United States Patent Office Patented Nov

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Nov 3,352,642 United States Patent Office Patented Nov. 14, 1967 2 stabilized during storage for long periods of time with 3,352,642 out degradation of its oxidizing properties. STABLZATION OF OZONE Lawrence J. Heidt, Arlington, and Vincent R. Landi, In accordance with these and other objects, the present rookine, Mass., assignors to Massachusetts in invention involves the stabilization of ozone through the stitute of Technology, Cambridge, Mass., a corpo use of base, and in particular, sodium hydroxide and ration of Massachusetts other sources of hydroxyl-ion. This is a wholly new and No Drawing. Fied June 29, 1964, Ser. No. 378,990 Surprising approach to the problem of stabilizing ozone. 15 Clains. (Cl. 23-222) In fact, it has heretofore been generally believed that sodium hydroxide would have the opposite effect upon This invention relates to a method for the stabilization O oZone. For example, the Encyclopedia of Chemical Tech of ozone and in particular to a method whereby ozone nology, vol. 9, p. 735, reports that the ozone decomposi can be stored and transported with a much slower rate tion reaction is greatly accelerated by increasing the of decomposition than was heretofore thought possible. hydroxyl-ion concentration. Other references are made Ozone (O3) is an unstable blue gas which is formed in the same volume and article on ozone to the supposedly photochemically in nature in the earth's stratosphere but 5 detrimental effect of sodium hydroxide on the stability which exists only in great dilution with air or oxygen at of ozone. It is also reported in the article that the de ground levels. At -112 C. ozone condenses to a dark composition of ozone is more rapid in aqueous solution blue liquid which is easily exploded, as are concentrated than in the gaseous state, and that the decomposition is ozone-oxygen mixtures (above about 30% ozone) in powerfully catalyzed by hydroxyl-ion. In an article by either the liquid or the vapor state. Explosions are initi 20 M. L. Kilpatrick, Claude C. Herrick and M. Kilpatrick, ated by small amounts of organic matter, shocks, electric Journal of the American Chemical Society, vol. 78, at p. sparks, and sudden changes in temperature and pressure. 1788, the authors reported that the rate of decomposi The very explosive nature of ozone has suggested its use tion of ozone increases as the hydroxyl-ion increases. It as a component in rocket fuels. OZone is a potent germi is important to note that they employed concentrations cide, a powerful oxidant in organic and inorganic reac 25 of NaOH in the range from 10-6 N to 10-4 N in making tions, and has also been found useful in the treatment their decomposition study, since, by way of contrast, it of water supplies and industrial wastes as well as in the has been found that the use of NaOH at much higher deodorization of air and sewage gases. concentrations results in a startling increase in the sta Ozone is commercially produced from air or oxygen bility of the ozone. The work of Kilpatrick et al. has by means of an apparatus known as an ozonizer which 30 been cited by Clark E. Thorp, of the Armour Research utilizes an electrical discharge known as the ozonator Foundation, Chicago, Illinois in his Bibliography of discharge, to produce the O molecule. The ozone pro Ozone Technology, vol. 2, p. 44, in which the statement duced thereby contains those impurities which are present is made that “with few exceptions, the decomposition of in ordinary air plus small quantities of nitrogen pentoxide ozone increases with increasing ion concentration.” Thus, (NOs) and nitrous oxide (N2O). The mole ratio of 35 the consensus of workers in the field of ozone technology nitrogen pentoxide to ozone under typical conditions is has been that the stability of ozone is decreased as the in the range of 1-2%. However, with moist air the pro concentration of hydroxyl-ion is increased. This inven portion of nitrogen pentoxide rises and it combines with tion, which is based on the stabilization of ozone by the the water vapor present to form nitric acid (HNO3) addition of hydroxyl-ion, is, therefore, all the more novel which causes severe corrosion of the metal surfaces which 40 and unexpected in view of the foregoing. it contacts. Ozone relatively free of impurities can be pre It has been found that oZone is increasingly stable with pared by the ozonization of pure dry oxygen. One of the increasing base concentration above 104 N NaOH, and major problems which has been encountered in the pro greatly stabilized in the range from 1 N to 20 N NaOH. duction of ozone has been the preparation and utilization Ozone and Ozonide (O3), the anion of the strong acid of high purity oxygen to produce a high purity ozone. HO, were produced as a result of the absorption of light This is extremely important in view of the fact that ozone 45 by hydrogen peroxide and sodium persulfate in aqueous is highly unstable in the presence of even the slightest sodium hydroxide. Flash photolysis was used as a light amount of impurity such as nitrogen pentoxide. source in initiating the reaction. The optical density Ozone, being quite unstable, decomposes to biatomic (O.D.) of the system was measured by means of a oxygen. The decomposition is slow at room temperature 50 spectrophotometer at the light absorption peaks of ozone and low concentrations, but is greatly accelerated by heat, and ozonide at 2600 A. and 4300 A. respectively. The being almost instantaneous at temperatures of several stability of ozone as measured by its thermal half life hundred degrees centigrade. The decomposition has been (T/2) (the time required for the ozone concentration reported to be catalyzed by moisture, silver, platinum, to decrease by one-half from its initial concentration) and some other metals as well as some metallic oxides, 55 was greatly increased with an increase in base concen soda lime, bromine, chlorine, and nitrogen pentoxide. tration. The ozonide also was stabilized, although to a Thus, it can be seen that the purity of the product is a lesser degree than the ozone. The effect of NaOH con highly important factor in its stability. Much work has centration on the stability of ozone in a sodium hy done to improve the methods of producing ozone in order droxide-hydrogen peroxide solution is shown in Table I. to obtain a high purity stable product. This has been a very expensive and largely unsuccessful venture thus far. 60 Table I The importance of stabilizing ozone cannot be over NaOH (concentration): O-T/2 (seconds) emphasized in view of the many possible uses to which 10' N -------------------------------- 0.02 it could be put were it not for its instability and difficulty 10°N -------------------------------- 0.07 10' N.-------------------------------- 4.76 in handling. 65 It is, therefore, an object of this invention to provide 2.5X10' N --------------------------- 9.04 a means for the stabilization of ozone. 5X10' N ----------------------------- 24.8 More specifically, it is an object of the present inven 10 N --------------------------------- 110. tion to provide a method for the reduction of the rate of 70 N --------------------------------- 2000. decomposition of OZone. 70 It can be seen from Table I that as the NaOH concentra It is likewise an object of the invention to provide a tion is increased from 104 to 7.0 N the thermal half life of means for the storage of ozone whereby the ozone is the OZone in solution, as calculated from optical density 3,352,642 3 4. measurements, is increased from 0.02 second to 2000 sec tacts this highly oxidized layer should not react with it onds. This is in marked contrast to the results of work and should not decompose. done by others in the field (Kilpatricket al.) which shows It is contemplated that the ozone stabilized and stored a decrease in ozone stability as the NaOH concentra according to this invention can be made available for tion is increased from 10-6 N to 10 4 N. The ozone in 5 use in the pure form by various means. For example, the strongly basic solution (7 N NaOH) decomposed the alkaline ozone solution can be distilled at low tem smoothly with no untoward effects even when the solu peratures to separate the ozone from the NaOH solu tion was rapidly heated, shaken and boiled. Similar ex tion. Ozone may be run through alkaline dehydrating periments carried out with concentrations of potassium agents such as sodium hydroxide pellets, potassium hy hydroxide up to 14 N gave results similar to those ob 10 droxide pellets, barium oxide, magnesium oxide, and cal tained with sodium hydroxide. cium oxide to remove any water present in applications Table II shows the effect of base concentration on the where pure ozone is required. Pipes and other vessels stability of ozone in a sodium hydroxide-sodium per used in the transportation of flowing ozone can be made sulfate solution. Optical density measurements at 2600 A. of alkaline materials such as alkaline glass or alkaline were made and from these were calculated the thermal 15 glass-lined materials. In other words, the ozone may be safely handled and stored provided it is in an alkaline half lives presented in Table II. medium or alkaline surroundings until used. It may be Table II used in the pure form by presently available separation NaOH (concentration): O-T2 (seconds) techniques provided that it is kept in a strongly alkaline 10 N -------------------------------- 0.001 20 environment until use. 10°N ------------------------------- 0.01 The preferred embodiments of the invention described 7 N----------------------------------- 2500 in this specification are illustrative only.
Recommended publications
  • SODIUM HYDROXIDE @Lye, Limewater, Lyewater@
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: ENVIRONMENTAL TOXICOLOGY SECTION OCTOBER, 1998 SODIUM HYDROXIDE @Lye, limewater, lyewater@ For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information Sodium Hydroxide Page 2 SYNONYMS: Caustic soda, sodium hydrate, soda lye, lye, natrium hydroxide CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: NaOH - White solid, crystals or powder, will draw moisture from the air and become damp on exposure - Odorless, flat, sweetish flavor - Pure solid material or concentrated solutions are extremely caustic, immediately injurious to skin, eyes and respiratory system WHERE DOES IT COME FROM? Sodium hydroxide is extracted from seawater or other brines by industrial processes. WHAT ARE THE PRINCIPLE USES OF SODIUM HYDROXIDE? Sodium hydroxide is an ingredient of many household products used for cleaning and disinfecting, in many cosmetic products such as mouth washes, tooth paste and lotions, and in food and beverage production for adjustment of pH and as a stabilizer. In its concentrated form (lye) it is used as a household drain cleaner because of its ability to dissolve organic solids. It is also used in many industries including glassmaking, paper manufacturing and mining. It is used widely in medications, for regulation of acidity. Sodium hydroxide may be used to counteract acidity in swimming pool water, or in drinking water. IS SODIUM HYDROXIDE NATURALLY PRESENT IN DRINKING WATER? Yes, because sodium and hydroxide ions are common natural mineral substances, they are present in many natural soils, in groundwater, in plants and in animal tissues.
    [Show full text]
  • Carbon Dioxide Capture from Atmospheric Air Using Sodium
    Environ. Sci. Technol. 2008, 42, 2728–2735 Carbon Dioxide Capture from Nearly all current research on CCS focuses on capturing CO2 from large, stationary sources such as power plants. Atmospheric Air Using Sodium Such plans usually entail separating CO2 from flue gas, compressing it, and transporting it via pipeline to be Hydroxide Spray sequestered underground. In contrast, the system described in this paper captures CO2 directly from ambient air (“air § capture”). This strategy will be expensive compared to capture JOSHUAH K. STOLAROFF, from point sources, but may nevertheless act as an important DAVID W. KEITH,‡ AND complement, since CO emissions from any sector can be GREGORY V. LOWRY*,† 2 captured, including emissions from diffuse sources such as Chemical and Petroleum Engineering, University of Calgary, aircraft or automobiles, where on-board carbon capture is and Departments of Civil and Environmental Engineering very difficult and the cost of alternatives is high. Additionally, and Engineering and Public Policy, Carnegie Mellon in a future economy with low carbon emissions, air capture University, Pittsburgh, Pennsylvania 15213 might be deployed to generate negative net emissions (1). This ability to reduce atmospheric CO2 concentrations faster Received October 15, 2007. Revised manuscript received than natural cycles allow would be particularly desirable in February 05, 2008. Accepted February 06, 2008. scenarios where climate sensitivity is on the high end of what is expected, resulting in unacceptable shifts in land usability and stress to ecosystems. In contrast to conventional carbon capture systems for Previous research has shown that air capture is theoreti- cally feasible in terms of thermodynamic energy require- power plants and other large point sources, the system described ments, land use (2), and local atmospheric transport of CO2 in this paper captures CO2 directly from ambient air.
    [Show full text]
  • Experimental Study on Capture of Carbon Dioxide and Production of Sodium Bicarbonate from Sodium Hydroxide
    Environ. Eng. Res. 2016 Research Article http://dx.doi.org/10.4491/eer.2016.042 pISSN 1226-1025 eISSN 2005-968X In Press, Uncorrected Proof Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide † Jae-Goo Shim , Dong Woog Lee, Ji Hyun Lee, No-Sang Kwak KEPCO Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon, 54056, Korea Abstract Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate (NaHCO3). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of CO2 was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed. This is an Open Access article distributed under the terms Received March 14, 2016 Accepted May 10, 2016 of the Creative Commons Attribution Non-Commercial Li- † cense (http://creativecommons.org/licenses/by-nc/3.0/) Corresponding Author which permits unrestricted non-commercial use, distribution, and repro- E-mail: [email protected] duction in any medium, provided the original work is properly cited.
    [Show full text]
  • Ammonia Solution
    AMMONIA SOLUTION Prepared at the 46th JECFA (1996), published in FNP 52 Add 4 (1996) superseding specifications prepared at the 19 th JECFA (1975), published in NMRS 55B (1976) and in FNP 52 (1992) under the name Ammonium Hydroxide. Metals and arsenic specifications revised at the 59th JECFA (2002) An ADI 'not limited' was established at the 9th JECFA (1965) SYNONYMS Ammonium hydroxide, strong ammonia solution, aqueous ammonia, INS No. 527 DEFINITION Chemical names Ammonia solution C.A.S. number 7664-41-7 (ammonia) 1336-21-6 (aqueous ammonia) Chemical formula NH3 (aqueous) Formula weight 17.03 Assay Not less than 27% and not more than 30% DESCRIPTION Clear, colourless liquid having an exceedingly pungent, characteristic odour. Upon exposure to air it loses ammonia rapidly FUNCTIONAL USES Acidity regulator CHARACTERISTICS IDENTIFICATION Test for ammonia Hold a glass rod, wet with hydrochloric acid, near the sample. Dense white fumes are produced. Specific gravity (Vol. 4) d (25,25): about 0.90 PURITY Non-volatile residue Not more than 0.02% by the following procedure: Evaporate 11 ml (10 g) of the sample in a tared platinum or porcelain dish to dryness, dry at 105o for 1 h, cool and weigh Readily oxidizable Dilute 4 ml of the sample with 6 ml of water, and add a slight excess of dilute substances sulfuric acid TS and 0.1 ml of 0.1N potassium permanganate. The pink colour does not completely disappear within 10 min. Lead Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level.
    [Show full text]
  • Japanese Insecticide
    WAR DEPARTMENT INTELLT nPJKClS JAPANESE TT^CTICIDE 27 MARCH 19h7 5250th TECHNICAL INTELLIGENCE COMPANY WDI DIV, G-2 GHQ FEC AP0 500 31 March 1947 SUBJECT; Report of Investigation - Japanese Insecticide (Supplementary Report) TO : Director, WDI DIV 1. AUTHORITY: G-2 X.O.M., from Director, WDI DIV to 5250th TIC, subject: n Japanese Insecticide", dated 7 February 1947, 2. REFERENCES: a. Letter, War Department General Staff, Intelligence Division, MIT File No, 070, subject: "Japanese Insecticide", dated 24 January 1947 (Control No. MD-610), b. Report of Investigation - Japanese Insecticide, by 5250th 7 Technical Intelligence Company, dated 18 February 194' * This report forwarded all data then available in reply torequest for information from War Department (reference a) and recommended further investigation along indicated lines. 3. DETAILS OF INVESTIGATION: a. Investigators visited the Central Laboratory of the Kanegafuchi Spinning Co., Ltd., Osaka 12 March 1947. Yoshio MIKAMI, Jr* charge of the chemical branch of the company, was interviewedand dis- closed that he had worked for six months with Professor SHISHIDO, Kyoto Imperial University, on research of insecticides, and that the company and SHISHIDO has jointly applied for a oatent on the manufacture of f BHC ! KANEB0 , andinsect powder consisting of 10% benezenc hexachlcride and 90% talc or clay. Copy of Translation of Patent Application received from MIKAMI is inclosed (Incl 1). MIKAMI stated that the comoany had manufactured two tons of the product; one ton, packed in 20 kg. paper
    [Show full text]
  • SODIUM METHOXIDE, 30% in Methanol
    AKS761.5 - SODIUM METHOXIDE, 30% in methanol SODIUM METHOXIDE, 30% in methanol Safety Data Sheet AKS761.5 Date of issue: 10/26/2016 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : SODIUM METHOXIDE, 30% in methanol Product code : AKS761.5 Product form : Mixture Physical state : Liquid Formula : CH3NaO Synonyms : SODIUM METHYLATE METHANOL, SODIUM SALT Chemical family : METAL ALCOHOLATE 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids Category 3 H226 Acute toxicity (oral) Category 3 H301 Acute toxicity (dermal) Category 3 H311 Acute toxicity (inhalation:vapor) Category 3 H331 Skin corrosion/irritation Category 1B H314 Serious eye damage/eye irritation Category 1 H318 Specific target organ toxicity (single exposure) Category 1 H370 Specific target organ toxicity (single exposure) Category 3 H336 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS05 GHS06 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H226 - Flammable liquid and vapor H301+H311+H331 - Toxic if swallowed, in contact with skin or if inhaled H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H336 - May cause drowsiness or dizziness H370 - Causes damage to organs Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P307 + P311 - If exposed: Call a poison center/doctor P210 - Keep away from heat, open flames, sparks.
    [Show full text]
  • 3. Extraction
    © Professor Kathleen V. Kilway and Robert Clevenger, Department of Chemistry, University of Missouri – Kansas City, 2006 3. Extraction J.R. Mohrig, Chapters 11 (extraction) and 12 (drying agents) C.N. Hammond, 113-118 (general introduction) and P.F. Schatz: 120 (acid-base) 115 (partition/distribution coefficient) 122-127 (microscale extraction and general information) 127-132 (density, sources of confusion) 132-137 (drying agents) Vocabulary: Miscible Two or more compounds, which dissolve in one another to form a homogenous solution. Aqueous contains water. Organic non-aqueous (does not contain water), usually hydrophobic. Emulsion No separation of the organic and aqueous layers (usually cloudy). Partition coefficient the same as the distribution coefficient. It is the relationship between the solubility ratios of two different layers for a compound, which is soluble in both solvents. Workup is a generic term used for any step or series of steps performed at the end of a reaction to isolate and/or purify the product. It may include filtration, extraction, and/or chromatography. Background What is extraction? There are several listings for extraction in the American Heritage Dictionary (p. 466) but in its simplest form, extraction is the separation of something from another. There are numerous examples in our everyday lives. Vanilla extract is used in cooking. The essence of perfume is extracted from flowers and plants, for example. For the organic chemist, extraction is part of the normal work up of a reaction. Sometimes, it is referred to an aqueous workup in the text or manuscript. We wash the organic reaction mixture with water (acidic, neutral and/or basic) to remove any byproducts or inorganic material.
    [Show full text]
  • Incompatible Chemical Groups.Pdf
    Incompatible Chemical Hazard Groups (and some common examples) Mineral Acids Do NOT Store with… Hydrochloric acid Hydrogen peroxide Acetone Sulfuric Acid Sodium hydroxide Methanol Phosphoric Acid Calcium hydroxide Nitric Acid (keep separate) Chloroform Acetic Acid Strong Organic Acids Do NOT Store with… Acetic Acid3, 4 Hydrogen peroxide Acetone Acetonitrile Formic Acid Sodium hydroxide Methanol Benzene Sulfuric Acid Chloroform Special 1. Organic acids are varied and may be incompatible with each other. Notes: Check MSDSs for specifics 2. Store nitric acid separately in its own secondary container. It is a strong oxidizer. 3. Store acetic acid away from oxidizing agents — especially nitric acid. 4. Acetic acid may be stored with some inorganic acids and most flammable solvents but keep in a separate secondary container. (>70% acetic acid is combustible). Weak These are typically not corrosive and not strongly reactive and can be Organic Acids stored with general liquid lab chemicals. Examples include butyric, maleic, and benzoic acids. Non-Flammable Do NOT Store with… Chlorinated Solvents Methylene chloride Acetone Hexane Chloroform Methanol Nitric Acid Trichloroethane Ethanol Hydrogen Peroxide Carbon tetrachloride Organic Solvents Do NOT Store with… Acetone Hydrogen peroxide Nitric Acid Methanol Sodium hydroxide Chromic Acid Phenol Calcium hydroxide Sulfuric Acid Xylene Trichlorfluoromethane Hydrochloric Acid Oxidizers Do NOT Store with… Nitric Acid Sodium metal Paper and oily rags Hydrogen peroxide Isopropyl Alcohol Xylene Chromic Acid Acetone Sodium nitrate Perchloric Acid Ethyl ether Bromate salts .
    [Show full text]
  • Sodium Hydride-Based Hydrogen Storage System
    Analysis of the Sodium Hydride-based Hydrogen Storage System being developed by PowerBall Technologies, LLC Prepared for The US Department of Energy Office of Power Technologies Hydrogen Program Prepared by J. Philip DiPietro and Edward G. Skolnik, Energetics, Incorporated October 29, 1999 v Analysis of the Sodium Hydride-Based Hydrogen Storage System being developed by PowerBall Technologies, LLC We considered the viability of a system for storing hydrogen on-board a vehicle in the form of plastic-encapsulated sodium hydride (NaH) pellets. Hydrogen is produced when the pellets are cut and immersed in water. The exposed NaH surface reacts with water, releasing hydrogen and forming sodium hydroxide (NaOH) as a byproduct. Later, in an off-board activity, the hydroxide is recycled to hydride via a multi-step regeneration process that relies on methane as both a fuel and a reactant. This is a preliminary analysis that required the development of conceptual designs for several of the process steps and the need to make several assumptions in order to complete the overall systems analysis. The analysis was peer reviewed by several members of their hydrogen community, and their comments were taken into account in the preparation of this document. Executive Summary The reaction of sodium hydride with water to form hydrogen and sodium hydroxide can be utilized onboard a vehicle to deliver hydrogen to an onboard power system. PowerBall Technologies, LLC has developed a novel means of controlling the reaction: they encapsulate small amounts of sodium hydride in plastic balls. These balls are sliced open one at a time onboard the vehicle to deliver hydrogen as needed.
    [Show full text]
  • Carbon Dioxide Capture Using Sodium Hydroxide Solution: Comparison Between an Absorption Column and a Membrane Contactor
    Carbon dioxide capture using sodium hydroxide solution: comparison between an absorption column and a membrane contactor Dissertation presented by Nicolas CAMBIER for obtaining the master's degree in Chemical and Materials Engineering Supervisor Patricia LUIS ALCONERO Tutor Israel RUIZ SALMON Readers Juray DE WILDE, Joris PROOST Academic year 2016-2017 Acknowledgements Before beginning this report, I would like to address my acknowledgements to the people who helped me throughout the realisation of my master thesis. First of all, nothing would have been possible without the support and advices of my promoter, the professor Patricia Luis. The working environment provided by her team and the meetings along the year were good opportunities to evolve for the best. Secondly, I would like to thank Israel Ruiz Salmon who was a major actor of my work. He always helped me with my numerous questions and uncertainties. Without him, I certainly would not have managed to overcome the numerous challenges encountered during this work. His precious advices and corrections are certainly what helped me to finish this master thesis. For their help with the preparation of solutions and in the lab, I thank Luc Wautier, Frédéric Van Wonterghem, Ronny Santoro and Nadine Deprez. In addition, I would like to express my gratitude to Professors J. De Wilde and J. Proost who have accepted to be the readers of this thesis. List of symbols Symbols Signification Units 푎 Specific area of packing per unit volume of column m2⁄m³ 퐴 Cross sectional area of the column m²
    [Show full text]
  • Glibenclamide (Glibenclamidum)
    The International Pharmacopoeia - Sixth Edition, 2016 Glibenclamide (Glibenclamidum) Glibenclamide (Glibenclamidum) Molecular formula. C H ClN O S 23 28 3 5 Relative molecular mass. 494.0 Graphic formula. Chemical name. 1-[[p-[2-(5-Chloro-o-anisamido)ethyl]phenyl]sulfonyl]-3-cyclohexylurea; 5-chloro-N-[2-[4- [[[(cyclohexylamino)carbonyl]amino]sulfonyl]phenyl]-ethyl]-2-methoxybenzamide; 1-[4-[2-(5-chloro-2-methoxybenzamido)ethyl]- phenylsulfonyl]-3-cyclohexylurea; CAS Reg. No. 10238-21-8. Other name. Glyburide. Description. A white or almost white, crystalline powder; odourless or almost odourless. Solubility. Practically insoluble in water and ether R; slightly soluble in ethanol (~750 g/l) TS and methanol R. Category. Antidiabetic agent. Storage. Glibenclamide should be kept in a well-closed container. Requirements Definition. Glibenclamide contains not less than 98.5% and not more than 101.0% of C23H28ClN3O5S, calculated with reference to the dried substance. Identity tests • Either test A alone or tests B and C may be applied. A. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from glibenclamide RS or with the reference spectrum of glibenclamide. B. The absorption spectrum of a 0.10 mg/mL solution in hydrochloric acid/ methanol (0.01 mol/l) VS, when observed between 230 nm and 350 nm, exhibits a maximum at about 300 nm and a less intense maximum at about 275 nm; the absorbance of a 1-cm layer at 300 nm is about 0.63. C. Melting temperature, about 172 °C. Heavy metals. Use 1.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 3; not more than 20 μg/g.
    [Show full text]
  • Ammonia Removal from Water Using Sodium Hydroxide Modified Zeolite
    Ammonia removal from water using sodium hydroxide modified zeolite mordenite SOETARDJI, Jennifer Pieter, CLAUDIA, Jeannete Cindy, JU, Yi-Hsu, HRILJAC, Joseph A., CHEN, Tzu-Yu, SOETAREDJO, Felycia Edi, SANTOSO, Shella Permatasari, KURNIAWAN, Alfin and ISMADJI, Suryadi Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/21636/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version SOETARDJI, Jennifer Pieter, CLAUDIA, Jeannete Cindy, JU, Yi-Hsu, HRILJAC, Joseph A., CHEN, Tzu-Yu, SOETAREDJO, Felycia Edi, SANTOSO, Shella Permatasari, KURNIAWAN, Alfin and ISMADJI, Suryadi (2015). Ammonia removal from water using sodium hydroxide modified zeolite mordenite. RSC Advances, 5 (102), 83689-83699. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply.
    [Show full text]