Carbon Dioxide Capture Using Sodium Hydroxide Solution: Comparison Between an Absorption Column and a Membrane Contactor
Total Page:16
File Type:pdf, Size:1020Kb
Carbon dioxide capture using sodium hydroxide solution: comparison between an absorption column and a membrane contactor Dissertation presented by Nicolas CAMBIER for obtaining the master's degree in Chemical and Materials Engineering Supervisor Patricia LUIS ALCONERO Tutor Israel RUIZ SALMON Readers Juray DE WILDE, Joris PROOST Academic year 2016-2017 Acknowledgements Before beginning this report, I would like to address my acknowledgements to the people who helped me throughout the realisation of my master thesis. First of all, nothing would have been possible without the support and advices of my promoter, the professor Patricia Luis. The working environment provided by her team and the meetings along the year were good opportunities to evolve for the best. Secondly, I would like to thank Israel Ruiz Salmon who was a major actor of my work. He always helped me with my numerous questions and uncertainties. Without him, I certainly would not have managed to overcome the numerous challenges encountered during this work. His precious advices and corrections are certainly what helped me to finish this master thesis. For their help with the preparation of solutions and in the lab, I thank Luc Wautier, Frédéric Van Wonterghem, Ronny Santoro and Nadine Deprez. In addition, I would like to express my gratitude to Professors J. De Wilde and J. Proost who have accepted to be the readers of this thesis. List of symbols Symbols Signification Units 푎 Specific area of packing per unit volume of column m2⁄m³ 퐴 Cross sectional area of the column m² [A] Concentration of species A mol⁄L 2 푎푒푓푓 Effective interfacial area in membrane contactor m CO2,I, CO2,II Composition of inlet and outlet flue gas in CO2 (on % the console screen) E Enhancement factor − 퐹푎 Volumetric flow rate of absorption of CO2 L/s 퐹푎푟, 퐹CO2 Air and CO2 flow rates (on the console screen) L/min Gin, Gout Inlet and outlet gas flow rates L/min 퐻 Column height m 2 푘푙, 푘푚, 푘푔 Individual mass transfer coefficient of the liquid mol/(atm ⋅ m ⋅ s) phase, membrane and gas phase 2 퐾푂푔 Overall mass transfer coefficient mol/(atm ⋅ m ⋅ s) 퐿 Liquid flow rate L⁄min 푝푎푡푚 Atmospheric pressure atm r Pore radius m R Ideal gas constant J/(mol⋅K) 푟CO2 Rate of absorption of CO2 mol/s Vi Volume i L 푦, 푦표 Inlet and outlet CO2 partial pressures % Δ푝 Breakthrough pressure atm Δ푃푙푚 Logarithmic mean pressure atm 훾 Interfacial tension N⁄m Θ Geometric factor related to the pore structure − Abbreviations Signification AFOLU Agricultural, forestry and other land use AMP Adenosine monophosphate CCC Carbon capture and conversion CCS Carbone capture and storage DEA Diethanolamine GHGs Greenhouse gases GWP Global warming potential HFMC Hollow fibre membrane contactor IGCC Integrated gasifier combined cycle IPCC Intergovernmental Panel on Climate Change LLGHGs Long-lived GHGs MDEA Methyl diethanolamine MEA Monoethanolamine MO Methyl orange PCC Post combustion capture PP Phenolphthalein TETA Triethylenetetramine Contents Introduction ................................................................................................................................................................ 1 1 Bibliographic review ....................................................................................................................... 3 1.1 Carbon dioxide problematic .................................................................................................... 3 1.2 Carbon dioxide sources and carbon capture and storage .......................................... 6 1.3 Carbon capture technologies .................................................................................................. 8 1.3.1 Post-combustion CO2 capture ....................................................................................... 8 1.3.2 Pre-combustion CO2 capture ......................................................................................... 9 1.3.3 Oxyfuel combustion .......................................................................................................... 9 1.4 CO2 separation techniques in post-combustion separation ..................................... 10 1.4.1 Absorption .......................................................................................................................... 10 1.4.2 Adsorption .......................................................................................................................... 11 1.4.3 Calcium looping ................................................................................................................ 11 1.4.4 Carbon capture and conversion ................................................................................. 11 1.5 Closer look on the reactive absorption of CO2 using NaOH ...................................... 13 1.6 Randomly packed columns for CO2 absorption ............................................................ 15 1.6.1 Liquid holdup and flooding .......................................................................................... 17 1.7 State of the art on reactive absorption of CO2 with NaOH using packed columns 18 1.8 Membrane technology for post combustion capture.................................................. 19 1.9 Membrane contactors .............................................................................................................. 20 1.10 Reactive absorption in membrane contactors.......................................................... 21 1.10.1 Membrane contactors as scrubbers ........................................................................ 21 1.10.2 Breakthrough pressure ................................................................................................ 23 1.10.3 Membrane fouling and plugging ............................................................................... 23 1.11 State of the art on reactive absorption of CO2 with NaOH using membrane contactors 24 1.12 Comparison between membrane contactors and packed columns ................. 26 2 Objectives of the master thesis ................................................................................................. 29 2.1 Framework of the master thesis ......................................................................................... 29 2.2 Objective of the master thesis .............................................................................................. 30 3 Materials and methods ................................................................................................................. 31 3.1 Chemicals ..................................................................................................................................... 31 3.1.1 Preparation of the solution ......................................................................................... 31 3.2 Equipment ................................................................................................................................... 32 3.2.1 Absorption column ......................................................................................................... 32 3.2.2 Membrane contactor ..................................................................................................... 34 3.3 Experimental setups ................................................................................................................ 35 3.3.1 Absorption column ......................................................................................................... 35 3.3.2 Membrane contactor ..................................................................................................... 36 3.4 Experimental procedure ........................................................................................................ 37 3.4.1 Absorption column ......................................................................................................... 37 3.4.2 Membrane contactor ..................................................................................................... 38 3.5 Characterisation and analyse procedures ...................................................................... 40 3.5.1 Mass transfer coefficient .............................................................................................. 40 3.5.2 Titration method (double indicators method) ................................................... 40 3.5.3 Sensors method ............................................................................................................... 42 4 Results and discussion ................................................................................................................ 43 4.1 Absorption column .................................................................................................................. 43 4.1.1 Analysis of the setup ...................................................................................................... 43 4.1.2 Comparison between sensors and titration methods ...................................... 44 4.1.3 Influence of the liquid and gas flow rates ............................................................. 46 4.1.4 Influence of the liquid and gas concentrations ................................................... 49 4.2 Membrane contactor ............................................................................................................... 51 4.2.1 Observations about the results of the membrane ............................................. 51 4.2.2 Influence of the liquid flow rate ...............................................................................