(Oxy)Hydroxide Electrocatalysts for Water Oxidation Bryan R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of Magnetism in Transition Metal Chalcogenide Thin Films
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 9-14-2020 Investigation of Magnetism in Transition Metal Chalcogenide Thin Films Michael Adventure Hopkins Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Hopkins, Michael Adventure, "Investigation of Magnetism in Transition Metal Chalcogenide Thin Films" (2020). Dissertations and Theses. Paper 5607. https://doi.org/10.15760/etd.7479 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Investigation of Magnetism in Transition Metal Chalcogenide Thin Films by Michael Adventure Hopkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Raj Solanki, Chair Andrew Rice Shankar Rananavare Dean Atkinson Portland State University 2020 © 2020 Michael Adventure Hopkins ii Abstract Layered two dimensional films have been a topic of interest in the materials science community driven by the intriguing properties demonstrated in graphene. Tunable layer dependent electrical and magnetic properties have been shown in these materials and the ability to grow in the hexagonal phase provides opportunities to grow isostructural stacked heterostructures. In this investigation, cobalt selenide (CoSe) and nickel selenide (NiSe) were grown in the hexagonal phase, which consist of central metal atoms that are natively ferromagnetic in bulk, hence providing the potential for interesting magnetic phases in thin film arrangements as well. -
SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1)
T 4 SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1) BY Y. VUORELAINEN, A. HUHMA AND A. H.A.KLI Outokumpu Co., Finland ABSTRACT Five new nickel selenide minerals from Kuusamo, NE-Finland are described. The minerals occur in veinlets in albitites associated with uranium mineralisation. Sederholmite, which is identical with the synthetic hexagonal fJ-NiSe phase, has a o = 3.62 - 3.65 A and eo = 5.29 - 5.34 A depending upon composition. Wilkmanite corresponds to the artificial monoclinic Ni3Se4 phase. Its a o = 6.22 A, b o = 3.63 A, CO = 10.52 A and fJ = 90.55°. Kullerudite NiSe 2 is an ortho-rhombic nickelian analogue of ferroselite with a o = 4.89 A, b o = 5.96 A and Co = 3.76 A. M:ikinenite, which is the same as the artificial y-NiSe phase, has a trigonal symmetry with a o = 10.01 A and Co = 3.28 A. Triistedtite is a cubic spinel type Ni3Se4 having a o = 9.94 A. It forms a solid solution series with polydymite. Members of this series with 40-70 mole per cent polydymite component have also been found. CONTENTS Page INTRODUCTION 114 GEOLOGY OF THE SELENIUM MINERALISATION AREA 115 OCCURRENCE 116 PHYSICAL AND OPTICAL PROPERTIES 117 CHEMICAL COMPOSITION 117 CRYSTALLOGRAPHY 118 NOMENCLATURE 124 ACKNOWLEDGEMENTS 124 REFERENCES 125 1) Received May 6, 1964. 15 10547-64 114 Bulletin de la Commislsion geologique de Finlande N: 0 215. INTRODUCTION SI n The system nickel-selenium has been studied by various authors. Ac SI cording to the literature the following selenides of nickel are known. -
The Influence of Sodium Hydroxide Concentration on the Phase, Morphology and Agglomeration of Cobalt Oxide Nanoparticles and Application As Fenton Catalyst
Digest Journal of Nanomaterials and Biostructures Vol.14, No.4, October-December 2019, p. 1131-1137 THE INFLUENCE OF SODIUM HYDROXIDE CONCENTRATION ON THE PHASE, MORPHOLOGY AND AGGLOMERATION OF COBALT OXIDE NANOPARTICLES AND APPLICATION AS FENTON CATALYST E. L. VILJOENa,*, P. M. THABEDEa, M. J. MOLOTOa, K. P. MUBIAYIb, B. W. DIKIZAa aDepartment of Chemistry, Vaal University of Technology Private, Bag X021, Vanderbijlpark 1900, South Africa bSchool of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein Johannesburg 2000, South Africa The concentration of NaOH was varied from 0.2 M to 0.7 M during the preparation of the cobalt oxide/cobalt oxide hydroxide nanoparticles by precipitation and air oxidation. Cubic shaped and less well defined Co3O4 nanoparticles formed at 0.2 M NaOH. An increase in the NaOH concentration increased the number of well-defined cubic shaped nanoparticles. Agglomerated CoO(OH) particles with different shapes formed at the highest NaOH concentration. The cubic shaped Co3O4 nanoparticles were subsequently used as catalyst for the Fenton degradation of methylene blue and it was found that the least agglomerated nanoparticles were the most catalytically active. (Received June 25, 2019; Accepted December 6, 2019) Keywords: Cobalt oxide, Nanoparticles, Precipitation, pH, Fenton reaction 1. Introduction Controlling the size and the shape of nanoparticles using simple, inexpensive precipitation methods without sophisticated capping molecules, remains a challenge. Literature has indicated that the concentration of the base (pH) is an important parameter to control the size, shape and phase of metal oxide nanoparticles. Obodo et al.[1] used chemical bath deposition at atmospheric pressure and 70 °C to precipitate Co3O4 crystallites on a glass substrate and they showed that the crystallite sizes were larger at a higher pH of 12 in comparison to when a pH of 10 was used. -
SODIUM HYDROXIDE @Lye, Limewater, Lyewater@
Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: ENVIRONMENTAL TOXICOLOGY SECTION OCTOBER, 1998 SODIUM HYDROXIDE @Lye, limewater, lyewater@ For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information Sodium Hydroxide Page 2 SYNONYMS: Caustic soda, sodium hydrate, soda lye, lye, natrium hydroxide CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: NaOH - White solid, crystals or powder, will draw moisture from the air and become damp on exposure - Odorless, flat, sweetish flavor - Pure solid material or concentrated solutions are extremely caustic, immediately injurious to skin, eyes and respiratory system WHERE DOES IT COME FROM? Sodium hydroxide is extracted from seawater or other brines by industrial processes. WHAT ARE THE PRINCIPLE USES OF SODIUM HYDROXIDE? Sodium hydroxide is an ingredient of many household products used for cleaning and disinfecting, in many cosmetic products such as mouth washes, tooth paste and lotions, and in food and beverage production for adjustment of pH and as a stabilizer. In its concentrated form (lye) it is used as a household drain cleaner because of its ability to dissolve organic solids. It is also used in many industries including glassmaking, paper manufacturing and mining. It is used widely in medications, for regulation of acidity. Sodium hydroxide may be used to counteract acidity in swimming pool water, or in drinking water. IS SODIUM HYDROXIDE NATURALLY PRESENT IN DRINKING WATER? Yes, because sodium and hydroxide ions are common natural mineral substances, they are present in many natural soils, in groundwater, in plants and in animal tissues. -
Carbon Dioxide Capture from Atmospheric Air Using Sodium
Environ. Sci. Technol. 2008, 42, 2728–2735 Carbon Dioxide Capture from Nearly all current research on CCS focuses on capturing CO2 from large, stationary sources such as power plants. Atmospheric Air Using Sodium Such plans usually entail separating CO2 from flue gas, compressing it, and transporting it via pipeline to be Hydroxide Spray sequestered underground. In contrast, the system described in this paper captures CO2 directly from ambient air (“air § capture”). This strategy will be expensive compared to capture JOSHUAH K. STOLAROFF, from point sources, but may nevertheless act as an important DAVID W. KEITH,‡ AND complement, since CO emissions from any sector can be GREGORY V. LOWRY*,† 2 captured, including emissions from diffuse sources such as Chemical and Petroleum Engineering, University of Calgary, aircraft or automobiles, where on-board carbon capture is and Departments of Civil and Environmental Engineering very difficult and the cost of alternatives is high. Additionally, and Engineering and Public Policy, Carnegie Mellon in a future economy with low carbon emissions, air capture University, Pittsburgh, Pennsylvania 15213 might be deployed to generate negative net emissions (1). This ability to reduce atmospheric CO2 concentrations faster Received October 15, 2007. Revised manuscript received than natural cycles allow would be particularly desirable in February 05, 2008. Accepted February 06, 2008. scenarios where climate sensitivity is on the high end of what is expected, resulting in unacceptable shifts in land usability and stress to ecosystems. In contrast to conventional carbon capture systems for Previous research has shown that air capture is theoreti- cally feasible in terms of thermodynamic energy require- power plants and other large point sources, the system described ments, land use (2), and local atmospheric transport of CO2 in this paper captures CO2 directly from ambient air. -
Exposure to Potassium Hydroxide Can Cause Headache, Eye Contact Dizziness, Nausea and Vomiting
Right to Know Hazardous Substance Fact Sheet Common Name: POTASSIUM HYDROXIDE Synonyms: Caustic Potash; Lye; Potassium Hydrate CAS Number: 1310-58-3 Chemical Name: Potassium Hydroxide (KOH) RTK Substance Number: 1571 Date: May 2001 Revision: January 2010 DOT Number: UN 1813 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Potassium Hydroxide is an odorless, white or slightly yellow, Hazard Summary flakey or lumpy solid which is often in a water solution. It is Hazard Rating NJDOH NFPA used in making soap, as an electrolyte in alkaline batteries and HEALTH - 3 in electroplating, lithography, and paint and varnish removers. FLAMMABILITY - 0 Liquid drain cleaners contain 25 to 36% of Potassium REACTIVITY - 1 Hydroxide. CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE DOES NOT BURN Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Potassium Hydroxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by ACGIH, DOT, NIOSH, NFPA and EPA. f Potassium Hydroxide can affect you when inhaled and by f This chemical is on the Special Health Hazard Substance passing through the skin. List. f Potassium Hydroxide is a HIGHLY CORROSIVE CHEMICAL and contact can severely irritate and burn the skin and eyes leading to eye damage. f Contact can irritate the nose and throat. f Inhaling Potassium Hydroxide can irritate the lungs. SEE GLOSSARY ON PAGE 5. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. FIRST AID f Exposure to Potassium Hydroxide can cause headache, Eye Contact dizziness, nausea and vomiting. -
Aluminium Distearate, Aluminium Hydroxide Acetate, Aluminium Phosphate and Aluminium Tristearate
The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/393/98-FINAL April 1998 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS ALUMINIUM DISTEARATE, ALUMINIUM HYDROXIDE ACETATE, ALUMINIUM PHOSPHATE AND ALUMINIUM TRISTEARATE SUMMARY REPORT 1. Aluminium is an ubiquitous element in the environment. It is present in varying concentrations in living organisms and in foods. Aluminium compounds are widely used in veterinary and human medicine. Other uses are as an analytical reagent, food additives (e.g. sodium aluminium phosphate as anticaking agent) and in cosmetic preparations (aluminium chloride). Aluminium distearate is used for thickening lubricating oils. Aluminium hydroxide acetate and phosphate are antacids with common indications in veterinary medicine: gastric hyperacidity, peptic ulcer, gastritis and reflux esophagitis. A major use of antacids in veterinary medicine is in treatment and prevention of ruminal acidosis from grain overload, adsorbent and antidiarrheal. The dosage of aluminium hydroxide is 30 g/animal in cattle and 2 g/animal in calves and foals. Gel preparations contain approximately 4% aluminium hydroxide. Aluminium potassium sulphate is used topically as a antiseptic, astringent (i.e. washes, powders, and ‘leg tighteners’ for horses (30 to 60 g/animal) and antimycotic (1% solution for dipping or spraying sheeps with dermatophilus mycotic dermatitis). In cattle it is occasionally used for stomatitis and vaginal and intrauterine therapy at doses of 30 to 500 g/animal. In human medicine, aluminium hydroxide-based preparations have a widespread use in gastroenterology as antacids (doses of about 1 g/person orally) and as phosphate binders (doses of about 0.8 g/person orally) in patients an impairment of renal function. -
Synthesis of Metal Selenide Semiconductor Nanocrystals Using Selenium Dioxide As Precursor
SYNTHESIS OF METAL SELENIDE SEMICONDUCTOR NANOCRYSTALS USING SELENIUM DIOXIDE AS PRECURSOR By XIAN CHEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Xian Chen 2 To my parents 3 ACKNOWLEDGMENTS Above all, I would like to thank my parents for what they have done for me through these years. I would not have been able to get to where I am today without their love and support. I would like to thank my advisor, Dr. Charles Cao, for his advice on my research and life and for the valuable help during my difficult times. I also would like to thank Dr. Yongan Yang for his kindness and helpful discussion. I learned experiment techniques, knowledge, how to do research and so on from him. I also appreciate the help and friendship that the whole Cao group gave me. Finally, I would like to express my gratitude to Dr. Ben Smith for his guidance and help. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................9 CHAPTER 1 SEMICONDUCTOR NANOCRYSTALS ............................................................................11 1.1 Introduction..................................................................................................................11 -
Safety Assessment of Ammonia and Ammonium Hydroxide As Used in Cosmetics
Safety Assessment of Ammonia and Ammonium Hydroxide as Used in Cosmetics Status: Final Report Release Date: February 15, 2018 Panel Date: December 4-5, 2017 . The 2017 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] ABSTRACT: The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of Ammonia and Ammonium Hydroxide, which function as pH adjusters in cosmetic products. Ammonium Hydroxide is also reported to function as a denaturant. The Panel reviewed data relevant to the safety of these ingredients and concluded that Ammonia and Ammonium Hydroxide are safe as used in hair dyes and colors and safe in cosmetics applied directly to the skin in the present practices of use and concentration described in the safety assessment, when formulated to be non-irritating. INTRODUCTION The safety of Ammonia and Ammonium Hydroxide in cosmetics is reviewed in this Cosmetic Ingredient Review (CIR) safety assessment. According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI Dictionary), both ingredients are reported to function as pH adjusters in cosmetic products.1 Additionally, Ammonia is reported to function as an external analgesic and fragrance ingredient, and Ammonium Hydroxide is reported to function as a denaturant in cosmetic products. -
Temperature Dependent Etching of (100) and (110) Silicon in Naoh and in Tetramethyl-Ammonium Hydroxide
Sensors and Materials, Vol. 14, No. 8 (2002) 415-428 MYUTokyo S&M0501 Temperature Dependent Etching of (100) and (110) Silicon in NaOH and in Tetramethyl-Ammonium Hydroxide Vladimir F. Kleptsyn and Johannes G. Smits Department of Electrical and Computer Engineering College of Engineering, Boston University 8 Saint Mary's Street, Boston MA 02215, U.S.A. (Received February2, 2002: accepted December 4, 2002) Key words: silicon, wet etching, sodium hydroxide, tetramethyl ammonium hydroxide The etch rates for single crystal silicon wafers in NaOH and tetramethyl-ammonium ° hydroxide (TMAH) have been measured in the temperature range from 28 C to 80 °C and activation energies of about 0.68 and 0.57 eV for NaOH and TMAH respectively for the (100) plane are observed. A qualitative model of the etching of silicon planes in NaOH and TMAH is presented. 1. Introduction Orientation dependent etching of silicon has been studied in the past using aqueous solutions of alkali hydroxides. It is a very useful technique to fabricate microstructures in silicon. WeirauchC 1l studied anisotropic etching of single crystal silicon spheres and wafers using 10 M KOH as the etchant. The etch rates along several vector directions were measured and the slowest etching planes were foundusing a single crystal sphere. Using these data, a method was developed to predict the angles of inclination for surfaces of different orientations. The angles of inclination correlated well with the data collected from etching a single crystal sphere. Kendall et al. c2i proposed the new wagon wheel method to measure anisotropic etching. So far several studies have been carried out to understand the mechanism of etching and, based on the experimental data obtained, several 3 models for etching have been proposed. -
Metal Chalcogenides Syntheses Using Reactions of Ionic Liquids
Metal chalcogenides syntheses using reactions of ionic liquids Dissertation zur Erlangung des akademischen Grades Doctor rerum naturaluim (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Eng. Tao Zhang geboren am 12. April 1989 in Shandong (China) Eingereicht am 29. März 2018 Die Dissertation wurde in der Zeit von Oktober 2014 bis März 2018 an der Professur für Anorganische Chemie II angefertigt. Gutachter: Prof. Dr. Michael Ruck (TU Dresden) Prof. Dr. Claus Feldmann (KIT) Tag der Verteidigung: 30. Mai 2018 Contents 1. Background and motivation ................................................................ 1 1.1. Properties of ILs and DESs ................................................................. 3 1.2. Reactions of ionic liquids and deep eutectic solvents ............................ 5 1.2.1 Reactions of metal-containing ionic liquids ...................................... 5 1.2.2. Reactions of fluorine-containing ionic liquids ................................... 6 1.2.3. Reactions of hydroxide-based ionic liquids ...................................... 7 1.2.4. Reactions of chalcogen-containing ionic liquids ............................... 8 1.2.5. Reactions of deep eutectic solvents ............................................. 10 1.3. Motivation ...................................................................................... 12 1.4. References ..................................................................................... 13 2. Solvothermal synthesis -
Chemical Engineering Vocabulary
Chemical Engineering Vocabulary Maximilian Lackner Download free books at MAXIMILIAN LACKNER CHEMICAL ENGINEERING VOCABULARY Download free eBooks at bookboon.com 2 Chemical Engineering Vocabulary 1st edition © 2016 Maximilian Lackner & bookboon.com ISBN 978-87-403-1427-4 Download free eBooks at bookboon.com 3 CHEMICAL ENGINEERING VOCABULARY a.u. (sci.) Acronym/Abbreviation referral: see arbitrary units A/P (econ.) Acronym/Abbreviation referral: see accounts payable A/R (econ.) Acronym/Abbreviation referral: see accounts receivable abrasive (eng.) Calcium carbonate can be used as abrasive, for example as “polishing agent” in toothpaste. absorbance (chem.) In contrast to absorption, the absorbance A is directly proportional to the concentration of the absorbing species. A is calculated as ln (l0/l) with l0 being the initial and l the transmitted light intensity, respectively. absorption (chem.) The absorption of light is often called attenuation and must not be mixed up with adsorption, an effect at the surface of a solid or liquid. Absorption of liquids and gases means that they diffuse into a liquid or solid. abstract (sci.) An abstract is a summary of a scientific piece of work. AC (eng.) Acronym/Abbreviation referral: see alternating current academic (sci.) The Royal Society, which was founded in 1660, was the first academic society. acceleration (eng.) In SI units, acceleration is measured in meters/second Download free eBooks at bookboon.com 4 CHEMICAL ENGINEERING VOCABULARY accompanying element (chem.) After precipitation, the thallium had to be separated from the accompanying elements. TI (atomic number 81) is highly toxic and can be found in rat poisons and insecticides. accounting (econ.) Working in accounting requires paying attention to details.