A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637]. 33 [1437]. 4 [1390, 1754, 314]. δ2 [1142]. ∆H [2585]. E [2465, 1490, 1737]. 5 [1670]. 6 [3306]. 682 −z [1475]. e [775]. `1 [3201]. `p [3308]. `q [1270, 1338]. 7 [1670]. 8 [2937]. 4 [591]. A 1 2 [3308]. F [3112]. G y00 = f(z;y) [454]. y00 = f(x; y) [1195, 1081]. [1476, 2755, 3208, 3306, 3107, 946, 762]. Z [3132, 1574]. z0 = f(t; x) [448]. ζ(3) [2459]. g(jf(x)j) [2171]. G1 [2813]. G2 [2221, 2530]. γ [1061]. GF(2) [1490]. GF(2n) [1463]. -Acceptability [2582, 1640]. -adic [932]. GF(2p) [1177]. H -algorithm [2096, 1476]. -approximations [3180, 3409, 1353, 2612, 3223, 3178]. H1 [584]. -Arnoldi-type [3279]. -bases [3409]. [3492, 3485, 3515, 3169]. h2 [1540]. HC2 -BEM [3178]. -Bernstein [2873]. -B´ezier [3200]. I [1898, 959]. IMN [2279]. ILU [3223]. -Colour [570]. -conditioned [2522]. [2400]. iR [1391]. k -consistency [1773]. -continuity [2036]. [581, 1921, 1955, 3178, 2029, 1875]. K<10 -contractivity [1460]. -convergence [100]. L [1575, 1489, 1819, 1597]. -convex [2036]. [2354, 2495, 1909, 2165, 906, 3471, 3412]. -cube [1737]. -curve [2354, 2165]. -curves L[2] [2744]. L[p] [2744]. L1 [2677, 2153]. L1 [2495]. -cyclic [1753, 2131]. 1 2 [3156]. L (L ) [3374]. L1 [1831, 1932]. L2 -Decomposition [642, 1701]. -dimension [3223]. L1 [2908, 2694, 2273]. Lp [1227]. -dimensional [1921, 1356, 1875]. [584, 619, 1302]. LALR(1) [660]. LALR(k) -elliptic [3180]. -error [3492]. -estimates [1173]. λ [1940, 1210, 1197]. LDLH [1903]. [2677]. -estimation [2308, 2202]. LDU [3132]. LL(1) [789]. LR(k) [1173, 1245]. -estimator [2540]. -factors [1785]. LU [1903, 2784, 1701, 2374]. M -Formula [1142]. -free [1210]. -functions [3392, 1785, 2308, 2202, 2540, 2612, 2127, [3442, 1458]. -Galerkin [3169]. -Grammars 2400, 1458, 3197, 2226]. M=G=1 [2296]. F2 [610]. -Hermitian [3338]. -Hessenberg 3 [3135]. R [3307, 3367]. L2 [3135]. O(N ) [3197]. -Interchange [1242]. -languages [3176]. O(N 2) [3176]. MK [2091]. N [906]. -linear [3023]. -Matrices [1501, 1980, 3176, 2535, 1064, 320, 1362]. [2585, 2390, 3132, 1353, 2612, 2127]. -matrix N = h · 2n − 1 [2092]. N = k · 2m3n +1 [1197, 2400]. -method [218]. -methods [1976]. N = k · 3n + 1 [1976]. n1 [1463]. n × n [2347, 2711, 619, 2290, 2681]. -node [2937]. [1010]. O(h6) [1663]. O(log n) [1294]. O(n2) -Norm [2744, 3223, 3112]. -obstacle [3176]. [2027]. O(Nlog N) [1501]. P [1262, 1398, -order [2895, 1530, 2437, 2542]. 1371, 1162, 1252, 1016, 1368, 1626, 2390, 932, -parametric [1063]. -point [957]. 1063, 1753, 2131, 2312, 707, 3339]. p(n; m) -problem [1414]. -Projection [2744]. [806]. p<15000 [100]. P [α, β] [1262]. P1 -quadratic [2906]. -samplable [1909]. [2689, 164]. π [1335, 1511]. Q -separation [1874]. -simplex [1574]. [3279, 2437, 719, 2873, 1874]. q =2Kp+1 -solution [3339, 1302]. -splines [3471]. [100]. qd [2096]. QR -splitting [3392]. -stability [3120, 1314, 1913, 642, 218, 1901, 2156, 1907]. [2312, 333, 3439, 896, 1267, 1622, 2755, 946, R [2895, 1530, 2542, 3023, 1227, 3139]. R3 1446, 947, 1409, 1390, 1987, 1773, 915, 808, [1150]. Rd [2530]. S [2036, 610]. sin [228]. 761, 916, 979, 1181, 780, 959, 1021]. -Stable sin(θ) [3486, 3503]. SR [3129]. SU(n) [410]. [469, 524, 455, 566, 297, 670, 2594, 497, 3105, τ [371]. θ [2347, 2388]. ' [3442]. W 328, 655, 2187, 1262, 873, 1398, 1371, 1162, [2550, 2711, 2290, 2681, 2522]. 779, 1252, 2944, 1752, 1016, 2071, 2198, 1475, − (m;m−1) 3412, 1898, 1991, 762, 1449, 1580, 1368, 1626, W (m; m 1)2(0; 1)W2 (0; 1) [3091]. X [1329]. XA+ AY = F [844]. XY = A [1302]. 1105]. -Step [581, 719, 2531, 1351]. Y [1329]. y00 = f(x; y) [628, 1505]. -StepSCAN [1980]. -suitability [1754]. -symmetric [3338]. -symplectic 3 [3208, 3306]. -symplecticity [3107]. -terms [312, 2453, 693, 144, 194, 155, 254, 1349, [1940]. -th [707]. -times [2226]. 3474, 1408, 1977, 1931, 1834]. Acceptability -Transformation [2550]. -trees [2582, 1640]. Access [398, 3521, 1259, 690, [1953, 1391, 1823, 1191]. -type [1580]. 1998, 1705, 1391, 2026, 2000]. Accessibility -weak [3169]. -weighted [2091]. [358]. Accessing [1657]. accretive [2226]. accumulated [773]. Accuracy [27, 3522, /Ferromagnetic [2642]. 2321, 12, 28, 2653, 643, 3340, 215, 608, 966, 1528, 2119, 912, 2420, 3357, 2107, 1249]. 1 [27, 58, 81, 28]. 10 [394]. 11 [465]. 12 Accurate [3132, 2562, 983, 875, 3408, 3150, [562, 543]. 13 [637]. 16 [890]. 17 [1089]. 18 706, 2156, 3494, 2187, 3184, 3488, 3501, 2066, [1002]. 19 [3490]. 1961 [20]. 1962 [56]. 3177, 2970, 1488, 2460, 2122, 3511, 3320]. 1988 [1703]. 1993 [2064]. accurately [1846]. Achieving [2847]. Ackermann [703, 417, 765]. 2 [78, 3130]. 20 [1320]. 2000-2005 [2714]. Acknowledgements [349, 408, 466, 542, 2008 [2843]. 21 [1202]. 22 [1308, 1338]. 24 614, 681, 752, 821, 892, 963, 1046, 1134, [1398]. 27 [1629, 1630, 1651]. 2nd [2867]. 1206, 1274, 1341, 1498, 1569, 1634, 1723, 1800, 1870, 1934, 1994, 2050, 2100, 2142, 3 [3092]. 3003 [181]. 31 [1964]. 35 [2316]. 2200, 2262, 2317, 2363, 2414, 2491, 2544]. Acoustic [2703, 3184, 3176, 3181]. acquired 4 [188, 120, 498, 499, 135, 267, 3104]. 40-45 [992]. Action [332, 3121, 3383]. activities [2714]. 4000 [245, 256]. 44 [2655]. 4th [273]. [1235]. Activity [41, 1555]. acyclic [1361]. ADA [1688]. Adams 500 [61]. 54-3 [3143]. 58 [1089]. [3016, 2393, 3199, 2511, 3006]. Adams-type [2393, 3006]. Adaptation [1759, 1482]. 6 [517]. 60 [283, 6, 13, 215]. 60th [1703]. 64 Adapted [2326, 3070, 3325]. adapting [40]. 66 [274]. 68 [232, 294, 273, 396]. [1988]. Adaptive [1782, 3133, 3046, 2320, 2566, 2370, 3180, 1484, 3348, 2750, 2765, 75th [2064]. 2939, 2517, 2791, 3498, 3295, 1369, 1751, 3462, 3505, 1096, 2384, 1303, 2244, 2021, 80b [1002]. 82e [1320]. 84b [1338]. 88k 2539, 2973, 1318, 2502, 1250, 2854]. [1651]. Adaptive-order [3133]. adaptivity [2500]. ADB [10]. Addendum [1320]. Addition 91m [1964]. [147]. Additive [2689, 3268, 2671, 2945, 3474, 2944, 2607, a-posteriori [2845]. A-priori [2845]. 2896, 1987, 3033, 3020, 3089]. Address A-Stability [2389]. A.D.I. [886]. Abel [1434]. Addresses [1093, 1113, 1136, 1156, [702, 2219, 2248, 2322, 607, 3512]. Abelian 1170, 1189, 1208, 1224, 1240]. addressing [2996]. ABS [1701]. ABS-method [1701]. [2038, 1672]. ADI [3196]. Adiabatic abscissae [2516]. absolute [1195, 1166]. [2644, 2676]. adic [932]. adjacent [2164]. Absorbing [2720]. abstract Adjoint [3508, 530, 2436, 990, 3389, 2888]. [1486, 881, 1572]. abstraction [2210]. Adjoint-based [3508]. Administration Abstractions [1278]. Accelerated [486, 745, 134]. Administrative [988, 3151, 3250, 1017, 3381, 3184, 2796, [152, 145, 42]. admissible [1678]. 2240, 3248, 1107, 1214, 1545]. Acceleration admitting [1815]. ADP [134, 180, 145]. 4 advanced [1031]. Advances [3241]. 3126, 879, 2678, 3011, 1471, 3390, 1984, 1865, advancing [2113]. advection 1548, 2009, 1985, 2217, 1866, 2168, 2680, [3063, 2814, 3366]. af [15, 25]. Affine 1807, 2063, 2961, 3170, 2526, 1028, 1709, 1841, [3447, 2934, 1218, 3339]. affine-linear 3141, 1261, 1365, 1381, 1768, 2502, 2503, 2588, [3339]. after [309]. Agreements [3489]. 1504, 814, 1022, 2820, 2832, 2031, 1366, 1876]. ahead [2111, 2164]. aid [39]. aided [2996]. algorithmic [928]. Algorithms Air [440, 1424]. Air-Pollution [440]. Airy [318, 1617, 1731, 840, 1844, 1679, 1158, 585, [2498]. Ait [2983]. Aitken 2406, 307, 380, 336, 2551, 1537, 1619, 213, [1349, 1142, 1119, 155]. aLFA [3463]. 429, 2207, 1747, 1456, 495, 1017, 533, 516, Algebra 1159, 93, 1326, 1343, 2159, 1425, 1971, 3116, [2713, 446, 154, 2614, 1094, 3241, 2756, 2998]. 2579, 2456, 1555, 1980, 1560, 1981, 2177, 2992, Algebraic 3300, 2906, 1137, 1346, 2310, 2756, 902, 2537, [377, 1459, 693, 2441, 670, 329, 342, 2552, 1227, 1831, 2865, 1265, 2136, 1659, 3471, 2595, 2698, 1898, 2700, 2711, 677, 240, 3498, 2119, 2234, 2499, 1958, 1123, 1315, 1863, 2867, 997, 2291, 2416, 1436, 2602, 1622, 2519, 2307, 2061, 935, 2028, 2917, 1954, 1787, 2337, 1472, 2162, 2796, 1283, 940, 1385, 1439, 947, 2757, 1503, 829, 1707, 3129, 2928, 2210, 1758, 2090, 1725, 3254, 1699, 1732, 2084, 2007, 3037, 883, 1250, 1974, 3157, 1209, 1383, 2030]. 2542, 1918, 2348, 3311, 2787, 2515, 3434, alignment [2832]. all-nearest-neighbors 2227, 3260, 2338, 847, 1835, 3328, 2259]. [1921]. Allen [3419, 3458, 3365]. allocated Algebraically [2884, 945, 1575, 930, 1087]. [2012]. allocating [899]. Allocation ALGOL [124, 267, 38, 135, 340, 9, 36, 396, [13, 429, 335, 1922, 1516, 1453, 788, 807, 283, 153, 359, 6, 13, 170, 128, 87, 91, 129, 1235, 1334, 1175].
Recommended publications
  • European Mathematical Society
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY
    [Show full text]
  • The Bibliography
    Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies].
    [Show full text]
  • Space-Efficient Data Structures, Streams, and Algorithms
    Andrej Brodnik Alejandro López-Ortiz Venkatesh Raman Alfredo Viola (Eds.) Festschrift Space-Efficient Data Structures, Streams, LNCS 8066 and Algorithms Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday 123 Lecture Notes in Computer Science 8066 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Germany Madhu Sudan Microsoft Research, Cambridge, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbruecken, Germany Andrej Brodnik Alejandro López-Ortiz Venkatesh Raman Alfredo Viola (Eds.) Space-Efficient Data Structures, Streams, and Algorithms Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday 13 Volume Editors Andrej Brodnik University of Ljubljana, Faculty of Computer and Information Science Ljubljana, Slovenia and University of Primorska,
    [Show full text]
  • Society Reports USNC/TAM
    Appendix J 2008 Society Reports USNC/TAM Table of Contents J.1 AAM: Ravi-Chandar.............................................................................................. 1 J.2 AIAA: Chen............................................................................................................. 2 J.3 AIChE: Higdon ....................................................................................................... 3 J.4 AMS: Kinderlehrer................................................................................................. 5 J.5 APS: Foss................................................................................................................. 5 J.6 ASA: Norris............................................................................................................. 6 J.7 ASCE: Iwan............................................................................................................. 7 J.8 ASME: Kyriakides.................................................................................................. 8 J.9 ASTM: Chona ......................................................................................................... 9 J.10 SEM: Shukla ....................................................................................................... 11 J.11 SES: Jasiuk.......................................................................................................... 13 J.12 SIAM: Healey...................................................................................................... 14 J.13 SNAME: Karr....................................................................................................
    [Show full text]
  • Calculus Redux
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac­ the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste­ from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise.
    [Show full text]
  • Saul Abarbanel SIAM Oral History
    An interview with SAUL ABARBANEL Conducted by Philip Davis on 29 July, 2003, at the Department of Applied Mathematics, Brown University Interview conducted by the Society for Industrial and Applied Mathematics, as part of grant # DE-FG02-01ER25547 awarded by the US Department of Energy. Transcript and original tapes donated to the Computer History Museum by the Society for Industrial and Applied Mathematics © Computer History Museum Mountain View, California ABSTRACT: ABARBANEL describes his work in numerical analysis, his use of early computers, and his work with a variety of colleagues in applied mathematics. Abarbanel was born and did his early schooling in Tel Aviv, Israel, and in high school developed an interest in mathematics. After serving in the Israeli army, Abarbanel entered MIT in 1950 as an as an engineering major and took courses with Adolf Hurwitz, Francis Begnaud Hildebrand, and Philip Franklin. He found himself increasing drawn to applied mathematics, however, and by the time he began work on his Ph.D. at MIT he had switched from aeronautics to applied mathematics under the tutelage of Norman Levinson. Abarbanel recalls the frustration of dropping the punch cards for his program for the IBM 1604 that MIT was using in 1958 when he was working on his dissertation, but also notes that this work convinced him of the importance of computers. Abarbanel also relates a humorous story about Norbert Weiner, his famed linguistic aptitude, and his lesser-known interest in chess. Three years after receiving his Ph.D., Abarbanel returned to Israel, where he spent the rest of his career at Tel Aviv University.
    [Show full text]
  • Fundamental Data Structures Contents
    Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis
    [Show full text]
  • *Dictionary Data Structures 3
    CHAPTER *Dictionary Data Structures 3 The exploration efficiency of algorithms like A* is often measured with respect to the number of expanded/generated problem graph nodes, but the actual runtimes depend crucially on how the Open and Closed lists are implemented. In this chapter we look closer at efficient data structures to represent these sets. For the Open list, different options for implementing a priority queue data structure are consid- ered. We distinguish between integer and general edge costs, and introduce bucket and advanced heap implementations. For efficient duplicate detection and removal we also look at hash dictionaries. We devise a variety of hash functions that can be computed efficiently and that minimize the number of collisions by approximating uniformly distributed addresses, even if the set of chosen keys is not (which is almost always the case). Next we explore memory-saving dictionaries, the space requirements of which come close to the information-theoretic lower bound and provide a treatment of approximate dictionaries. Subset dictionaries address the problem of finding partial state vectors in a set. Searching the set is referred to as the Subset Query or the Containment Query problem. The two problems are equivalent to the Partial Match retrieval problem for retrieving a partially specified input query word from a file of k-letter words with k being fixed. A simple example is the search for a word in a crossword puzzle. In a state space search, subset dictionaries are important to store partial state vectors like dead-end patterns in Sokoban that generalize pruning rules (see Ch.
    [Show full text]
  • Seeking for the Best Priority Queue: Lessons Learnt
    Updated 20 October, 2013 Seeking for the best priority queue: Lessons learnt Jyrki Katajainen1; 2 Stefan Edelkamp3, Amr Elmasry4, Claus Jensen5 1 University of Copenhagen 4 Alexandria University 2 Jyrki Katajainen and Company 5 The Royal Library 3 University of Bremen These slides are available from my research information system (see http://www.diku.dk/~jyrki/ under Presentations). c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (1) Categorization of priority queues insert minimum input: locator input: none output: none output: locator Elementary delete extract-min minimum input: locator p minimum() insert output: none delete(p) extract-min Addressable delete decrease decrease input: locator, value Mergeable output: none union union input: two priority queues output: one priority queue c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (2) Structure of this talk: Research question What is the "best" priority queue? I: Elementary II: Addressable III: Mergeable c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (3) Binary heaps 0 minimum() 8 return a[0] 12 10 26 insert(x) 3 4 5 6 a[N] = x 75 46 7512 siftup(N) 7 N += 1 80 extract-min() N = 8 min = a[0] N −= 1 a 8 10 26 75 12 46 75 80 a[0] = a[N] 02341 675 siftdown(0) left-child(i) return min return 2i + 1 right-child(i) Elementary: array-based return 2i + 2 Addressable: pointer-based parent(i) Mergeable: forest of heaps return b(i − 1)=2c c Performance Engineering Laboratory Seminar 13391: Schloss Dagstuhl, Germany (4) Market analysis Efficiency binary binomial Fibonacci run-relaxed heap queue heap heap Operation [Wil64] [Vui78] [FT87] [DGST88] worst case worst case amortized worst case minimum Θ(1) Θ(1) Θ(1) Θ(1) insert Θ(lg N) Θ(1) Θ(1) Θ(1) decrease Θ(lg N) Θ(lg N) Θ(1) Θ(1) delete Θ(lg N) Θ(lg N) Θ(lg N) Θ(lg N) union Θ(lg M×lg N) Θ(minflg M; lg Ng) Θ(1) Θ(minflg M; lg Ng) Here M and N denote the number of elements in the priority queues just prior to the operation.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS Chapter 1 Introduction . 2 Chapter 2 Organization and Establishment . 3 Chapter 3 Early Years . 5 Chapter 4 Operation, Expansion and Emergence . 8 Chapter 5 Meetings, Conferences and Workshops . 13 Chapter 6 SIAM’s Journals Fulfill a Mission . 15 Chapter 7 The Book Publishing Program . 19 Chapter 8 Commitment to Education . 22 Chapter 9 Recognizing Excellence . 25 Chapter 10 Leadership . 29 2 CHAPTER 1 INTRODUCTION One of the most significant factors affecting the increasing demand for mathematicians during the early 1950s was the development of the electronic digital computer. The ENIAC was developed in Philadelphia in 1946. Origins A Need Arises Mathematicians In the years during and especially One of the most significant eventually began following the Second World War, the factors affecting this increas- working with engi- nation experienced a surge in industri- ing demand for mathemati- neers and scientists al and military research and the devel- cians during the early 1950s more frequently, in opment of related technology, thus was the development of the a wider variety of creating a need for improved mathe- electronic digital computer. areas, including matical and computational methods. One of the first, the ENIAC, software develop- To illustrate, in 1938, there were about was completed in 1946. As An ad that appeared in the ment, trajectory 850 mathematicians and statisticians early as 1933, scientists, engi- SIAM NEWSLETTER May, 1956 simulations, com- employed by the federal government. neers and mathematicians at puter design, vibra- By 1954, however, that number nearly the Moore School of Electrical tion studies, structural and mechanical quadrupled to 3200.
    [Show full text]
  • An English-Persian Dictionary of Algorithms and Data Structures
    An EnglishPersian Dictionary of Algorithms and Data Structures a a zarrabibasuacir ghodsisharifedu algorithm B A all pairs shortest path absolute p erformance guarantee b alphab et abstract data typ e alternating path accepting state alternating Turing machine d Ackermans function alternation d Ackermanns function amortized cost acyclic digraph amortized worst case acyclic directed graph ancestor d acyclic graph and adaptive heap sort ANSI b adaptivekdtree antichain adaptive sort antisymmetric addresscalculation sort approximation algorithm adjacencylist representation arc adjacencymatrix representation array array index adjacency list array merging adjacency matrix articulation p oint d adjacent articulation vertex d b admissible vertex assignmentproblem adversary asso ciation list algorithm asso ciative binary function asso ciative array binary GCD algorithm asymptotic b ound binary insertion sort asymptotic lower b ound binary priority queue asymptotic space complexity binary relation binary search asymptotic time complexity binary trie asymptotic upp er b ound c bingo sort asymptotically equal to bipartite graph asymptotically tightbound bipartite matching
    [Show full text]
  • Von Neumann 1903-1957 Peter Lax ≈1926- 1940 – 1970 Floating Point Arithmetic
    Nick Trefethen Oxford Computing Lab Who invented the great numerical algorithms? Slides available at my web site: www.comlab.ox.ac.uk/nick.trefethen A discussion over coffee. Ivory tower or coal face? SOME MAJOR DEVELOPMENTS IN SCIENTIFIC COMPUTING (29 of them) Before 1940 Newton's method least-squares fitting orthogonal linear algebra Gaussian elimination QR algorithm Gauss quadrature Fast Fourier Transform Adams formulae quasi-Newton iterations Runge-Kutta formulae finite differences 1970-2000 preconditioning 1940-1970 spectral methods floating-point arithmetic MATLAB splines multigrid methods Monte Carlo methods IEEE arithmetic simplex algorithm nonsymmetric Krylov iterations conjugate gradients & Lanczos interior point methods Fortran fast multipole methods stiff ODE solvers wavelets finite elements automatic differentiation Before 1940 Newton’s Method for nonlinear eqs. Heron, al-Tusi 12c, Al Kashi 15c, Viète 1600, Briggs 1633… Isaac Newton 1642-1727 Mathematician and physicist Trinity College, Cambridge, 1661-1696 (BA 1665, Fellow 1667, Lucasian Professor of Mathematics 1669) De analysi per aequationes numero terminorum infinitas 1669 (published 1711) After 1696, Master of the Mint Joseph Raphson 1648-1715 Mathematician at Jesus College, Cambridge Analysis Aequationum universalis 1690 Raphson’s formulation was better than Newton’s (“plus simple” - Lagrange 1798) FRS 1691, M.A. 1692 Supporter of Newton in the calculus wars—History of Fluxions, 1715 Thomas Simpson 1710-1761 1740: Essays on Several Curious and Useful Subjects… 1743-1761:
    [Show full text]