Investigations Into the Structure and Properties of Ordered Perovskites, Layered Perovskites, and Defect Pyrochlores

Total Page:16

File Type:pdf, Size:1020Kb

Investigations Into the Structure and Properties of Ordered Perovskites, Layered Perovskites, and Defect Pyrochlores INVESTIGATIONS INTO THE STRUCTURE AND PROPERTIES OF ORDERED PEROVSKITES, LAYERED PEROVSKITES, AND DEFECT PYROCHLORES. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Meghan C. Knapp ***** The Ohio State University 2006 Dissertation Committee: Approved by Professor Patrick M. Woodward, Advisor Professor Claudia Turro _________________________________ Professor Terry Gustafson Advisor Graduate Program in Chemistry Professor Mohit Randeria ABSTRACT The work described in this thesis explores the effects of chemical substitution on the structures and properties of perovskites, layered perovskites, and defect pyrochlores. Layered perovskites, particularly of the variety K2NiF4, the n = 1 Ruddlesden-Popper structure, were studied to determine the factors that drive octahedral tilting distortions. It was determined that these structures, which are more inherently strained than perovskites, are influenced by the bonding environment around the anions and the A-cation as well as the electrostatic interactions between layers. The effects of cation ordering on the symmetry of Ruddlesden-Popper structures are also presented. Dion-Jacobson structures were also analyzed, and it was found that the trends that govern the behavior of Ruddlesden-Popper structures were not applicable. When n = 1 for Dion-Jacobson structures, the weak inter-layer interactions make the parent structure prone to tilting and plane slippage. This stoichiometry has several competing structures, many of which are observed for AMO4 compounds with highly covalent M-O interactions. Stoichiometric perovskites with multiple A-cations rarely exhibit layered ordering of the A-cations. Double perovskites having two A-cations and two M-cations with the formula AA'MM'O6 (A= Na, K, Li, A' = La, M = Mg, Sc M' = W, Nb, Sb, Te, or when M = M', M = Ti, Zr) were studied to determine the driving force for layered ordering of A-site cations. ii It was determined that such ordering is cooperative with the displacement of d0 transition metals from the M-cation site, which allows for relief of the bonding strain on the intra- layer oxygen ions. This represents a novel way to propagate cation displacements, i.e. via the ordering of the A-cation which works synergistically with the M-site cation displacements. Such displacements can produce desirable dielectric properties, and these properties can be further enhanced by the use of an A-cation with a stereo-chemically active lone pair. As such, analogous compounds were prepared where A' = Bi3+. It was found that when perovskites were formed, no layered ordering of the A-cations was produced. When M' was a main group element, namely Sb5+, the perovskite phase and the defect pyrochlore phase were observed to be competitive. The dielectric properties of these materials were tested and it was found that the bismuth structure containing Nb5+ had the highest dielectric constant. iii DEDICATION For Samantha and Charlotte You Can iv ACKNOWLEDGMENTS My time at Ohio State has been a fascinating period of intellectual development and personal growth. This work would not have been possible without the help and support of many people. I would like to acknowledge the people who helped me with the acquisition and treatment of my data: Dr. Gordan Renkes for his assistance with X-ray powder diffraction; Dr. Judith Stalick for use of the BT-1 line at NIST, Dr. Cameron Begg for SEM elemental analysis, Dr. Harold Stokes for help with ISOTROPY, and Dr. Suzanna Garcia-Martin for SAED analysis of NaLaMgWO6. I would also like to acknowledge Dr. Bruce Bursten for his mentorship in my career development, both as a teacher and a scientist. I had the opportunity to TA for honors chemistry under Bruce and to discuss teaching methodology. He has provided both guidance and encouragement in exploring my options for teaching at the collegiate level. I have benefited from his contagious enthusiasm for Group Theory and his dedication to his craft. I would like to thank the members of the Woodward group, both past and present for their help with my academic career. Paris Barnes, Hank Eng, and Mike Lufaso, taught me all about solid state synthesis and X-ray powder diffraction. Young-il Kim taught me about the measurement and treatment of impedance data. Fus, Matt, Rebecca, v and Harry helped me to learn our craft the best way there is: by teaching it. Fus also taught me to use CASTEP… three times! All the Woodward group members provided feedback and support for my preparations for presentations, candidacy, and graduation. Of course, it is important for me to acknowledge my advisor, Dr. Pat Woodward. As with all good advisors, he supported me in my research by constructively critiquing my analysis and forcing me to think more critically about my work. He has always been available for discussion, but has given me a great deal of freedom in the conduction of my research. Additionally, Pat has served as a role model of a parent-scientist, being able to advance in his career while staying actively involved in his kids’ lives. Without his support, completion of my degree would not have been possible while still being the kind of mother I want to be to my girls. Special thanks go to my family for their support of my decision to return to school. In particular my parents, Penny and Jerry, seemed to know more than I did how much I needed this. My husband Peter has gone above and beyond what most women expect of their spouses in support of me. He has listened to and read countless presentations of my research, and advised me on mathematical calculations. He has taken over almost all aspects of maintaining our home. He has been a stellar parent at all times, and has managed on his own on the numerous occasions that I have traveled to conferences. Peter has managed my stress far better than I have, and been the primary witness to my tears in the past few months, even as he has had his own stresses. Without his love and support, I would never have considered returning to school, let alone had the confidence to complete my degree. vi VITA 28 October 1975. Born – Indianapolis, Indiana 8 May 1998. Bachelor’s of Science Peabody College at Vanderbilt University. 1998 – 2001. Science Teacher. The Columbus City Schools. 2001 – 2002. University Distinguished Fellow. The Ohio State University. 2002 – 2005. Teaching/Research Asst. The Ohio State University. 2003 – 2004. NSF GK-12 Fellow. The Ohio State University. 2005 – 2006. University Distinguished Fellow. The Ohio State University. PUBLICATIONS Research Publications 1. Knapp, Meghan C.; Woodward, Patrick M. A-site cation ordering in AA'BB'O6 perovskites. Journal of Solid State Chemistry (2006), 179(4), 1076-1085. FIELDS OF STUDY Major Field: Chemistry vii TABLE OF CONTENTS P a g e Abstract. ii Dedication. .iv Acknowledgments . .v Vita . .vii List of Tables. .xii List of Figures . xiv Abbreviations. xvi Chapters: 1. INTRODUCTION. .1 1.1. Background, properties and applications of perovskites and related structures. .1 1.1.1. Historical Background 1.1.2. Properties of Ordered Perovskites 1.1.3. Properties of Layered Perovskites 1.1.4. Properties of Pyrochlores 1.2. Introduction to the Perovskite Structure. .5 1.2.1. General Description of the Perovskite Structure 1.2.2. Octahedral Tiliting Distortions and Notations 1.3. Layered Perovskites. 6 1.3.1. The Ruddlesden-Popper and Dion-Jacobson Structures 1.3.2. Notations for Tilting Distortions 1.4. Perovskites with A- and B-site Cation Ordering. .11 viii 1.5. Pyrochlores . .15 1.5.1. General Description of the Pyrochlore Structure 1.5.2. Defect Pyrochlore Structure 1.6. References. .18 2. GROUP THEORETICAL ANALYSIS OF LAYERED PEROVSKITES . 20 2.1. Introduction. .20 2.2. Distortions in Ruddlesden-Popper Structures . 20 2.2.1. Symmetry Allowed Distortions 2.2.2. Octahedral Tilting Distortion 2.3. Distortions in n = 1 Dion-Jacobson Structures. 37 2.3.1. Symmetry Allowed Distortions 2.3.2. Octahedral Tilting Distortions 2.4. Conclusions. .48 2.5. References. .48 3. EVALUATION OF OCTAHEDRAL TILTING DISTORTION TRENDS IN RUDDLESDEN-POPPER AND DION-JACOBSON STRUCTURES. 50 3.1. Introduction. .50 3.2. Ruddlesden-Popper Structures. 50 3.2.1. Lattice Strain and Bond Valence Sums 3.2.2. Measures of Strain 3.2.3. Known n=1 Ruddlesden Popper Structures 3.2.4. Modeling of RP n = 1 Structures Using Lattice Eneries 3.3. Dion-Jacobson Structures . 71 3.3.1. Lattice Strain 3.3.2. Known n = 1 Dion Jacobson Structures 3.3.3. Structures with n > 1 3.4. Conclusions. .71 3.5. Referencecs. .73 4. STRUCTURAL STUDIES OF NaLaMM'O6 PEROVSKITES AND THE INFLUENCE OF CATION SUBSTITUTION ON THE LAYERED ORDERING OF SODIUM AND LANTHANUM . 85 ix 4.1. Introduction . 85 4.2. Effects of distortions cation ordering on X-ray powder diffraction. 86 4.2.1. M-site Cation Ordering 4.2.2. A-site Cation Ordering 4.2.3. Distortions and Group Theoretical Analysis 4.3. Experimental . 93 4.3.1. Synthesis 4.3.2. Structural Characterization (XRD, NPD, SAED) 4.3.3. Data Analysis 4.4. Results. 97 4.4.1. NaLaMgWO6 4.4.2. NaLaMgTeO6 4.4.3. NaLaScNbO6 4.4.4. NaLaScSbO6 4.4.5. NaLaTi2O6 and NaLaZr2O6 4.4.6. KLaMgWO6 and LiLaMgWO6 4.5. Discussion. .113 4.6. Conclusion. .115 4.7. References. .115 5. STRUCTURAL STUDIES OF NaBiMM'O6 STRUCTURES AND THE INFLUENCE OF THE STEREO-ACTIVE LONE PAIR ON ORDERING AND THE STABILITY OF THE PEROVSKITE structure. 118 5.1. Introduction. .118 5.2. Introduction to Dielectrics. .119 5.3. Experimental. .120 5.3.1. Synthesis 5.3.2. Structural Characterization 5.3.3. Dielectric Measurements 5.4.
Recommended publications
  • Perovskites: Crystal Structure, Important Compounds and Properties
    Perovskites: crystal structure, important compounds and properties Peng Gao GMF Group Meeting 12,04,2016 Solar energy resource PV instillations Global Power Demand Terrestrial sun light To start • We have to solve the energy problem. • Any technology that has good potential to cut carbon emissions by > 10 % needs to be explored aggressively. • Researchers should not be deterred by the struggles some companies are having. • Someone needs to invest in scaling up promising solar cell technologies. Origin And History of Perovskite compounds Perovskite is calcium titanium oxide or calcium titanate, with the chemical formula CaTiO3. The mineral was discovered by Gustav Rose in 1839 and is named after Russian mineralogist Count Lev Alekseevich Perovski (1792–1856).” All materials with the same crystal structure as CaTiO3, namely ABX3, are termed perovskites: Origin And History of Perovskite compounds Very stable structure, large number of compounds, variety of properties, many practical applications. Key role of the BO6 octahedra in ferromagnetism and ferroelectricity. Extensive formation of solid solutions material optimization by composition control and phase transition engineering. A2+ B4+ O2- Ideal cubic perovskite structure (ABO3) Classification of Perovskite System Perovskite Systems Inorganic Halide Oxide Perovskites Perovskites Alkali-halide Organo-Metal Intrinsic Doped Perovskites Halide Perovskites Perovskites A2Cl(LaNb2)O7 Perovskites 1892: 1st paper on lead halide perovskites Structure deduced 1959: Kongelige Danske Videnskabernes
    [Show full text]
  • Uranium Dioxide Is Voluminous
    r>r 19 i o% ORNL-4755 UC-25 - Metals, Ceramics, and Materials s <-;. CONVERSIOH OF V&&4VWA NITRATE TO i aRAMlC-OR^Dt OXIDE>fs6t THE U&HT W4TBT J- -« .•'--• "" * -„ -' r J* - J * \ ^ --; f % ;~, <r- 4>- >» N< DMSICH0F DAfE -,i M\OH CAR6IDE COft^0tATtOR. U.S. ATOMIC *N**0T COMMAS»OIV 9>f & ^ima®tf»T^^*tB iwww® 1 PH^sarf in «*£ Uf9t«t Stress e* America. A vatfatt» from ---Sri*; -3K- >f ~ - - i ,43^>*£«* «^ ixn^ar»# ac «*, mts&mf of work {passaged b? tfw Lhnw XtitNr tfgr *}~ti$*i $**m «ar t!» untod Soto* Aflymic ^ «^ awy ^ iftw^r itT»i&y*OT« nor mf sd ihev canifiesscs.. ^iU- >*• ^H^ **•-» *-*• V .24, i *~ eta* -4-T" * iL - - IBS kfiE- r-„- 2 • «. "« J" '»' i - ^r'-s^j. •NOTICt ORNL-4755 Contract No. W-7405-eng-26 METAI5 AND CERAMICS DIVISION CONVERSION OF URANIUM NITRATE TO CERAMIC-GRADE OXIDE FOR THE LIGHT WATER ESEEDER REACTOR: PROCESS DEVELOPMENT J. M. Leitnaker M. L. Smith C. M. Fitzpatrick APRIL 1972 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATIOJN for the U.S. ATOMIC ENERGY COMMISSION W5TWBUTI0N OF THIS DOCUMENT IS UftUMflli iii CONTENTS Page Abstract 1 Introduction 1 Previous Investigations - 3 Stabilisation 4 Behavior of IXfe in Dry Air or Oxygen at Lev Tenpera&ures . 5 Behavior of UCfe in Dry Air or Oxygen at High Temperatures . 5 Behavior of DC^ in Hoist Air 7 Stabilisation of UO2 by Control of Surface Area 7 Stabilization by Addition of Moisture 11 Stabilization of UO2 with Dry Ice 12 Mechanical Stabilization of UO2 13 Reduction of Uranate to UO2 14 General Process Description .
    [Show full text]
  • Occurrence, Alteration Patterns and Compositional Variation of Perovskite in Kimberlites
    975 The Canadian Mineralogist Vol. 38, pp. 975-994 (2000) OCCURRENCE, ALTERATION PATTERNS AND COMPOSITIONAL VARIATION OF PEROVSKITE IN KIMBERLITES ANTON R. CHAKHMOURADIAN§ AND ROGER H. MITCHELL Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada ABSTRACT The present work summarizes a detailed investigation of perovskite from a representative collection of kimberlites, including samples from over forty localities worldwide. The most common modes of occurrence of perovskite in archetypal kimberlites are discrete crystals set in a serpentine–calcite mesostasis, and reaction-induced rims on earlier-crystallized oxide minerals (typically ferroan geikielite or magnesian ilmenite). Perovskite precipitates later than macrocrystal spinel (aluminous magnesian chromite), and nearly simultaneously with “reaction” Fe-rich spinel (sensu stricto), and groundmass spinels belonging to the magnesian ulvöspinel – magnetite series. In most cases, perovskite crystallization ceases prior to the resorption of groundmass spinels and formation of the atoll rim. During the final evolutionary stages, perovskite commonly becomes unstable and reacts with a CO2- rich fluid. Alteration of perovskite in kimberlites involves resorption, cation leaching and replacement by late-stage minerals, typically TiO2, ilmenite, titanite and calcite. Replacement reactions are believed to take place at temperatures below 350°C, 2+ P < 2 kbar, and over a wide range of a(Mg ) values. Perovskite from kimberlites approaches the ideal formula CaTiO3, and normally contains less than 7 mol.% of other end-members, primarily lueshite (NaNbO3), loparite (Na0.5Ce0.5TiO3), and CeFeO3. Evolutionary trends exhibited by perovskite from most localities are relatively insignificant and typically involve a decrease in REE and Th contents toward the rim (normal pattern of zonation).
    [Show full text]
  • In Situ X-Ray Diffraction Study of Phase Transitions of Fetio3 at High Pressures and Temperatures Using a Large-Volume Press and Synchrotron Radiation
    American Mineralogist, Volume 91, pages 120–126, 2006 In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation LI CHUNG MING,1,* YOUNG-HO KIM,2 T. UCHIDA,3 Y. WANG,3 AND M. RIVERS3 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, U.S.A. 2Department of Earth and Environment Science, Gyeongsang National University, Jinju 660-701, Korea 3The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, U.S.A. ABSTRACT The phase transformation from ilmenite to perovskite in FeTiO3 was directly observed using synchrotron-based X-ray diffraction and a large-volume press. The perovskite phase is temperature quenchable at 20 GPa and converts into the LiNbO3 phase at pressures below 15 GPa at room tem- perature. The LiNbO3 phase transforms into the ilmenite phase at 10 GPa and 673 K. However, the back-transformation from the ilmenite to the LiNbO3 phase was not observed, thus strongly suggesting that the LiNbO3 phase is not thermodynamically stable but rather a retrogressive phase formed from perovskite during decompression at room temperature. By cycling the pressure up and down at temperatures between 773 and 1023 K, the perovskite- ilmenite transformation could be observed in both directions, thus conÞ rming that perovskite is the true high-pressure phase with respect to the ilmenite phase at lower pressures. The phase boundary of the perovskite-ilmenite transformation thus determined in this study is represented by P (GPa) = 16.0 (±1.4) – 0.0012 (±0.0014) T (K), which is inconsistent with P = 25.2 – 0.01 T (K) reported previously (Syono et al.
    [Show full text]
  • Perovskite Catio3 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic, Pseudocubic
    Perovskite CaTiO3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic, pseudocubic. Point Group: 2/m 2/m 2/m. Commonly resemble distorted cubes, to 12 cm, striated k [001] and [110], rarely cubo-octahedra or octahedra, with additional forms, skeletal, dendritic; reniform, granular massive. Twinning: 90◦and 180◦ about [101], rarely 180◦ about [121], giving complex penetration twins; lamellar and sectored. Physical Properties: Cleavage: {001}, imperfect. Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 5.5 D(meas.) = 3.98–4.26 D(calc.) = 4.02 (synthetic). Optical Properties: Opaque, transparent in thin fragments. Color: Iron-black, brown, reddish brown to yellow; colorless to dark brown in transmitted light; dark bluish gray in reflected light. Streak: White to grayish white. Luster: Adamantine to metallic; may be dull. Optical Class: Biaxial (+); commonly isotropic. Pleochroism: Weak; Z > X. Orientation: X = a; Y = c; Z = b. Dispersion: r> v. n= 2.34–2.37 2V(meas.) = 90◦ R: (400) 19.2, (420) 18.8, (440) 18.4, (460) 18.0, (480) 17.6, (500) 17.3, (520) 17.0, (540) 16.8, (560) 16.6, (580) 16.4, (600) 16.2, (620) 16.1, (640) 16.0, (660) 16.0, (680) 15.9, (700) 15.9 Cell Data: Space Group: P nma (synthetic). a = 5.447(1) b = 7.654(1) c = 5.388(1) Z=4 X-ray Powder Pattern: Synthetic. 2.701 (100), 1.911 (50), 2.719 (40), 1.557 (25), 1.563 (16), 3.824 (14), 1.567 (14) Chemistry: (1) (2) (3) (1) (2) (3) Nb2O5 25.99 FeO 5.69 SiO2 0.33 MgO trace TiO2 58.67 38.70 58.75 CaO 40.69 23.51 41.25 Al2O3 0.82 Na2O 1.72 RE2O3 3.08 K2O 0.44 Total 99.36 100.28 100.00 2+ (1) Val d’Aosta, Italy.
    [Show full text]
  • Electrocatalytic Properties of Calcium Titanate, Strontium Titanate, and Strontium Calcium Titanate Powders Synthesized by Solution Combustion Technique
    Hindawi Advances in Materials Science and Engineering Volume 2019, Article ID 1612456, 7 pages https://doi.org/10.1155/2019/1612456 Research Article Electrocatalytic Properties of Calcium Titanate, Strontium Titanate, and Strontium Calcium Titanate Powders Synthesized by Solution Combustion Technique Oratai Jongprateep ,1,2 Nicha Sato ,1 Ratchatee Techapiesancharoenkij,1,2 and Krissada Surawathanawises1 1Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, !ailand 2Materials Innovation Center, Faculty of Engineering, Kasetsart University, Bangkok 10900, !ailand Correspondence should be addressed to Oratai Jongprateep; [email protected] Received 29 October 2018; Accepted 13 February 2019; Published 4 April 2019 Academic Editor: Alexander Kromka Copyright © 2019 Oratai Jongprateep et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium titanate (CaTiO3), strontium titanate (SrTiO3), and strontium calcium titanate (SrxCa1−xTiO3) are widely recognized and utilized as dielectric materials. *eir electrocatalytic properties, however, have not been extensively examined. *e aim of this research is to explore the electrocatalytic performance of calcium titanate, strontium titanate, and strontium calcium titanate, as potential sensing materials. Experimental results revealed that CaTiO3, SrTiO3, and Sr0.5Ca0.5TiO3 powders synthesized by the solution combustion technique consisted of submicrometer-sized particles with 2 specific surface areas ranging from 4.19 to 5.98 m /g. Optical bandgap results indicated that while CaTiO3 and SrTiO3 had bandgap energies close to 3 eV, Sr0.5Ca0.5TiO3 yielded a lower bandgap energy of 2.6 eV. Cyclic voltammetry tests, measured in 0.1 M sodium nitrite, showed oxidation peaks occurring at 0.58 V applied voltage.
    [Show full text]
  • Journal of Luminescence 210 (2019) 425–434
    Journal of Luminescence 210 (2019) 425–434 Contents lists available at ScienceDirect Journal of Luminescence journal homepage: www.elsevier.com/locate/jlumin Insight into the effect of A-site cations on structural and optical properties of T RE2Hf2O7:U nanoparticles ∗ Maya Abdoua, Santosh K. Guptaa,b, Jose P. Zunigaa, Yuanbing Maoa,c, a Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India c School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA ARTICLE INFO ABSTRACT Keywords: A2B2O7 type pyrochlores have been recently proposed as a potential nuclear waste host due to their many Uranium interesting properties. To assess and understand the performance of these compounds as nuclear waste hosts, the Pyrochlore speciation and structural investigations on actinide-doped RE2Hf2O7 are needed since both are imperative from Phase-transition their application perspective. In this work, we investigated the effect of uranium doping at different con- Luminescence centrations in the range of 0–10% on the structural and optical properties of RE Hf O :U (RE = Y, Gd, Nd, and Cotunnite 2 2 7 Lu) nanoparticles (NPs). The Y2Hf2O7 NPs exist in slightly disordered pyrochlore structure and the extent of disordering increases as a function of uranium doping while the structure reaches a cotunnite phase at 10.0% doping level. The Nd2Hf2O7 NPs also exist in a distorted pyrochlore structure and their distortion increases with increasing uranium doping inducing a phase transition into a disordered fluorite structure at 10.0% uranium doping.
    [Show full text]
  • The American Mineralogist Journal of the Mineralogical Society of America
    THE AMERICAN MINERALOGIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol. 46 MAY-JUNE, 1961 Nos. 5 and 6 KIMZEYITE, A ZIRCONIUM GARNET FROM MAGNET COVE, ARKANSAS* CHARLES MILTON, BLANCHE L. INGRAM, AND LAWRENCE V. BLADE, U. S. Geological Survey, Washington, D. C. ABSTRACT Kimzeyite, Ca3(Zr, 'Ii, Mg, Fe", Nb)z(AI, Fe"', Si),012, is a new type of garnet oc- curring as dodecahedrons modified by trapezohedron at Magnet Cove, Arkansas, in a carbonatite with abundant apatite, monticellite, calcite, perovskite (dysanalyte), magne- tite, and minor biotite, pyrite, and vesuvianite. It is dark brown, H about 7, isotropic, in- soluble in acids, infusible before the blowpipe, D = 4.0, n = 1.94. The three strongest x-ray powder pattern lines with intensities as measured are 1.667 (10), 2.539 (9), 2.79 (8); the unit cell constant is 12.46 A. Microchemical analysis gave CaO 29.8, Zr02 29.9, Ti203 5.0, MgO 0.5, FeO 0.8, Nb205 1.0, AhO" 11.0, Fe203 13.4, Si02 9.6, sum 101.0 which computes to Cas.n (Zrl.42+4Tio.4o+3Mgo.o7+21'eO.07+2Nbu. 05+;)(Ah.2. +3Feo.98+3Sio. 94+4)012.00. Basically, this is Ca"Zr2(AI,Si)012 with Ti replacing Zr and Fe replacing AI. Zirconium has been found in other garnets (schor]omite from Magnet Cove, melanite from Kaiserstuhl, Germany, and titanian andradite from Oka, Quebec) in quantity up to severa] per cent, but in none of these is it a major constituent. Kimzeyite is named in honor of the Kimzey family, long known in connection with Magnet Cove mineralogy.
    [Show full text]
  • Polymorphism in Bi-Based Perovskite Oxides: a First-Principles Study
    Polymorphism in Bi-based Perovskite Oxides: a First-principles Study Oswaldo Diéguez Department of Materials Science and Engineering, Tel Aviv University, Email: [email protected] Web: http://www.eng.tau.ac.il/~dieguez Abstract Under normal conditions, bulk crystals of BiScO3, BiCrO3, BiMnO3, BiFeO3, and BiCoO3 present three very different variations of the perovskite structure: an antipolar phase, a rhombohedral phase with a large polarization along the space diagonal of the pseudocubic unit cell, and a supertetragonal phase with even larger polarization. With the aim of understanding the causes for this variety, we have used a genetic algorithm to search for minima in the surface energy of these materials. Our results show that the number of these minima is very large when compared to that of typical ferroelectric perovskites like BaTiO3 and PbTiO3, and that a fine energy balance between them results in the large structural differences seen. As byproducts of our search we have identified charge-ordering structures with low energy in BiMnO3, and several phases with energies that are similar to that of the ground state of BiCrO3. We have also found that a inverse supertetragonal phase exists in bulk, likely to be favored in films epitaxially grown at large values of tensile misfit strain. Short Biography Dr. Oswaldo Dieguez received his PhD from University of Santiago de Compostela, Spain. After postdoctoral stays at Cambridge, Rutgers, and MIT he joined the Institute of Materials Science of Barcelona as a staff researcher. He moved to the Department of Materials Science and Engineering of Tel Aviv University in 2013, where he is a senior lecturer (assistant professor).
    [Show full text]
  • Aurivillius Halide Perovskite: a New Family of Two-Dimensional Materials for Optoelectronic Applications
    Aurivillius halide perovskite: a new family of two-dimensional materials for optoelectronic applications Shuai Zhaoa,*, Chunfeng Lanb, Huanhuan Lia, Chu Zhangc, Tingli Mac,d aChongqing Key Laboratory of Green Energy Materials Technology and Systems, School of Science, Chongqing University of Technology, Chongqing 400054, P.R. China bSchool of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, P.R. China cDepartment of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P. R. China dGraduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan *E-mail: [email protected] Abstract Layered perovskites have attracted considerable attention in optoelectronic applications due to their excellent electronic properties and stability. In this work, the quasi-2D aurivillius halide perovskites are investigated using density functional theory. The single-layer aurivillius perovskite Ba2PbI6 is predicted to have a direct bandgap of 1.89 eV, which is close to that of the Ruddlesden–Popper perovskite Cs2PbI4. The electronic structures near the Fermi level are mainly governed by the [PbX6] octahedra, which leads to similar electronic properties to that of Cs2PbI4. Decomposition energies reveal that these aurivillius perovskites exhibit thermal instability. Increasing the number of [PbX6] octahedra layer can enhance the stability and reduce the bandgap. Bi- and In-based aurivillius perovskites are also calculated to evaluate the Pb-free alternatives. These calculations can serve as a theoretical support in exploring novel layered perovskites. Introduction Since the first report of organic–inorganic halide perovskite (OIHP) solar cells in 2009, the power conversion efficiency (PCE) has dramatically increased to 25.02%.1–3 OIHP exhibits unprecedented optoelectronic properties, such as high carrier mobility, large optical absorption coefficient, and low-cost fabrication method.4–6 Thus, they are promising absorber materials of next-generation solar cells.
    [Show full text]
  • Metal Oxide Compact Electron Transport Layer Modification For
    materials Review Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells Md. Shahiduzzaman 1,* , Shoko Fukaya 2, Ersan Y. Muslih 3, Liangle Wang 2 , Masahiro Nakano 3, Md. Akhtaruzzaman 4, Makoto Karakawa 1,2,3, Kohshin Takahashi 3, Jean-Michel Nunzi 1,5 and Tetsuya Taima 1,2,3,* 1 Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; karakawa@staff.kanazawa-u.ac.jp (M.K.); [email protected] (J.-M.N.) 2 Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] (S.F.); [email protected] (L.W.) 3 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] (E.Y.M.); [email protected] (M.N.); [email protected] (K.T.) 4 Solar Energy Research Institute, The National University of Malaysia, Bangi 43600, Malaysia; [email protected] 5 Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, ON K7L-3N6, Canada * Correspondence: [email protected] (M.S.); [email protected] (T.T.); Tel.: +81-76-234-4937 (M.S.) Received: 14 April 2020; Accepted: 9 May 2020; Published: 11 May 2020 Abstract: Perovskite solar cells (PSCs) have appeared as a promising design for next-generation thin-film photovoltaics because of their cost-efficient fabrication processes and excellent optoelectronic properties. However, PSCs containing a metal oxide compact layer (CL) suffer from poor long-term stability and performance. The quality of the underlying substrate strongly influences the growth of the perovskite layer.
    [Show full text]
  • Revision 1 Manuscript Submitted To
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4295 10/3 1 Revision 1 2 3 Manuscript submitted to the Special Section: 4 "Mineralogy and the Nuclear Industry: Actinides in 5 Geology, Energy, and the Environment" 6 7 8 9 10 Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low- 11 temperature uranium deposit (Sierra Peña Blanca, Mexico) 12 Guillaume Othmane,1,* Thierry Allard,1 Nicolas Menguy,1 Guillaume Morin,1 Imène Esteve,1 13 Mostafa Fayek,2 and Georges Calas1 14 15 1 Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), UMR 7590 16 CNRS-UPMC/Paris VI-IRD, Case 115, 4 place Jussieu, 75252 Paris Cedex 05, France 17 18 2 Dept. of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 19 20 * E-mail: [email protected] 21 1 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4295 10/3 22 ABSTRACT 23 The occurence of vorlanite, cubic CaUO4, is reported in the Nopal I uranium deposit 24 (Sierra Peña Blanca, Mexico). This is the first time this rare calcium uranate has been found 25 displaying a cubic morphology, in agreement with its crystal structure.
    [Show full text]