Ships As a Potential Pathway of Nonindigenous Species in the Great Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Ships As a Potential Pathway of Nonindigenous Species in the Great Lakes University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 Domestic 'laker' ships as a potential pathway of nonindigenous species in the Great Lakes Abisola Aderemi Adebayo University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Adebayo, Abisola Aderemi, "Domestic 'laker' ships as a potential pathway of nonindigenous species in the Great Lakes" (2012). Electronic Theses and Dissertations. 5590. https://scholar.uwindsor.ca/etd/5590 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Domestic 'laker' ships as a potential pathway of nonindigenous species in the Great Lakes by Abisola Adebayo A Thesis Submitted to the Faculty of Graduate Studies through the Great Lakes Institute for Environmental Research in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 Abisola Adebayo Domestic 'laker' ships as a potential pathway of nonindigenous species in the Great Lakes by Abisola Adebayo APPROVED BY: ______________________________________________ Dr. Lynda Corkum Department of Biological Sciences ______________________________________________ Dr. Sarah Bailey, Co-advisor Great Lakes Institute for Environmental Research ______________________________________________ Dr. Hugh MacIsaac, Co-advisor Great Lakes Institute for Environmental Research ______________________________________________ Dr. Aaron Fisk, Chair of Defense Great Lakes Institute for Environmental Research February 17, 2012 DECLARATION OF CO-AUTHORSHIP I hereby declare that this thesis incorporates material that is a result of joint research, as follows: the outcome of a molecular species identification project undertaken in collaboration with Dr. Aibin Zhan under the supervision Dr. Hugh MacIsaac. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis, and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis. I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work. iii ABSTRACT Domestic ballast is considered a low risk vector of nonindigenous species introductions within the Great Lakes – St. Lawrence River, and is unregulated. I examined establishment risk posed by taxa contained in domestic ballast, biological and environmental similarities between St. Lawrence River and Great Lakes ports, and identified invertebrates through 454 pyrosequencing of 18S rDNA. Ballast samples contained 12 brackish potential nonindigenous species, while St. Lawrence River port samples contained two fresh and 27 brackish species. Québec City poses the greatest establishment risk due to high environmental matching with recipient ports, and because it is the only St. Lawrence River port with freshwater species (two oligochaetes: Aeolosoma viride and Rheomorpha neiswestonovae) not yet present in the Great Lakes. Pyrosequencing effectively identified invertebrates. Pyrosequencing, but not traditional taxonomy, identified the freshwater potential nonindigenous species in this study. iv For my parents Isaac and Anna v ACKNOWLEDGEMENTS I am extremely grateful for the generous support and guidance provided by my supervisors, Drs. Hugh MacIsaac and Sarah Bailey, throughout my studies at the University of Windsor. I am also grateful that they supported my travel to many conferences, enabling me to develop my presentation skills and network with international colleagues. Special thanks go to Dr. Lynda Corkum, for being part of my supervisory committee. I would like to acknowledge Colin van Overdijk and the ballast water sampling team at the Department of Fisheries and Oceans Canada in Burlington. Special thanks to Drs. Aibin Zhan and Ian Duggan, for their invaluable help with species identification. I would not have been able to complete a project of this scale without help from many people. Many thanks to Boris Beric, Amy Tanner, Russell Hepburn, Stacey MacDonald, Farrah Chan, Drs. Daniel Heath, Elizabeta Briski, Francisco Sylvester and Andrew Drake for laboratory support, encouraging, discussing and commenting on my work. The support and encouragement I received from my friends, officemates, and labmates, was very instrumental in the preparation of this thesis. Most importantly, I would like to thank those closest to me. My parents Isaac and Anna, and brothers, Ade, Toks, Niyi and Segun, have been extremely supportive through my education, providing me the opportunity to arrive at this point. vi TABLE OF CONTENTS DECLARATION OF CO-AUTHORSHIP ........................................................................ iii ABSTRACT ....................................................................................................................... iv DEDICATION .....................................................................................................................v ACKNOWLEDGEMENTS ............................................................................................... vi LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES .............................................................................................................x ACRONYMS ..................................................................................................................... xi INTRODUCTION……………………………………………………….1 Evaluating establishment risk ...............................................................5 MATERIALS AND METHODS…………………………………...…..7 Sampling strategy .................................................................................7 Sampling area .......................................................................................8 Port and ballast water sampling ..........................................................11 Sample processing ..............................................................................12 Species identification ..........................................................................13 DATA ANALYSIS……..………………………………………………16 Port .... .................................................................................................16 Ballast water .......................................................................................19 Species identification ..........................................................................20 RESULTS……………………………………………………………….22 Port… ..................................................................................................22 Ballast water .......................................................................................28 Species identification ..........................................................................31 DISCUSSION…………………………………………………………33 Port… ..................................................................................................33 Ballast water .......................................................................................35 Species identification ..........................................................................39 vii CONCLUSIONS……………………………………………………….41 REFERENCES ................................................................................................................ 71 APPENDICES Appendix 1 ..................................................................................................................84 Appendix 2 ..................................................................................................................88 Appendix 3 ..................................................................................................................90 Appendix 4 ..................................................................................................................92 Appendix 5 ..................................................................................................................95 Appendix 6 ..................................................................................................................96 Appendix 7 ..................................................................................................................98 Appendix 8 ..................................................................................................................99 VITA AUCTORIS……………………………………………………………………...103103 viii LIST OF TABLES Table 1 Reported dates of discovery of Great Lakes‟ invaders that are either 43 native to or were first sighted in the St. Lawrence River Table 2 Risk categories assigned to St. Lawrence River ports
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • The State of Lake Superior in 2000
    THE STATE OF LAKE SUPERIOR IN 2000 SPECIAL PUBLICATION 07-02 The Great Lakes Fishery Commission was established by the Convention on Great Lakes Fisheries between Canada and the United States, which was ratified on October 11, 1955. It was organized in April 1956 and assumed its duties as set forth in the Convention on July 1, 1956. The Commission has two major responsibilities: first, develop coordinated programs of research in the Great Lakes, and, on the basis of the findings, recommend measures which will permit the maximum sustained productivity of stocks of fish of common concern; second, formulate and implement a program to eradicate or minimize sea lamprey populations in the Great Lakes. The Commission is also required to publish or authorize the publication of scientific or other information obtained in the performance of its duties. In fulfillment of this requirement the Commission publishes the Technical Report Series, intended for peer-reviewed scientific literature; Special Publications, designed primarily for dissemination of reports produced by working committees of the Commission; and other (non-serial) publications. Technical Reports are most suitable for either interdisciplinary review and synthesis papers of general interest to Great Lakes fisheries researchers, managers, and administrators, or more narrowly focused material with special relevance to a single but important aspect of the Commission's program. Special Publications, being working documents, may evolve with the findings of and charges to a particular committee. Both publications follow the style of the Canadian Journal of Fisheries and Aquatic Sciences. Sponsorship of Technical Reports or Special Publications does not necessarily imply that the findings or conclusions contained therein are endorsed by the Commission.
    [Show full text]
  • Seasonal Zooplankton Dynamics in Lake Michigan
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2012 Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition Henry A. Vanderploeg National Oceanic and Atmospheric Administration, [email protected] Steven A. Pothoven Great Lakes Environmental Research Laboratory, [email protected] Gary L. Fahnenstiel Great Lakes Environmental Research Laboratory, [email protected] Joann F. Cavaletto National Oceanic and Atmospheric Administration, [email protected] James R. Liebig National Oceanic and Atmospheric Administration, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Vanderploeg, Henry A.; Pothoven, Steven A.; Fahnenstiel, Gary L.; Cavaletto, Joann F.; Liebig, James R.; Stow, Craig A.; Nalepa, Thomas F.; Madenjian, Charles P.; and Bunnell, David B., "Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition" (2012). Publications, Agencies and Staff of the U.S. Department of Commerce. 406. https://digitalcommons.unl.edu/usdeptcommercepub/406 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Henry A. Vanderploeg, Steven A. Pothoven, Gary L. Fahnenstiel, Joann F.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • ARROW LAKES RESERVOIR NUTRIENT RESTORATION PROGRAM, YEARS 11 and 12 (2009 and 2010) REPORT
    ARROW LAKES RESERVOIR NUTRIENT RESTORATION PROGRAM, YEARS 11 and 12 (2009 and 2010) REPORT by E. U. Schindler, D. Sebastian, T. Weir, H. Andrusak, G.F. Andrusak, M. Bassett and K. I. Ashley Fisheries Project Report No. RD 137 2013 Resource Management Ministry of Forests, Lands and Natural Resource Operations Province of British Columbia Funding by Fish and Wildlife Compensation Program and Arrow Lakes Power Corporation A subsidiary of Columbia Power and Columbia Basin Trust Fisheries Project Reports frequently contain preliminary data, and conclusions based on these may be subject to change. Reports may be cited in publications but their manuscript status (MS) must be noted. Please note that the presentation summaries in the report are as provided by the authors, and have received minimal editing. Please obtain the individual author's permission before citing their work. ARROW LAKES RESERVOIR NUTRIENT RESTORATION PROGRAM YEARS 11 and 12 (2009 and 2010) REPORT by E. U. Schindler1, D. Sebastian2, T. Weir3, H. Andrusak4, G.F. Andrusak4 M. Bassett1 and K. I. Ashley5 1 Resource Management, Ministry of Forests, Lands and Natural Resource Operations, Province of BC, 401-333 Victoria St., Nelson, BC, V1L 4K3 2 British Columbia Conservation Foundation, Suite 200-1383 McGill Rd, Kamloops, BC V2C 6K7 3 Fish, Wildlife and Habitat Management Branch, Ministry of Forests, Lands and Natural Resource Operations, Province of BC, PO Box 9338 STN PROV GOVT, Victoria, BC, V8W 9M2 4 Redfish Consulting Ltd., 5244 Hwy 3A, Nelson, BC, V1L 6N6 5 Ecological Restoration Program, BC Institute of Technology, 700 Willingdon Ave.,Burnaby, BC, V5G 3H2 ACKNOWLEDGEMENTS Funding for the eleventh and twelfth year (2009 and 2010) of the Arrow Lakes Reservoir Nutrient Restoration Project was provided by the Fish and Wildlife Compensation Program – Columbia Basin and Columbia Power Corporation.
    [Show full text]
  • Trophic Relationships, Distribution and Interactions Among Invasive And
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 9-27-2018 Trophic relationships, distribution and interactions among invasive and native Laurentian Great Lakes biota assessed using metabarcoding of stomach content DNA (scDNA) and environmental DNA (eDNA) Justin Glenn Mychek-Londer University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Mychek-Londer, Justin Glenn, "Trophic relationships, distribution and interactions among invasive and native Laurentian Great Lakes biota assessed using metabarcoding of stomach content DNA (scDNA) and environmental DNA (eDNA)" (2018). Electronic Theses and Dissertations. 7549. https://scholar.uwindsor.ca/etd/7549 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected])
    [Show full text]
  • Vol. 15 (No. 1) June, 2018 Print : ISSN 0973-0834
    Vol. 15 (No. 1) June, 2018 Print : ISSN 0973-0834 1 Social Environmental and Biological Association (SEBA) Reg. No. S/IL/22805 of 2004-2005 EXECUTIVE BODY OBJECTIVES OF SEBA President Dr. Supatra Sen ★ To promote and encourage social and environmental education. Vice-President ★ To create awareness in protection, preservation and restoration of environment, biodiversity and cultural tradition of India. Dr. N. C. Nandi Dr. Rina Chakraborty ★ To undertake research projects as well as to provide advisory service relating to social, biological and environmental sciences, aquaculture, Secretary wildlife and wetlands. Dr. V. V. Gantait ★ To undertake socio-cultural, environmental and biodiversity awareness Treasurer programmes by organising outreach programmes, seminar, workshop, Dr. Anirudha Dey exhibition and nature study camp. Asstt. Secretary ★ To collaborate with non-Government and Government organization to Dr. Sujit Pal promote social, environmental and biological education, awareness, Dr. B. K. Modak conservation and research. Members ★ To publish journals, newsletters and leaflets containing research papers, review papers and popular articles for the fulfillment of Dr. T. K. Pal foregoing objects. Dr. Amalendu Chatterjee Dr. M. K. Dev Roy Shri Kajal Ghosh ADVISORY BODY OUTREACH PROGRAMMES OF SEBA Dr. A. K. Das Dr. A. K. Sanyal SEBA (a registered non-profit making organisation devoted Dr. D. R. Mondal to social and biological aspects of environment conservation Dr. C. Kalavati and awareness having qualified and experienced environment professionals) invites educational institutions, Government and Dr. S. K. Pramanik non-governmental organizations for outreach programmes Outreach Programmes on social, environmental and biological aspects suited to Co-ordinators (ORPC) organization’s needs or on the following themes : Dr.
    [Show full text]
  • Lake Erie Lakewide Management Plan (Lamp) Technical Report Series
    LakeErieLakewideManagementPlan(LaMP) TechnicalReportSeries ImpairmentAssessmentofBeneficialUses: DegradationofPhytoplanktonandZooplanktonPopulations OraJohannssonandScottMillard 1998 LakeErieLaMPTechnicalReportNo.13 2 Technical Report 13 Degradation of Phytoplankton and Zooplankton Populations Prepared for the Lake Erie LaMP Preliminary Beneficial Use Impairment Assessment by Ora E. Johannsson and E. Scott Millard Great Lakes Laboratory for Fisheries and Aquatic Sciences Fisheries and Oceans Canada Burlington, Ontario February, 1998 NOTE TO THE READER: This technical report was prepared as one component of Stage 1, or “Problem Definition,” for the Lake Erie LaMP. This report provides detailed technical and background information that provides the basis for the impairment conclusions recorded in the Lake Erie LaMP Status Report. This document has been extensively reviewed by the government agencies that are partnering to produce the LaMP, outside experts, and the Lake Erie LaMP Public Forum, a group of approximately of 80 citizen volunteers. This review was designed to answer two questions: · Is the document technically sound and defensible? · Do the reviewers agree with the document conclusions and format? In its present form, this report has been revised to address the comments received during that review process, and there is majority agreement with the impairment conclusions presented. Table of Contents Table of Contents........................................................................................................................2
    [Show full text]
  • Species-Level and Community-Level Data Analyses Reveal Spatial
    J. Limnol., 60 (2): 155-170, 2001 Species-level and community-level data analyses reveal spatial differences and temporal change in the crustacean zooplankton of a large Canadian lake (Lake Simcoe, Ontario) Kenneth H. NICHOLLS* and Claudiu TUDORANCEA1) Ontario Ministry of the Environment, C/O Biomonitoring Section, 125 Resources Road, Toronto, ON M9P 3V6 Canada Present address: S-15 Concession 1, RR #1, Sunderland, Ontario L0C 1H0 Canada 1)Faculty of Biology and Geology, "Babes-Bolyai" University, Str. Mihail Kogalniceanu nr. 1, RO-3400 Cluj-Napoca, Romania *e-mail corresponding author: [email protected] ABSTRACT Consensus-building univariate and multivariate data analyses were used to identify patterns in space and time over seven years among 12 sampling stations in a 720 km2 hardwater Canadian lake (Lake Simcoe, Ontario, Canada). There were 15 copepods and 26 cladoceran species identified in samples collected throughout the May-October periods of 1986-1992 from Lake Simcoe. Eleven crustacean zooplankters accounted for 88% of the total average density of all recorded species in the lake. Most of these (the main exceptions being Eubosmina coregoni and Daphnia pulicaria) are ubiquitous taxa with wide environmental tolerances. Multivariate analyses of these data identified spatial differences and a temporal trend in community composition. The use of Cao et al.’s (1997a) "CY-dissimilarity" measure combined with Ward's Linkage clustering algorithm and non-metric multidimensional scaling ordination resulted in several clearly defined groups of sampling units (SUs), which apparently were separated predominantly on the basis of variables related to space (sampling station) and time (year). The 7-year record suggested several lines of evidence for trends in community structure.
    [Show full text]
  • Patterns in Phytoplankton and Zooplankton in Minnesota Lakes
    Minnesota Department of Natural Resources Special Publication 178, January 2016 Patterns in Phytoplankton and Zooplankton in Minnesota Lakes Authors Steven Heiskary, Minnesota Pollution Control Agency, Environmental Analysis and Outcomes Division, 520 Lafayette Road, St. Paul MN 55155 Jodie Hirsch, Minnesota Department of Natural Resources, Division of Ecological and Water Resources, 500 Lafayette Road, St. Paul MN 55155 Heidi Rantala, Minnesota Department of Natural Resources, Division of Fish and Wildlife - Section of Fisheries, 500 Lafayette Road, St. Paul MN 55155 Acknowledgements Field surveys were conducted by numerous Minnesota Pollution Control Agency and Department of Natural Resources staff as a part of the Sustaining Lakes in a Changing Environment (SLICE) long-term lake monitoring program. Pam Anderson and Joe Hadash of MPCA and Brian Herwig MN DNR provided helpful reviews. Ann St. Amand with Phyco Tech Inc. and Mark Edlund with Science Museum of Minnesota, St. Croix Research Station, provided external review and comments. In addition to their reviews, each provided ideas on further data analysis. Funding for this work was provided by Minnesota’s Legislative and Citizen’s Commission on Minnesota’s Resources (LCCMR) by an appropriation awarded to the Minnesota Department of Natural Resources (M.L. 2013, Chp. 52, Sec. 2, Subd. 05a), Jeffrey R. Reed, Project Manager. Edited by Jeffrey Reed. i Contents Authors .................................................................................................................................................
    [Show full text]
  • Arrow Lakes Reservoir Fertilization Experiment, Year 8 (2006) Report
    ARROW LAKES RESERVOIR FERTILIZATION EXPERIMENT, YEAR 8 (2006) REPORT by E. U. Schindler, D. Sebastian, L. Vidmanic, H. Andrusak, J. Stockner, M. Bassett and K. I. Ashley Fisheries Project Report No. RD 125 2009 Fish and Wildlife Science and Allocation Ministry of Environment Province of British Columbia Major Funding by Fish and Wildlife Compensation Program - Columbia Basin Fisheries Project Reports frequently contain preliminary data, and conclusions based on these may be subject to change. Reports may be cited in publications but their manuscript status (MS) must be noted. Please note that the presentation summaries in the report are as provided by the authors, and have received minimal editing. Please obtain the individual author's permission before citing their work. ARROW LAKES RESERVOIR FERTILIZATION EXPERIMENT YEAR 8 (2006) REPORT by E. U. Schindler1, D. Sebastian2, L. Vidmanic3, H. Andrusak4, J. Stockner5, M. Bassett1 and K. I. Ashley6 1 Fish and Wildlife Science and Allocation Section, Ministry of Environment, Province of BC, 401-333 Victoria St., Nelson, BC, V1L 4K3 2 Aquatic Ecosystem Science Section, Biodiversity Branch Ministry of Environment, Province of BC PO Box 9338 STN PROV GOVT, Victoria, BC, V8W 9M2 3 Limno-Lab Ltd., 506-2260 W.10th Ave., Vancouver, BC V6K 2H8 4 Redfish Consulting Ltd., 5244 Hwy 3A, Nelson, BC, V1L 6N6 5 Eco-Logic Ltd., 2614 Mathers Avenue, West Vancouver, BC, V7V 2J4 6 Department of Civil Engineering, 2324 Main Mall, University of British Columbia, Vancouver, BC, V6T 1W5 ACKNOWLEDGEMENTS Funding for the eight year (2006) of the Arrow Lakes Reservoir Fertilization Experiment was provided by the Fish and Wildlife Compensation Program – Columbia Basin and Columbia Power Corporation.
    [Show full text]
  • Balcer Part 1
    Zooplankton of the Great Lakes Researchers, instructors, and students will appreciate this compila­ tion of detailed information on the crustacean zooplankton of the Great Lakes. The authors have gathered data from more than three hundred sources and organized it into a useful laboratory manual. The taxonomic keys are easy to use, suitable for both classroom and laboratory identifications. Detailed line drawings are provided to help confirm the identification of the major species. Zoologists, limnologists, hydro biologists, fish ecologists, and those who study or monitor water quality will welcome this dependable new identifica­ tion tool. A concise summary of pertinent information on the ecology of these zooplankton is provided in the main body of the text. A check­ list of all species reported from each of the Great Lakes and notes on the distributiou and abundance of more than a hundred species were compiled from an extensive search of existing literature. In addition, the authors collected samples from several locati.ons on Lake Supe­ rior, in order to provide information on the abundance and life histories of the major crustacean species. For the thirty-four most common cladocerans and copepods, the authors also include sections on the taxonomy of each species, its description and size, life history, habitat, migration pattern, feeding ecology, and role as prey for other organisms. Tables provide in­ formation on the amount and type of zooplankton sampling con­ ducted on each of the Great Lakes from the late nineteenth century to the present. Changes in major species abundance in each lake during the past hundred years may also be determined from the tabular data.
    [Show full text]