○ Germain was one of the earliest pioneers of Elastic Theory ● Important philosophical contributions, precursor of Comte’s positivism Contributions to Elastic Theory ● Previous work done by Newton, members of the Bernoulli family, Euler ● Chladni’s 1808 experiment: existence of modes of vibration on 2D surfaces ● 3 attempts made (1811, 1813, 1815) for the Paris Academy of Sciences Prize: finding a mathematical theory for elastic surfaces ● Self-taught, read previous works by Lagrange and Euler ● Final attempt postulate: the force of elasticity is proportional to the applied force (deformation of the surface) ○ Suggests a process using integrals to find the curvature of the surface Contributions to Number Theory ● Germain did not submit anything to the Fermat problem competition (established around 1816), but her correspondence with Legendre and Gauss show that she was working on it (Laubenbacher, 2010) ● Major contribution to FLT: Germain’s Theorem ○ Let p be an odd prime and N be an integer. If there exists an auxiliary prime θ = 2Np + 1 such that: (i) if xp + yp + zp ≡ 0 (mod θ) then θ divides x, y, or z; and (ii) p is not a pth power residue (mod θ). Then the first case of FLT holds true for p. -
D6. 27Ri-7T Carleman's Result Was an Early Predecessor of the Beurling-Rudin Theorem [RUDI; HOF, Pp
transactions of the american mathematical society Volume 306, Number 2, April 1988 OUTER FUNCTIONS IN FUNCTION ALGEBRAS ON THE BIDISC HÂKAN HEDENMALM ABSTRACT. Let / be a function in the bidisc algebra A(D2) whose zero set Z(f) is contained in {1} x D. We show that the closure of the ideal generated by / coincides with the ideal of functions vanishing on Z(f) if and only if f(-,a) is an outer function for all a e D, and /(l, ■) either vanishes identically or is an outer function. Similar results are obtained for a few other function algebras on D2 as well. 0. Introduction. In 1926, Torsten Carleman [CAR; GRS, §45] proved the following theorem: A function f in the disc algebra A(D), vanishing at the point 1 only, generates an ideal that is dense in the maximal ideal {g £ A(D): g(l) = 0} if and only if lim (1-Í) log |/(0I=0. R3t->1- This condition, which Carleman refers to as / having no logarithmic residue, is equivalent to / being an outer function in the sense that log\f(0)\ = ± T log\f(e*e)\d6. 27ri-7T Carleman's result was an early predecessor of the Beurling-Rudin Theorem [RUDI; HOF, pp. 82-89], which completely describes the collection of all closed ideals in A(D). For a function / in the bidisc algebra A(D2), let Z(f) = {z £ D2 : f(z) = 0} be its zero set, and denote by 1(f) the closure of the principal ideal in A(D2) generated by /. For E C D , introduce the notation 1(E) = {/ G A(D2) : / = 0 on E}. -
Efficient Quantum Algorithm for Dissipative Nonlinear Differential
Efficient quantum algorithm for dissipative nonlinear differential equations Jin-Peng Liu1;2;3 Herman Øie Kolden4;5 Hari K. Krovi6 Nuno F. Loureiro5 Konstantina Trivisa3;7 Andrew M. Childs1;2;8 1 Joint Center for Quantum Information and Computer Science, University of Maryland, MD 20742, USA 2 Institute for Advanced Computer Studies, University of Maryland, MD 20742, USA 3 Department of Mathematics, University of Maryland, MD 20742, USA 4 Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 5 Plasma Science and Fusion Center, Massachusetts Institute of Technology, MA 02139, USA 6 Raytheon BBN Technologies, MA 02138, USA 7 Institute for Physical Science and Technology, University of Maryland, MD 20742, USA 8 Department of Computer Science, University of Maryland, MD 20742, USA Abstract While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1, where R is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity T 2 poly(log T; log n)/, where T is the evolution time and is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T . We achieve this improvement using the method of Carleman linearization, for which we give an improved convergence theorem. -
HPM Newsletter 56 July 2004
ICME-10 Satellite meeting of HPM, to be No. 56 July 2004 held in Uppsala (authors: Florence Fasanelli HPM Advisory Board: and John Fauvel, 2004). Fulvia Furinghetti, Chair Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy Peter Ransom, Editor ([email protected]), The Mountbatten School and Language College, The interest for the use of history in Romsey, SO51 5SY, UK mathematics education has remote roots in the Masami Isoda, Webmaster work of famous historians such as Florian ([email protected]), Institute of Cajori, David Eugene Smith, Gino Loria and Education, University of Tsukuba, 305-8572 JAPAN Hieronymus Georg Zeuthen. In recent times the ideas outlined in a theoretical way by Jan van Maanen, The Netherlands, (former chair); those important historians of the past had Florence Fasanelli, USA, (former chair); Ubiratan D’Ambrosio, Brazil, (former chair) interesting applications in the classroom. Evelyne Barbin, France Teaching experiments are discussed in Luis Radford, Canada specific studies and doctoral dissertations are Gert Schubring, Germany written all over the world. All that assists in making the links of history and mathematics Report by HPM: The International education more rigorous and fruitful. Study Group on the Relations between the History and At the end of my four years (2000-2004) as Pedagogy of Mathematics the chairperson of HPM, I browse through my memories and the HPM Newsletter issues to pick up information on the activities of HPM HPM Activities 2000-2004 and, more generally, on relevant events related to the links between history and Together with the PME group (International pedagogy in mathematics. -
The Book and Printed Culture of Mathematics in England and Canada, 1830-1930
Paper Index of the Mind: The Book and Printed Culture of Mathematics in England and Canada, 1830-1930 by Sylvia M. Nickerson A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Sylvia M. Nickerson 2014 Paper Index of the Mind: The Book and Printed Culture of Mathematics in England and Canada, 1830-1930 Sylvia M. Nickerson Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto 2014 Abstract This thesis demonstrates how the book industry shaped knowledge formation by mediating the selection, expression, marketing, distribution and commercialization of mathematical knowledge. It examines how the medium of print and the practices of book production affected the development of mathematical culture in England and Canada during the nineteenth and early twentieth century. Chapter one introduces the field of book history, and discusses how questions and methods arising from this inquiry might be applied to the history of mathematics. Chapter two looks at how nineteenth century printing technologies were used to reproduce mathematics. Mathematical expressions were more difficult and expensive to produce using moveable type than other forms of content; engraved diagrams required close collaboration between author, publisher and engraver. Chapter three examines how editorial decision-making differed at book publishers compared to mathematical journals and general science journals. Each medium followed different editorial processes and applied distinct criteria in decision-making about what to publish. ii Daniel MacAlister, Macmillan and Company’s reader of science, reviewed mathematical manuscripts submitted to the company and influenced which ones would be published as books. -
Society Reports USNC/TAM
Appendix J 2008 Society Reports USNC/TAM Table of Contents J.1 AAM: Ravi-Chandar.............................................................................................. 1 J.2 AIAA: Chen............................................................................................................. 2 J.3 AIChE: Higdon ....................................................................................................... 3 J.4 AMS: Kinderlehrer................................................................................................. 5 J.5 APS: Foss................................................................................................................. 5 J.6 ASA: Norris............................................................................................................. 6 J.7 ASCE: Iwan............................................................................................................. 7 J.8 ASME: Kyriakides.................................................................................................. 8 J.9 ASTM: Chona ......................................................................................................... 9 J.10 SEM: Shukla ....................................................................................................... 11 J.11 SES: Jasiuk.......................................................................................................... 13 J.12 SIAM: Healey...................................................................................................... 14 J.13 SNAME: Karr....................................................................................................