Fundamental Data Structures Contents

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Data Structures Contents Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis ....................................... 10 1.3.3 Relevance ........................................... 12 1.3.4 Constant factors ........................................ 12 1.3.5 See also ............................................ 12 1.3.6 Notes ............................................. 12 1.3.7 References .......................................... 13 1.4 Amortized analysis .......................................... 13 1.4.1 History ............................................ 13 i ii CONTENTS 1.4.2 Method ............................................ 13 1.4.3 Examples ........................................... 13 1.4.4 Common use ......................................... 14 1.4.5 References .......................................... 14 1.5 Accounting method .......................................... 14 1.5.1 The method .......................................... 14 1.5.2 Examples ........................................... 15 1.5.3 References .......................................... 15 1.6 Potential method ............................................ 15 1.6.1 Definition of amortized time ................................. 15 1.6.2 Relation between amortized and actual time ......................... 16 1.6.3 Amortized analysis of worst-case inputs ........................... 16 1.6.4 Examples ........................................... 16 1.6.5 Applications .......................................... 17 1.6.6 References .......................................... 17 2 Sequences 18 2.1 Array data type ............................................ 18 2.1.1 History ............................................ 18 2.1.2 Abstract arrays ........................................ 18 2.1.3 Implementations ....................................... 19 2.1.4 Language support ....................................... 19 2.1.5 See also ............................................ 21 2.1.6 References .......................................... 21 2.1.7 External links ......................................... 21 2.2 Array data structure .......................................... 21 2.2.1 History ............................................ 22 2.2.2 Applications .......................................... 22 2.2.3 Element identifier and addressing formulas .......................... 22 2.2.4 Efficiency ........................................... 24 2.2.5 Dimension ........................................... 25 2.2.6 See also ............................................ 25 2.2.7 References .......................................... 25 2.3 Dynamic array ............................................. 26 2.3.1 Bounded-size dynamic arrays and capacity .......................... 26 2.3.2 Geometric expansion and amortized cost ........................... 26 2.3.3 Growth factor ........................................ 27 2.3.4 Performance ......................................... 27 2.3.5 Variants ........................................... 27 2.3.6 Language support ....................................... 28 2.3.7 References .......................................... 28 2.3.8 External links ......................................... 28 CONTENTS iii 2.4 Linked list ............................................... 28 2.4.1 Advantages .......................................... 29 2.4.2 Disadvantages ......................................... 29 2.4.3 History ............................................ 29 2.4.4 Basic concepts and nomenclature ............................... 30 2.4.5 Tradeoffs ........................................... 31 2.4.6 Linked list operations ..................................... 33 2.4.7 Linked lists using arrays of nodes ............................... 34 2.4.8 Language support ....................................... 35 2.4.9 Internal and external storage ................................. 35 2.4.10 Related data structures .................................... 36 2.4.11 Notes ............................................. 37 2.4.12 Footnotes ........................................... 37 2.4.13 References .......................................... 37 2.4.14 External links ......................................... 38 2.5 Doubly linked list ........................................... 38 2.5.1 Nomenclature and implementation .............................. 38 2.5.2 Basic algorithms ....................................... 38 2.5.3 Advanced concepts ...................................... 41 2.5.4 See also ............................................ 41 2.5.5 References .......................................... 41 2.6 Stack (abstract data type) ....................................... 41 2.6.1 History ............................................ 42 2.6.2 Non-essential operations ................................... 42 2.6.3 Software stacks ........................................ 42 2.6.4 Hardware stacks ........................................ 43 2.6.5 Applications .......................................... 45 2.6.6 Security ............................................ 45 2.6.7 See also ............................................ 46 2.6.8 References .......................................... 46 2.6.9 Further reading ........................................ 46 2.6.10 External links ......................................... 46 2.7 Queue (abstract data type) ....................................... 46 2.7.1 Queue implementation .................................... 47 2.7.2 Purely functional implementation ............................... 47 2.7.3 See also ............................................ 48 2.7.4 References .......................................... 48 2.7.5 External links ......................................... 48 2.8 Double-ended queue .......................................... 48 2.8.1 Naming conventions ..................................... 49 2.8.2 Distinctions and sub-types .................................. 49 iv CONTENTS 2.8.3 Operations .......................................... 49 2.8.4 Implementations ....................................... 49 2.8.5 Language support ....................................... 50 2.8.6 Complexity .......................................... 50 2.8.7 Applications ......................................... 51 2.8.8 See also ............................................ 51 2.8.9 References .......................................... 51 2.8.10 External links ......................................... 51 2.9 Circular buffer ............................................. 51 2.9.1 Uses .............................................. 51 2.9.2 How it works ......................................... 52 2.9.3 Circular buffer mechanics ................................... 52 2.9.4 Optimization ......................................... 53 2.9.5 Fixed-length-element and contiguous-block circular buffer ................. 53 2.9.6 External links ......................................... 53 3 Dictionaries 54 3.1 Associative array ........................................... 54 3.1.1 Operations .......................................... 54 3.1.2 Example ............................................ 55 3.1.3 Implementation ........................................ 55 3.1.4 Language support ....................................... 55 3.1.5 Permanent storage ...................................... 56 3.1.6 See also ............................................ 56 3.1.7 References .......................................... 56 3.1.8 External links ......................................... 56 3.2 Association list ............................................ 57 3.2.1 Operation ........................................... 57 3.2.2 Performance ......................................... 57 3.2.3 Applications and software libraries .............................. 57 3.2.4 See also ............................................ 57 3.2.5 References .......................................... 57 3.3 Hash table ............................................... 58 3.3.1 Hashing ...........................................
Recommended publications
  • JHDF5 (HDF5 for Java) 19.04
    JHDF5 (HDF5 for Java) 19.04 Introduction HDF5 is an efficient, well-documented, non-proprietary binary data format and library developed and maintained by the HDF Group. The library provided by the HDF Group is written in C and available under a liberal BSD-style Open Source software license. It has over 600 API calls and is very powerful and configurable, but it is not trivial to use. SIS (formerly CISD) has developed an easy-to-use high-level API for HDF5 written in Java and available under the Apache License 2.0 called JHDF5. The API works on top of the low-level API provided by the HDF Group and the files created with the SIS API are fully compatible with HDF5 1.6/1.8/1.10 (as you choose). Table of Content Introduction ................................................................................................................................ 1 Table of Content ...................................................................................................................... 1 Simple Use Case .......................................................................................................................... 2 Overview of the library ............................................................................................................... 2 Numeric Data Types .................................................................................................................... 3 Compound Data Types ................................................................................................................ 4 System
    [Show full text]
  • C Programming: Data Structures and Algorithms
    C Programming: Data Structures and Algorithms An introduction to elementary programming concepts in C Jack Straub, Instructor Version 2.07 DRAFT C Programming: Data Structures and Algorithms, Version 2.07 DRAFT C Programming: Data Structures and Algorithms Version 2.07 DRAFT Copyright © 1996 through 2006 by Jack Straub ii 08/12/08 C Programming: Data Structures and Algorithms, Version 2.07 DRAFT Table of Contents COURSE OVERVIEW ........................................................................................ IX 1. BASICS.................................................................................................... 13 1.1 Objectives ...................................................................................................................................... 13 1.2 Typedef .......................................................................................................................................... 13 1.2.1 Typedef and Portability ............................................................................................................. 13 1.2.2 Typedef and Structures .............................................................................................................. 14 1.2.3 Typedef and Functions .............................................................................................................. 14 1.3 Pointers and Arrays ..................................................................................................................... 16 1.4 Dynamic Memory Allocation .....................................................................................................
    [Show full text]
  • Linear Probing with Constant Independence
    Linear Probing with Constant Independence Anna Pagh∗ Rasmus Pagh∗ Milan Ruˇzic´ ∗ ABSTRACT 1. INTRODUCTION Hashing with linear probing dates back to the 1950s, and Hashing with linear probing is perhaps the simplest algo- is among the most studied algorithms. In recent years it rithm for storing and accessing a set of keys that obtains has become one of the most important hash table organiza- nontrivial performance. Given a hash function h, a key x is tions since it uses the cache of modern computers very well. inserted in an array by searching for the first vacant array Unfortunately, previous analyses rely either on complicated position in the sequence h(x), h(x) + 1, h(x) + 2,... (Here, and space consuming hash functions, or on the unrealistic addition is modulo r, the size of the array.) Retrieval of a assumption of free access to a truly random hash function. key proceeds similarly, until either the key is found, or a Already Carter and Wegman, in their seminal paper on uni- vacant position is encountered, in which case the key is not versal hashing, raised the question of extending their anal- present in the data structure. Deletions can be performed ysis to linear probing. However, we show in this paper that by moving elements back in the probe sequence in a greedy linear probing using a pairwise independent family may have fashion (ensuring that no key x is moved beyond h(x)), until expected logarithmic cost per operation. On the positive a vacant array position is encountered. side, we show that 5-wise independence is enough to ensure Linear probing dates back to 1954, but was first analyzed constant expected time per operation.
    [Show full text]
  • Advanced Data Structures
    Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10
    [Show full text]
  • AUTOMATIC DESIGN of NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING, Computational Intelligence, 4, 798– 831
    Universidad uc3m Carlos Ill 0 -Archivo de Madrid This is a postprint version of the following published document: Estébanez, C., Saez, Y., Recio, G., and Isasi, P. (2014), AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING, Computational Intelligence, 4, 798– 831 DOI: https://doi.org/10.1111/coin.12033 © 2014 Wiley Periodicals, Inc. AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING CESAR ESTEBANEZ, YAGO SAEZ, GUSTAVO RECIO, AND PEDRO ISASI Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain Noncryptographic hash functions have an immense number of important practical applications owing to their powerful search properties. However, those properties critically depend on good designs: Inappropriately chosen hash functions are a very common source of performance losses. On the other hand, hash functions are difficult to design: They are extremely nonlinear and counterintuitive, and relationships between the variables are often intricate and obscure. In this work, we demonstrate the utility of genetic programming (GP) and avalanche effect to automatically generate noncryptographic hashes that can compete with state-of-the-art hash functions. We describe the design and implementation of our system, called GP-hash, and its fitness function, based on avalanche properties. Also, we experimentally identify good terminal and function sets and parameters for this task, providing interesting information for future research in this topic. Using GP-hash, we were able to generate two different families of noncryptographic hashes. These hashes are able to compete with a selection of the most important functions of the hashing literature, most of them widely used in the industry and created by world-class hashing experts with years of experience.
    [Show full text]
  • TS 102 176-1 V2.1.1 (2011-07) Technical Specification
    ETSI TS 102 176-1 V2.1.1 (2011-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 1: Hash functions and asymmetric algorithms 2 ETSI TS 102 176-1 V2.1.1 (2011-07) Reference RTS/ESI-000080-1 Keywords e-commerce, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • CS 473: Algorithms, Fall 2019
    CS 473: Algorithms, Fall 2019 Universal and Perfect Hashing Lecture 10 September 26, 2019 Chandra and Michael (UIUC) cs473 1 Fall 2019 1 / 45 Today's lecture: Review pairwise independence and related constructions (Strongly) Universal hashing Perfect hashing Announcements and Overview Pset 4 released and due on Thursday, October 3 at 10am. Note one day extension over usual deadline. Midterm 1 is on Monday, Oct 7th from 7-9.30pm. More details and conflict exam information will be posted on Piazza. Next pset will be released after the midterm exam. Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 45 Announcements and Overview Pset 4 released and due on Thursday, October 3 at 10am. Note one day extension over usual deadline. Midterm 1 is on Monday, Oct 7th from 7-9.30pm. More details and conflict exam information will be posted on Piazza. Next pset will be released after the midterm exam. Today's lecture: Review pairwise independence and related constructions (Strongly) Universal hashing Perfect hashing Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 45 Part I Review Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 45 Pairwise independent random variables Definition Random variables X1; X2;:::; Xn from a range B are pairwise independent if for all 1 ≤ i < j ≤ n and for all b; b0 2 B, 0 0 Pr[Xi = b; Xj = b ] = Pr[Xi = b] · Pr[Xj = b ] : Chandra and Michael (UIUC) cs473 4 Fall 2019 4 / 45 Interesting case: n = m = p where p is a prime number Pick a; b uniformly at random from f0; 1; 2;:::; p − 1g Set Xi = ai + b Only need to store a; b.
    [Show full text]
  • Open Source Used in Quantum SON Suite 18C
    Open Source Used In Cisco SON Suite R18C Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-185964180 Open Source Used In Cisco SON Suite R18C 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-185964180 Contents 1.1 argparse 1.2.1 1.1.1 Available under license 1.2 blinker 1.3 1.2.1 Available under license 1.3 Boost 1.35.0 1.3.1 Available under license 1.4 Bunch 1.0.1 1.4.1 Available under license 1.5 colorama 0.2.4 1.5.1 Available under license 1.6 colorlog 0.6.0 1.6.1 Available under license 1.7 coverage 3.5.1 1.7.1 Available under license 1.8 cssmin 0.1.4 1.8.1 Available under license 1.9 cyrus-sasl 2.1.26 1.9.1 Available under license 1.10 cyrus-sasl/apsl subpart 2.1.26 1.10.1 Available under license 1.11 cyrus-sasl/cmu subpart 2.1.26 1.11.1 Notifications 1.11.2 Available under license 1.12 cyrus-sasl/eric young subpart 2.1.26 1.12.1 Notifications 1.12.2 Available under license Open Source Used In Cisco SON Suite R18C 2 1.13 distribute 0.6.34
    [Show full text]
  • CSC 344 – Algorithms and Complexity Why Search?
    CSC 344 – Algorithms and Complexity Lecture #5 – Searching Why Search? • Everyday life -We are always looking for something – in the yellow pages, universities, hairdressers • Computers can search for us • World wide web provides different searching mechanisms such as yahoo.com, bing.com, google.com • Spreadsheet – list of names – searching mechanism to find a name • Databases – use to search for a record • Searching thousands of records takes time the large number of comparisons slows the system Sequential Search • Best case? • Worst case? • Average case? Sequential Search int linearsearch(int x[], int n, int key) { int i; for (i = 0; i < n; i++) if (x[i] == key) return(i); return(-1); } Improved Sequential Search int linearsearch(int x[], int n, int key) { int i; //This assumes an ordered array for (i = 0; i < n && x[i] <= key; i++) if (x[i] == key) return(i); return(-1); } Binary Search (A Decrease and Conquer Algorithm) • Very efficient algorithm for searching in sorted array: – K vs A[0] . A[m] . A[n-1] • If K = A[m], stop (successful search); otherwise, continue searching by the same method in: – A[0..m-1] if K < A[m] – A[m+1..n-1] if K > A[m] Binary Search (A Decrease and Conquer Algorithm) l ← 0; r ← n-1 while l ≤ r do m ← (l+r)/2 if K = A[m] return m else if K < A[m] r ← m-1 else l ← m+1 return -1 Analysis of Binary Search • Time efficiency • Worst-case recurrence: – Cw (n) = 1 + Cw( n/2 ), Cw (1) = 1 solution: Cw(n) = log 2(n+1) 6 – This is VERY fast: e.g., Cw(10 ) = 20 • Optimal for searching a sorted array • Limitations: must be a sorted array (not linked list) binarySearch int binarySearch(int x[], int n, int key) { int low, high, mid; low = 0; high = n -1; while (low <= high) { mid = (low + high) / 2; if (x[mid] == key) return(mid); if (x[mid] > key) high = mid - 1; else low = mid + 1; } return(-1); } Searching Problem Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any.
    [Show full text]
  • Sun 64-Bit Binary Alignment Proposal
    1 KMIP 64-bit Binary Alignment Proposal 2 3 To: OASIS KMIP Technical Committee 4 From: Matt Ball, Sun Microsystems, Inc. 5 Date: May 1, 2009 6 Version: 1 7 Purpose: To propose a change to the binary encoding such that each part is aligned to an 8-byte 8 boundary 9 10 Revision History 11 Version 1, 2009-05-01: Initial version 12 Introduction 13 The binary encoding as defined in the 1.0 version of the KMIP draft does not maintain alignment to 8-byte 14 boundaries within the message structure. This causes problems on hard-aligned processors, such as the 15 ARM, that are not able to easily access memory on addresses that are not aligned to 4 bytes. 16 Additionally, it reduces performance on modern 64-bit processors. For hard-aligned processors, when 17 unaligned memory contents are requested, either the compiler has to add extra instructions to perform 18 two aligned memory accesses and reassemble the data, or the processor has to take a „trap‟ (i.e., an 19 interrupt generated on unaligned memory accesses) to correctly assemble the memory contents. Either 20 of these options results in reduced performance. On soft-aligned processors, the hardware has to make 21 two memory accesses instead of one when the contents are not properly aligned. 22 This proposal suggests ways to improve the performance on hard-aligned processors by aligning all data 23 structures to 8-byte boundaries. 24 Summary of Proposed Changes 25 This proposal includes the following changes to the KMIP 0.98 draft submission to the OASIS KMIP TC: 26 Change the alignment of the KMIP binary encoding such that each part is aligned to an 8-byte 27 boundary.
    [Show full text]
  • Open Data Structures (In Java)
    Open Data Structures (in Java) Edition 0.1G Pat Morin Contents Acknowledgments ix Why This Book? xi 1 Introduction 1 1.1 The Need for Efficiency ..................... 2 1.2 Interfaces ............................. 4 1.2.1 The Queue, Stack, and Deque Interfaces . 5 1.2.2 The List Interface: Linear Sequences . 6 1.2.3 The USet Interface: Unordered Sets .......... 8 1.2.4 The SSet Interface: Sorted Sets ............ 9 1.3 Mathematical Background ................... 9 1.3.1 Exponentials and Logarithms . 10 1.3.2 Factorials ......................... 11 1.3.3 Asymptotic Notation . 12 1.3.4 Randomization and Probability . 15 1.4 The Model of Computation ................... 18 1.5 Correctness, Time Complexity, and Space Complexity . 19 1.6 Code Samples .......................... 22 1.7 List of Data Structures ..................... 22 1.8 Discussion and Exercises .................... 26 2 Array-Based Lists 29 2.1 ArrayStack: Fast Stack Operations Using an Array . 30 2.1.1 The Basics ........................ 30 2.1.2 Growing and Shrinking . 33 2.1.3 Summary ......................... 35 Contents 2.2 FastArrayStack: An Optimized ArrayStack . 35 2.3 ArrayQueue: An Array-Based Queue . 36 2.3.1 Summary ......................... 40 2.4 ArrayDeque: Fast Deque Operations Using an Array . 40 2.4.1 Summary ......................... 43 2.5 DualArrayDeque: Building a Deque from Two Stacks . 43 2.5.1 Balancing ......................... 47 2.5.2 Summary ......................... 49 2.6 RootishArrayStack: A Space-Efficient Array Stack . 49 2.6.1 Analysis of Growing and Shrinking . 54 2.6.2 Space Usage ....................... 54 2.6.3 Summary ......................... 55 2.6.4 Computing Square Roots . 56 2.7 Discussion and Exercises ...................
    [Show full text]
  • A Pointer-Free Data Structure for Merging Heaps and Min-Max Heaps
    Theoretical Computer Science 84 (1991) 107-126 107 Elsevier A pointer-free data structure for merging heaps and min-max heaps Giorgio Gambosi and Enrico Nardelli Istituto di Analisi dei Sistemi ed Informutica, C.N.R., Roma, Italy Maurizio Talamo Dipartimento di Matematica Pura ed Applicata, University of L’Aquila, L’Aquila, Italy, and Istituto di Analisi dei Sistemi ed Informatica, C.N.R., Roma, Italy Abstract Gambosi, G., E. Nardelli and M. Talamo, A pointer-free data structure for merging heaps and min-max heaps, Theoretical Computer Science 84 (1991) 107-126. In this paper a data structure for the representation of mergeable heaps and min-max heaps without using pointers is introduced. The supported operations are: Insert, DeleteMax, DeleteMin, FindMax, FindMin, Merge, NewHeap, DeleteHeap. The structure is analyzed in terms of amortized time complexity, resulting in a O(1) amortized time for each operation except for Insert, for which a O(lg n) bound holds. 1. Introduction The use of pointers in data structures seems to contribute quite significantly to the design of efficient algorithms for data access and management. Implicit data structures [ 131 have been introduced in order to evaluate the impact of the absence of pointers on time efficiency. Traditionally, implicit data structures have been mostly studied for what concerns the dictionary problem, both in l-dimensional [4,5,9, 10, 141, and in multi- dimensional space [l]. In such papers, the maintenance of a single dictionary has been analyzed, not considering the case in which several instances of the same structure (i.e. several dictionaries) have to be represented and maintained at the same time and within the same array-structured memory.
    [Show full text]