Electrodeposited Transition Metal Oxide and Selenide Thin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of Magnetism in Transition Metal Chalcogenide Thin Films
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 9-14-2020 Investigation of Magnetism in Transition Metal Chalcogenide Thin Films Michael Adventure Hopkins Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Hopkins, Michael Adventure, "Investigation of Magnetism in Transition Metal Chalcogenide Thin Films" (2020). Dissertations and Theses. Paper 5607. https://doi.org/10.15760/etd.7479 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Investigation of Magnetism in Transition Metal Chalcogenide Thin Films by Michael Adventure Hopkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Raj Solanki, Chair Andrew Rice Shankar Rananavare Dean Atkinson Portland State University 2020 © 2020 Michael Adventure Hopkins ii Abstract Layered two dimensional films have been a topic of interest in the materials science community driven by the intriguing properties demonstrated in graphene. Tunable layer dependent electrical and magnetic properties have been shown in these materials and the ability to grow in the hexagonal phase provides opportunities to grow isostructural stacked heterostructures. In this investigation, cobalt selenide (CoSe) and nickel selenide (NiSe) were grown in the hexagonal phase, which consist of central metal atoms that are natively ferromagnetic in bulk, hence providing the potential for interesting magnetic phases in thin film arrangements as well. -
SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1)
T 4 SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1) BY Y. VUORELAINEN, A. HUHMA AND A. H.A.KLI Outokumpu Co., Finland ABSTRACT Five new nickel selenide minerals from Kuusamo, NE-Finland are described. The minerals occur in veinlets in albitites associated with uranium mineralisation. Sederholmite, which is identical with the synthetic hexagonal fJ-NiSe phase, has a o = 3.62 - 3.65 A and eo = 5.29 - 5.34 A depending upon composition. Wilkmanite corresponds to the artificial monoclinic Ni3Se4 phase. Its a o = 6.22 A, b o = 3.63 A, CO = 10.52 A and fJ = 90.55°. Kullerudite NiSe 2 is an ortho-rhombic nickelian analogue of ferroselite with a o = 4.89 A, b o = 5.96 A and Co = 3.76 A. M:ikinenite, which is the same as the artificial y-NiSe phase, has a trigonal symmetry with a o = 10.01 A and Co = 3.28 A. Triistedtite is a cubic spinel type Ni3Se4 having a o = 9.94 A. It forms a solid solution series with polydymite. Members of this series with 40-70 mole per cent polydymite component have also been found. CONTENTS Page INTRODUCTION 114 GEOLOGY OF THE SELENIUM MINERALISATION AREA 115 OCCURRENCE 116 PHYSICAL AND OPTICAL PROPERTIES 117 CHEMICAL COMPOSITION 117 CRYSTALLOGRAPHY 118 NOMENCLATURE 124 ACKNOWLEDGEMENTS 124 REFERENCES 125 1) Received May 6, 1964. 15 10547-64 114 Bulletin de la Commislsion geologique de Finlande N: 0 215. INTRODUCTION SI n The system nickel-selenium has been studied by various authors. Ac SI cording to the literature the following selenides of nickel are known. -
(Oxy)Hydroxide Electrocatalysts for Water Oxidation Bryan R
www.acsami.org Research Article Effect of Selenium Content on Nickel Sulfoselenide-Derived Nickel (Oxy)hydroxide Electrocatalysts for Water Oxidation Bryan R. Wygant, Anna H. Poterek, James N. Burrow, and C. Buddie Mullins* Cite This: ACS Appl. Mater. Interfaces 2020, 12, 20366−20375 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An efficient and inexpensive electrocatalyst for the oxygen evolution reaction (OER) must be found in order to improve the viability of hydrogen fuel production via water electrolysis. Recent work has indicated that nickel chalcogenide materials show promise as electrocatalysts for this reaction and that their performance can be further enhanced with the generation of ternary, bimetallic chalcogenides (i.e., Ni1−aMaX2); however, relatively few studies have investigated ternary chalcogenides created through the addition of a second chalcogen (i.e., NiX2−aYa). To address this, we fi studied a series of Se-modi ed Ni3S2 composites for use as OER electrocatalysts in alkaline solution. We found that the addition of Se results in the creation of Ni3S2/NiSe composites composed of cross-doped metal chalcogenides and show that the addition of 10% Se reduces the overpotential required to reach a current density of 10 mA/cm2 by 40 mV versus a pure nickel sulfide material. Chemical analysis of the composites’ surfaces shows a reduction in the amount of nickel oxide species with Se incorporation, which is supported by transmission electron microscopy; this reduction is correlated with a decrease in the OER overpotentials measured for these samples. Together, our results suggest that the incorporation of Se into Ni3S2 creates a more conductive material with a less-oxidized surface that is more electrocatalytically active and resistant to further oxidation. -
The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors
University of Calgary PRISM: University of Calgary's Digital Repository Science Science Research & Publications 1997 The role and utilization of pseudocapacitance for energy storage by supercapacitors Birss, Viola I.; Conway, B. E.; Wojtowicz, J. Elsevier Conway. B. E., Birss, V. I. and Wojtowicz, J. (1997). "The role and utilization of pseudocapacitance for energy storage by supercapacitors." Journal of Power Sources, Vol. 66, Nos. 1-2: 1-14. http://hdl.handle.net/1880/44956 journal article Downloaded from PRISM: https://prism.ucalgary.ca POWER ELSEVIER Journal of Power Sources 66 (1997) 1-14 The role and utilization of pseudocapacitance for energy storage by supercapacitors B.E. Conway, V. Birss l, J. Wojtowicz 2 Chemistry Department, University of Ottawa, Ottawa, Ont., KIN 6N5, Canada Abstract The principle of utilizing the non-Faradaic double-layer capacitance of electrode interfaces as a means of storinc electrical energy was suggested and utilized in technologies initiated some 37 years ago. However, only over the last ten years has major interest been manifested in commercial development of this possibility in so-called 'supercapacitors' or 'ultracapacitors' based on the large double-layer capacitance achievable at high-area, carbon powder electrodes. In parallel with the utilization of double-layer capacitance is the possibility of use of the large pseudocapacitance that is associated with e.g. electrosorption of H or metal adatoms (underpotential deposition) and especially some redox processes. Such pseudocapacitance arises when, -
Synthesis of Metal Selenide Semiconductor Nanocrystals Using Selenium Dioxide As Precursor
SYNTHESIS OF METAL SELENIDE SEMICONDUCTOR NANOCRYSTALS USING SELENIUM DIOXIDE AS PRECURSOR By XIAN CHEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Xian Chen 2 To my parents 3 ACKNOWLEDGMENTS Above all, I would like to thank my parents for what they have done for me through these years. I would not have been able to get to where I am today without their love and support. I would like to thank my advisor, Dr. Charles Cao, for his advice on my research and life and for the valuable help during my difficult times. I also would like to thank Dr. Yongan Yang for his kindness and helpful discussion. I learned experiment techniques, knowledge, how to do research and so on from him. I also appreciate the help and friendship that the whole Cao group gave me. Finally, I would like to express my gratitude to Dr. Ben Smith for his guidance and help. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................9 CHAPTER 1 SEMICONDUCTOR NANOCRYSTALS ............................................................................11 1.1 Introduction..................................................................................................................11 -
Recent Studies on Supercapacitors with Next-Generation Structures
micromachines Review Recent Studies on Supercapacitors with Next-Generation Structures Juho Sung and Changhwan Shin * Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-290-7694 Received: 27 November 2020; Accepted: 16 December 2020; Published: 18 December 2020 Abstract: Supercapacitors have shown great potential as a possible solution to the increasing global demand for next-generation energy storage systems. Charge repositioning is based on physical or chemical mechanisms. There are three types of supercapacitors—the electrochemical double layer, the pseudocapacitor, and a hybrid of both. Each type is further subdivided according to the material used. Herein, a detailed overview of the working mechanism as well as a new method for capacitance enhancement are presented. Keywords: supercapacitor; electrical double layer capacitor; EDLC; negative capacitance; energy storage system; pseudocapacitor; micropores; nanopores; ultracapacitor; Helmholtz model 1. Introduction The Fourth Industrial Revolution, which facilitates the emergence of a hyper-connected society, is the basis for data processing between people and things as well as things and things. The essence anchored in a host of electronic devices highlights the energy consumption problem to address the ever-increasing energy demand. However, the challenge confronted (based on expenditure) is proving hard to overcome. Self-powered devices are mostly based on lithium-ion batteries, which were proposed three decades ago. They demonstrate superior properties as compared to energy storage systems (ESSs) based on other materials with the highest energy storage capacity; however, the world no longer refers to them as “perfect batteries”. Moreover, the progress of battery technology would be considered as a stumbling block to the development of electrically powered industry in some parts of the world. -
JES2016-Transport Pseudocaps Galvanostatic.Pdf
Journal of The Electrochemical Society, 163 (2) A229-A243 (2016) A229 Electrochemical Transport Phenomena in Hybrid Pseudocapacitors under Galvanostatic Cycling Anna L. d’Entremont, Henri-Louis Girard, Hainan Wang, and Laurent Pilon∗,z Henry Samueli School of Engineering and Applied Science, Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, California 90095, USA This study aims to provide insights into the electrochemical transport and interfacial phenomena in hybrid pseudocapacitors under galvanostatic cycling. Pseudocapacitors are promising electrical energy storage devices for applications requiring large power density. They also involve complex, coupled, and multiscale physical phenomena that are difficult to probe experimentally. The present study performed detailed numerical simulations for a hybrid pseudocapacitor with planar electrodes and binary, asymmetric electrolyte under various cycling conditions, based on a first-principles continuum model accounting simultaneously for charge storage by electric double layer (EDL) formation and by faradaic reactions with intercalation. Two asymptotic regimes were identified corresponding to (i) dominant faradaic charge storage at low current and low frequency or (ii) dominant EDL charge storage at high current and high frequency. Analytical expressions for the intercalated ion concentration and surface overpotential were derived for both asymptotic regimes. Features of typical experimentally measured cell potential were physically interpreted. These insights could guide the optimization of hybrid pseudocapacitors. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. -
Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage
Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 13900 To link to this article : DOI:10.1039/c3ee44164d URL : http://dx.doi.org/10.1039/c3ee44164d To cite this version: Augustyn, Veronica and Simon, Patrice and Dunn, Bruce Pseudocapacitive oxide materials for high-rate electrochemical energy storage. (2014) Energy & Environmental Science, vol. 7 (n° 5). pp. 1597-1614. ISSN 1754-5692 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Pseudocapacitive oxide materials for high-rate electrochemical energy storage Veronica Augustyn,†a Patrice Simonbc and Bruce Dunn*a Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in DOI: 10.1039/c3ee44164d aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end. Broader context The importance of electrical energy storage will continue to grow as markets for consumer electronics and electrication of transportation expand and energy storage systems for renewable energy sources begin to emerge. -
Preparation and Characterization of a Pseudocapacitor Electrode By
Available online at www.sciencedirect.com View metadata, citation and similar papers at core.ac.uk brought to you by CORE ScienceDirect provided by Elsevier - Publisher Connector Journal of Taibah University for Science 10 (2016) 281–285 Preparation and characterization of a pseudocapacitor electrode by spraying a conducting polymer onto a flexible substrate a b,∗ a b Shaker A. Ebrahim , Mohamed E. Harb , Moataz M. Soliman , Mazhar B. Tayel a Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Egypt b Department of Electrical Engineering, Faculty of Engineering, Alexandria University, P.O. Box 21544, Egypt Received 31 March 2015; received in revised form 9 June 2015; accepted 9 July 2015 Available online 31 August 2015 Abstract In this paper, polyaniline is deposited using a spraying technique onto a flexible current collector for pseudocapacitor applications. The polyaniline is characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and optical absorption studies. The energy density of a pseudocapacitor is higher than that of double-layer supercapacitors due to Faradaic reactions. A high specific capacitance of 594.92 F/g is obtained at a scan rate of 5 mV/s with a scanning potential window of (−0.8 to 0.8 V). The results show an increase in the energy density of 82.63 W h/kg at a potential difference of 1 V using a 4 M potassium hydroxide aqueous electrolyte. © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Energy Storage: EDLC & Pseudo – Capacitors
Energy storage: EDLC & Pseudo – Capacitors Doron Aurbach Department of chemistry, Bar Ilan University Ramat-Gan 52900 Israel Email: [email protected] Energy is found everywhere we just need to harvest and store it We lack good storage technologies Supercapacitors can be used for load leveling applications We want to move ASAP to sustainable energy overview Material design Aqueous SC High voltage SC PsC Summery SuprecapacitorsBatteries are evaluated (EDLC) in fill terms the Energy of energy Vs. Power gap betweenand power batteries densities and capacitors 105 capacitor 1 s 1 min ECs (2008) ) ) 1 1 - - 104 Wkg Wkg Comm. Li-ion 5V. Li-ion 1h 103 Ni/MH Ni/Cd Primary Li 102 Specific Power ( Specific Power Specific Power ( Specific Power 10 Lead acid 1 10-2 10-1 1 10 102 103 Specific energy (Whkg-1) A typical Ragone plot, of common Faradaic electrochemical energy storage cells (time constants in red) overview Material design Aqueous SC High voltage SC PsC Summery What is Capacitor? • A capacitor (originally known as condenser) is a passive two- terminal electrical component used to store energy in an electric field. • When there is a potential difference across the conductors, a static electric field develops across the dielectric, causing positive charge to collect on one plate and negative charge to accumulate on the other plate. Energy is formed in terms of electrostatic field. overview Material design Aqueous SC High voltage SC PsC Summery What is Supercapacitor? Supercapacitor (SC) also known as electric double-layer capacitor (EDLC) or Ultracapacitor, is electrochemical capacitor. The capacitance value of an electrochemical capacitor is determined by two storage principles, which both contribute indivisibly to the total capacitance: • Double layer capacitor – Electrostatic storage achieved by separation of charge in a Helmholtz double layer at the interface between the surface of a conductive electrode and an electrolyte. -
Electrodeposition of Nickel Cobalt Oxide for the Application of Asymmetric Flexible Microsupercapacitor
Electrodeposition of Nickel Cobalt Oxide for the Application of Asymmetric Flexible Microsupercapacitor A Thesis Submitted towards Partial Fulfilment of BS-MS Dual Degree Program By Kaustubh Tarmale Reg. No. 20121068 Under the guidance of Prof. Satishchandra B. Ogale Department of Physics and Chair for Centre of Energy Science IISER Pune, India To Department of Chemistry Indian Institute of Science Education and Research (IISER) Pune 1 Acknowledgement I like to express my heartfelt gratitude and special appreciation to my supervisor, Prof. Satishchandra B. Ogale, for providing me the opportunity to work on my Master’s thesis. His highly enthusiastic and positive nature, patience, scientific advice, cooperation, immense knowledge is the key for successful completion of my thesis work in available time frame. By giving excellent environment, freedom which every researcher earnestly desires has not only helped me during the time of master thesis but also developed my thinking ability to become an independent thinker. I like to express my deep gratitude to my TAC member Dr. M. Musthafa who has supported me during the course of my master thesis by periodic discussions and motivation which has helped me a lot to complete the task. I would also like to express my deep gratitude and special thanks to Dr. Aniruddha Basu, Yogesh Gawali for their kind support and guidance during the course of my work. I also like to convey my thanks to all my lab mates Dr. Pradeep, Dr. Dhanya, Dr. Abhik, Dr. Rounak, Dr. Anil, Dr. Satish, Dr. Monika, Umesh, Rahul,Vishal, Roma, Kingshuk, Rajesh, Mukta, Dr. Supriya, Dr. Neelima, Poonam, Swati, Srashti, Harshita, Divya, Dr. -
Metal Chalcogenides Syntheses Using Reactions of Ionic Liquids
Metal chalcogenides syntheses using reactions of ionic liquids Dissertation zur Erlangung des akademischen Grades Doctor rerum naturaluim (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Eng. Tao Zhang geboren am 12. April 1989 in Shandong (China) Eingereicht am 29. März 2018 Die Dissertation wurde in der Zeit von Oktober 2014 bis März 2018 an der Professur für Anorganische Chemie II angefertigt. Gutachter: Prof. Dr. Michael Ruck (TU Dresden) Prof. Dr. Claus Feldmann (KIT) Tag der Verteidigung: 30. Mai 2018 Contents 1. Background and motivation ................................................................ 1 1.1. Properties of ILs and DESs ................................................................. 3 1.2. Reactions of ionic liquids and deep eutectic solvents ............................ 5 1.2.1 Reactions of metal-containing ionic liquids ...................................... 5 1.2.2. Reactions of fluorine-containing ionic liquids ................................... 6 1.2.3. Reactions of hydroxide-based ionic liquids ...................................... 7 1.2.4. Reactions of chalcogen-containing ionic liquids ............................... 8 1.2.5. Reactions of deep eutectic solvents ............................................. 10 1.3. Motivation ...................................................................................... 12 1.4. References ..................................................................................... 13 2. Solvothermal synthesis