Metal Chalcogenides Syntheses Using Reactions of Ionic Liquids

Total Page:16

File Type:pdf, Size:1020Kb

Metal Chalcogenides Syntheses Using Reactions of Ionic Liquids Metal chalcogenides syntheses using reactions of ionic liquids Dissertation zur Erlangung des akademischen Grades Doctor rerum naturaluim (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Eng. Tao Zhang geboren am 12. April 1989 in Shandong (China) Eingereicht am 29. März 2018 Die Dissertation wurde in der Zeit von Oktober 2014 bis März 2018 an der Professur für Anorganische Chemie II angefertigt. Gutachter: Prof. Dr. Michael Ruck (TU Dresden) Prof. Dr. Claus Feldmann (KIT) Tag der Verteidigung: 30. Mai 2018 Contents 1. Background and motivation ................................................................ 1 1.1. Properties of ILs and DESs ................................................................. 3 1.2. Reactions of ionic liquids and deep eutectic solvents ............................ 5 1.2.1 Reactions of metal-containing ionic liquids ...................................... 5 1.2.2. Reactions of fluorine-containing ionic liquids ................................... 6 1.2.3. Reactions of hydroxide-based ionic liquids ...................................... 7 1.2.4. Reactions of chalcogen-containing ionic liquids ............................... 8 1.2.5. Reactions of deep eutectic solvents ............................................. 10 1.3. Motivation ...................................................................................... 12 1.4. References ..................................................................................... 13 2. Solvothermal synthesis and enhanced photoelectrochemical perfor- mance of hierarchically structured strontium titanate particles ........ 21 2.1. Background .................................................................................... 23 2.2. Experimental section ....................................................................... 24 2.2.1. Chemicals ................................................................................ 24 2.2.2. Preparation of SrTiO3 ................................................................. 24 2.2.3. Characterization of SrTiO3 .......................................................... 25 2.2.4. Photo-electrochemical measurement ........................................... 25 2.3. Results and discussion ..................................................................... 26 2.3.1. Structural characterization of SrTiO3 particles ............................... 26 2.3.2. Growth mechanism of SrTiO3 particles ......................................... 27 2.3.3. Nitrogen physisorption of SrTiO3 particles ..................................... 34 2.3.4. Optical and photoelectrochemical properties of SrTiO3 particles ....... 35 2.4. Conclusions .................................................................................... 37 2.5. References ..................................................................................... 37 3. Synthesis of metal sulfides from a deep eutectic solvent precursor .. 43 3.1. Background .................................................................................... 45 3.2. Experimental section ....................................................................... 45 3.2.1. Chemicals ................................................................................ 45 Metal chalcogenides syntheses using reactions of ionic liquids 3.2.2. Synthesis of the DESs ................................................................ 46 3.2.3. Synthesis of metal sulfides ......................................................... 46 3.2.4. Materials’ characterization .......................................................... 46 3.3. Results and discussion ..................................................................... 47 3.3.1. Structural and morphological analysis of metal sulfides .................. 47 3.3.2. Influence of the DESP composition .............................................. 55 3.3.3. Comparison with DES synthesis at ambient pressure ..................... 56 3.3.4. Mechanism of formation of final products ..................................... 58 3.4. Conclusions .................................................................................... 60 3.5. References ..................................................................................... 60 4. Dissolution behavior and activation of selenium in phosphonium based ionic liquids ............................................................................. 65 4.1. Background .................................................................................... 67 4.2. Experimental section ....................................................................... 68 4.2.1. Chemicals ................................................................................ 68 4.2.2. Dissolution of Se in [P6 6 6 14]Cl .................................................... 68 4.2.3. Dissolution of Se in [P6 6 6 14][decanoate] ...................................... 69 4.2.4. Dissolution of Se in [P4 4 4 4]Cl ..................................................... 69 4.2.5. Preparation of trioctylphosphane selenide solution......................... 69 4.2.6. Synthesis of nickel diselenides .................................................... 69 4.2.7. Synthesis of zinc diselenides ....................................................... 70 4.3. Results and discussion ..................................................................... 70 4.3.1. Dissolution tests of selenium in phosphonium ionic liquids .............. 70 4.3.2. Synthesis of metal selenides in phosphonium ionic liquids .............. 74 4.4. Conclusions .................................................................................... 77 4.5. References ..................................................................................... 77 5. Dissolution behavior of tellurium in phosphonium based ionic liquids for syntheses of tellurium and tellurides nanostructures .................. 81 5.1. Background .................................................................................... 83 5.2. Experimental section ....................................................................... 84 5.2.1. Chemicals ................................................................................ 84 5.2.2. Dissolution of tellurium in [P6 6 6 14]Cl ........................................... 84 5.2.3. Dissolution of tellurium in [P6 6 6 14][N(CN)2] .................................. 85 5.2.4. Dissolution of tellurium in [P6 6 6 14][decanoate] ............................. 85 5.2.5. Dissolution of tellurium in [P4 4 4 4][decanoate] .............................. 85 5.2.6. Synthesis of Bi2Te3 in [P6 6 6 14]Cl ................................................. 86 Contents 5.2.7. Synthesis of Bi-decanoate and Bi2Te3 in [P6 6 6 14][decanoate] .......... 86 5.2.8. Synthesis of Ag2Te in [P6 6 6 14][N(CN)2] ........................................ 87 5.2.9. Materials characterization........................................................... 87 5.3. Results and discussion ..................................................................... 87 5.3.1. Dissolution tests in phosphonium based ionic liquids ...................... 88 5.3.2. Synthesis of Bi2Te3 and Ag2Te from phosphonium ionic liquids ........ 99 5.4. Conclusions .................................................................................. 102 5.5. References ................................................................................... 103 6. Conclusions and perspectives ......................................................... 107 Abbreviations ...................................................................................... 111 List of Publications .............................................................................. 113 Acknowledgements ............................................................................. 115 Collaborations ..................................................................................... 117 Versicherung ....................................................................................... 119 Erklärung ............................................................................................ 119 Metal chalcogenides syntheses using reactions of ionic liquids Chapter 1 Background and motivation 1 Metal chalcogenides syntheses using reactions of ionic liquids 2 Background and motivation Conventional inorganic materials synthesis following the high temperature solid- state reaction route is quite time- and energy-consuming. The low temperature synthesis relies heavily on water and traditional organic solvents. Alternatively, the fabrication of inorganic materials using, or in presence of, ionic liquids or deep eutectic solvents provides a promising direction in materials chemistry. Ionic liquids and deep eutectic solvents offer many unique properties and therefore provide great opportunities to discover new compounds or new phases which are not accessible in conventional organic or aqueous solvents or with a solid-state method.[1-3] 1.1. Properties of ionic liquids and deep eutectic solvents Figure 1.1. Popular cations and anions of ionic liquids. Ionic liquids (ILs), first reported by Walden in 1914,[4] are nowadays a large and widely explored class of ionic compounds that melt below 100 °C.[5] Figure 1.1 presents a few popularly used cations and anions of ILs. Although the use of ILs for organic chemistry has widely and extensively studied since the 1980s, their application in inorganic materials synthesis just began in the early
Recommended publications
  • Investigation of Magnetism in Transition Metal Chalcogenide Thin Films
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 9-14-2020 Investigation of Magnetism in Transition Metal Chalcogenide Thin Films Michael Adventure Hopkins Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Hopkins, Michael Adventure, "Investigation of Magnetism in Transition Metal Chalcogenide Thin Films" (2020). Dissertations and Theses. Paper 5607. https://doi.org/10.15760/etd.7479 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Investigation of Magnetism in Transition Metal Chalcogenide Thin Films by Michael Adventure Hopkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Raj Solanki, Chair Andrew Rice Shankar Rananavare Dean Atkinson Portland State University 2020 © 2020 Michael Adventure Hopkins ii Abstract Layered two dimensional films have been a topic of interest in the materials science community driven by the intriguing properties demonstrated in graphene. Tunable layer dependent electrical and magnetic properties have been shown in these materials and the ability to grow in the hexagonal phase provides opportunities to grow isostructural stacked heterostructures. In this investigation, cobalt selenide (CoSe) and nickel selenide (NiSe) were grown in the hexagonal phase, which consist of central metal atoms that are natively ferromagnetic in bulk, hence providing the potential for interesting magnetic phases in thin film arrangements as well.
    [Show full text]
  • SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1)
    T 4 SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1) BY Y. VUORELAINEN, A. HUHMA AND A. H.A.KLI Outokumpu Co., Finland ABSTRACT Five new nickel selenide minerals from Kuusamo, NE-Finland are described. The minerals occur in veinlets in albitites associated with uranium mineralisation. Sederholmite, which is identical with the synthetic hexagonal fJ-NiSe phase, has a o = 3.62 - 3.65 A and eo = 5.29 - 5.34 A depending upon composition. Wilkmanite corresponds to the artificial monoclinic Ni3Se4 phase. Its a o = 6.22 A, b o = 3.63 A, CO = 10.52 A and fJ = 90.55°. Kullerudite NiSe 2 is an ortho-rhombic nickelian analogue of ferroselite with a o = 4.89 A, b o = 5.96 A and Co = 3.76 A. M:ikinenite, which is the same as the artificial y-NiSe phase, has a trigonal symmetry with a o = 10.01 A and Co = 3.28 A. Triistedtite is a cubic spinel type Ni3Se4 having a o = 9.94 A. It forms a solid solution series with polydymite. Members of this series with 40-70 mole per cent polydymite component have also been found. CONTENTS Page INTRODUCTION 114 GEOLOGY OF THE SELENIUM MINERALISATION AREA 115 OCCURRENCE 116 PHYSICAL AND OPTICAL PROPERTIES 117 CHEMICAL COMPOSITION 117 CRYSTALLOGRAPHY 118 NOMENCLATURE 124 ACKNOWLEDGEMENTS 124 REFERENCES 125 1) Received May 6, 1964. 15 10547-64 114 Bulletin de la Commislsion geologique de Finlande N: 0 215. INTRODUCTION SI n The system nickel-selenium has been studied by various authors. Ac­ SI cording to the literature the following selenides of nickel are known.
    [Show full text]
  • (Oxy)Hydroxide Electrocatalysts for Water Oxidation Bryan R
    www.acsami.org Research Article Effect of Selenium Content on Nickel Sulfoselenide-Derived Nickel (Oxy)hydroxide Electrocatalysts for Water Oxidation Bryan R. Wygant, Anna H. Poterek, James N. Burrow, and C. Buddie Mullins* Cite This: ACS Appl. Mater. Interfaces 2020, 12, 20366−20375 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An efficient and inexpensive electrocatalyst for the oxygen evolution reaction (OER) must be found in order to improve the viability of hydrogen fuel production via water electrolysis. Recent work has indicated that nickel chalcogenide materials show promise as electrocatalysts for this reaction and that their performance can be further enhanced with the generation of ternary, bimetallic chalcogenides (i.e., Ni1−aMaX2); however, relatively few studies have investigated ternary chalcogenides created through the addition of a second chalcogen (i.e., NiX2−aYa). To address this, we fi studied a series of Se-modi ed Ni3S2 composites for use as OER electrocatalysts in alkaline solution. We found that the addition of Se results in the creation of Ni3S2/NiSe composites composed of cross-doped metal chalcogenides and show that the addition of 10% Se reduces the overpotential required to reach a current density of 10 mA/cm2 by 40 mV versus a pure nickel sulfide material. Chemical analysis of the composites’ surfaces shows a reduction in the amount of nickel oxide species with Se incorporation, which is supported by transmission electron microscopy; this reduction is correlated with a decrease in the OER overpotentials measured for these samples. Together, our results suggest that the incorporation of Se into Ni3S2 creates a more conductive material with a less-oxidized surface that is more electrocatalytically active and resistant to further oxidation.
    [Show full text]
  • Synthesis of Metal Selenide Semiconductor Nanocrystals Using Selenium Dioxide As Precursor
    SYNTHESIS OF METAL SELENIDE SEMICONDUCTOR NANOCRYSTALS USING SELENIUM DIOXIDE AS PRECURSOR By XIAN CHEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Xian Chen 2 To my parents 3 ACKNOWLEDGMENTS Above all, I would like to thank my parents for what they have done for me through these years. I would not have been able to get to where I am today without their love and support. I would like to thank my advisor, Dr. Charles Cao, for his advice on my research and life and for the valuable help during my difficult times. I also would like to thank Dr. Yongan Yang for his kindness and helpful discussion. I learned experiment techniques, knowledge, how to do research and so on from him. I also appreciate the help and friendship that the whole Cao group gave me. Finally, I would like to express my gratitude to Dr. Ben Smith for his guidance and help. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................9 CHAPTER 1 SEMICONDUCTOR NANOCRYSTALS ............................................................................11 1.1 Introduction..................................................................................................................11
    [Show full text]
  • Nickel in Drinking-Water (2005)
    WHO/SDE/WSH/05.08/55 English only Nickel in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2005 The illustration on the cover page is extracted from Rescue Mission: Planet Earth,© Peace Child International 1994; used by permission. This document may be freely reviewed, abstracted, reproduced and translated in part or in whole but not for sale or for use in conjunction with commercial purposes. Inquiries should be addressed to: [email protected]. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Preface One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose ..
    [Show full text]
  • United States Patent Office Patented May 7, 1963
    3,088,959 United States Patent Office Patented May 7, 1963 1. 2 or grouping of carbon atoms which is present in cyclo 3,088,959 pentadiene. This grouping is illustrated as PROCESS OF MAKENG CYCLOPENTADEENY NECKEL, NTROSYL COMPOUNDS Robert D. Feltham, Joseph F. Anzenberger, azad Jonatian T. Carrie, Pittsburgh, Pa., assignors to The Interaa tional Nickel Company, Inc., New York, N.Y., a corpo ration of Delaware No Drawing. FiRed Sept. 1, 1960, Ser. No. 53,374 The substituent groups on the cyclopentadiene moiety 6 Clains. (C. 260-439) 0. indicated as R, R2, R3, R and R5 are any one or more The present invention relates to the production of of hydrogen atoms, halogen atoms and/or organic groups nickel compounds and, more particularly, to the produc such as aliphatic groups, aromatic groups, alicyclic groups, tion of nickel nitrosyl compounds containing a group etc. The substituent groups can also bond at two posi having the cyclopentadienyl moiety. tions. Where this occurs, groups can substitute for adja Compounds such as cyclopentadienylnickel nitrosyl, 5 cent R groups, e.g., Ra and R3 and/or R4 and R5 to form methylcyclopentadienylnickel nitrosyl and other complex indene and other condensed ring structures. nitrosyl compounds containing a cyclopentadienyl-type As mentioned hereinbefore, when carrying out the proc group have been made. Such compounds have use as ess of the present invention, the reactants are reacted in gasoline additives. When such use is contemplated, it is the presence of a base. The base can advantageously be economically imperative that the compounds be produced 20 a nitrogen base or a phosphorus base or an alkoxide of a in good yield from the most readily available and inex metal having a strong hydroxide.
    [Show full text]
  • Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
    OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31.
    [Show full text]
  • Nickel and Nickel Compounds Were Considered by Previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987)
    NICKEL AND NieKEL eOMPOUNDS Nickel and nickel compounds were considered by previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time, new data have become available, and these are inc1uded in the pres- ent monograph and have been taken into consideration in the evaluation. 1. ehemical and Physical Data The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-con tain- ing substances, but it is indicative of the range of nickel alloys and compounds avail- able, including some compounds that are important commercially and those that have been tested in biological systems. A number of intermediary compounds occur in refineries which cannot be characterized and are not listed. 1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-containing compounds Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names and atomic or molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds Chemical Chem. Abstr. SYDoDyms and trade Dames Formula Dame Seiv. Reg. Oxda- Numbera tion stateb Metallc nickel and nickel alloys Nickel 7440-02-0 c.I. 77775; NI; Ni 233; Ni 270; Nickel 270; Ni o (8049-31-8; Nickel element; NP 2 17375-04-1; 39303-46-3; 53527-81-4; 112084-17-0) -- 257 - NICKEL AND NICKEL COMPOUNDS 259 Table i (contd) Chemical Chem. Abstr. Synonym and trade names Formula name Seiv. Reg. Ox- Number4 dation stateb
    [Show full text]
  • A Review on the Metal Complex of Nickel (II) Salicylhydroxamic Acid and Its Aniline Adduct
    Adegoke AV, et al., J Transl Sci Res 2019, 2: 006 DOI: 10.24966/TSR-6899/100006 HSOA Journal of Translational Science and Research Review Article Introduction A Review on the Metal Complex Metal complexes are formed in biological systems, particularly of Nickel (II) Salicylhydroxamic between ligands and metal ions in dynamic equilibrium, with the free metal ion in a more or less aqueous environment [1]. All biologically Acid and its Aniline Adduct important metal ions can form complexes and the number of different chemical species which can be coordinated with these metal ions is very large. During the past few decades, a lot of scientist research 1 1 2 3 Adegoke AV *, Aliyu DH , Akefe IO and Nyan SE groups operated through specialization in the direction of drug dis- 1Department of Chemistry, Faculty of Science, University of Abuja, Nigeria covery, by studying the simplest species that use metal ions and re- searching them as whole compound; for example, they suggested the 2 Department of Physiology, Biochemistry and Pharmacology, Faculty of addition of metal ion to antibiotics to facilitate their spread through- Veterinary Medicine, University of Jos, Nigeria out the body [2]. The development of drug resistance as well as the 3Department of Chemistry, Faculty of Science, Kaduna State University, appearance of undesirable side effects of certain antibiotics has led to Nigeria the search of new antimicrobial agents with the goal to discover new chemical structures which overcome the above disadvantages. As a ligand with potential oxygen and nitrogen donors, hydroxamic acids are interesting and have gained special attention not only because of Abstract the structural chemistry of their coordination modes, but also because Metal complexes are fundamentally known to be engendered in of their importance in medical chemistry [3].
    [Show full text]
  • (Nis2 and Nise2) Decorated with Graphene for Efficient Supercapac
    RSC Advances View Article Online PAPER View Journal | View Issue Controllable synthesis of hollow spherical nickel chalcogenide (NiS and NiSe ) decorated with Cite this: RSC Adv.,2021,11,11786 2 2 graphene for efficient supercapacitor electrodes† Min Lu,*a Ming-yuan Sun,a Xiao-hui Guan, a Xue-mei Chen*a and Guang-Sheng Wang *b New carbon-loaded nickel chalcogenide electrode materials (NiS2/GO and NiSe2/rGO) have been synthesized through an easy-to-operate process: NiSe2 was obtained based on NiS2 hollow spheres, and was successfully synthesized with L-cysteine assistance under the hydrothermal method at 120 C. GO of different mass fraction was added together with L-cysteine. The electrochemical performance of NiS2/ GO and NiSe2/rGO has been greatly improved because the formation of a carbon-loaded layer effectively increased the specific surface area and reduced the charge transport resistance. Compared with pure NiS2 and NiSe2, NiS2/GO and NiSe2/rGO presented much better specific capacitance (1020 F À1 À1 À1 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. g and 722 F g respectively at a current density of 1 A g ) and more superior rate capability (when Received 22nd December 2020 À À À the current density was raised to 5 A g 1 the specific capacitance remained at 569 F g 1 and 302 F g 1). Accepted 9th March 2021 This work highlights the advantages of nickel compounds through a very simple experimental method, DOI: 10.1039/d0ra10659c and contributes to providing a good reference for preparation of superior supercapacitor materials with rsc.li/rsc-advances high performance.
    [Show full text]
  • Electrochemically Synthesized Nanoflowers to Nanosphere-Like
    metals Article Electrochemically Synthesized Nanoflowers to Nanosphere-Like NiCuSe2 Thin Films for Efficient Supercapacitor Application Surendra K. Shinde 1, Dae-Young Kim 1, Vinayak G. Parale 2, Hyung-Ho Park 2 and Hemraj M. Yadav 3,* 1 Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University, 32 Dongguk-ro, Biomedical Campus, Ilsandong-gu, Siksa-dong, Gyeonggi-do, Goyang-si 10326, Korea; [email protected] (S.K.S.); [email protected] (D.-Y.K.) 2 Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] (V.G.P.); [email protected] (H.-H.P.) 3 Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea * Correspondence: [email protected] or [email protected]; Tel.: +82-02-2290-1869 Received: 16 November 2020; Accepted: 17 December 2020; Published: 21 December 2020 Abstract: Developing efficient electrochemically active nanostructures from Earth-abundant elements has gained significant interest in recent years. Among different transition metals, nickel and copper are abundant electrocatalysts for energy-storage applications. Nickel–copper selenide (NiCuSe2) nanostructures were prepared on a stainless-steel mesh with a cost-effective, simple, and versatile electrodeposition method for supercapacitor applications. The change effect in the bath concentration of nickel and copper altered the structural and electrochemical properties of NiCuSe2 electrode. X-ray diffraction (XRD) patterns confirmed the pure phase of ternary NiCuSe2 thin films with a cubic crystal structure. The surface morphology of NiCuSe2 was tuned by nickel and copper from spherical porous nanoflowers, nanoplates, nanocubes, and nanosphere-like nanostructures deposited on the stainless-steel mesh.
    [Show full text]
  • GARDENROOTS Results Booklet
    GARDENROOTS A Citizen Science Garden Project Results booklet Cochise County 1 2 TABLE OF CONTENTS Project Overview 4 Important Terms 6 Results - Water 8 • Understanding Your Results • Data figures Results - Soil 12 • Understanding Your Results • Data figures Results - Plant 16 • Understanding Your Results • Data tables Selected contaminants of concern 26 References 38 Notes 40 1 PROJECT OVERVIEW We did it! I would like to give a special thanks to all 54 of the Arizona Gardenroots participants for their efforts, motivation, and patience throughout this research project. Altogether, 93 community members were trained, and 125 soil, 174 water, and 267 plant samples were prepared and analyzed. 267 125 174 93 Seeing gardens as hubs for environmental health research and education, Gardenroots is trying to understand the state of environmental quality in rural communities. Results from this study are helping to determine whether people are exposed to metal contaminants through gardening and crop ingestion. Gardenroots is co-generating a robust environmental monitoring dataset, while informing the safe production of food sources in underserved communities. In January 2015, efforts began by conducting environmental health needs assessments with Cooperative Extension agents and rural gardeners across Arizona. Based upon community feedback, Gardenroots was then launched in three Arizona counties (Apache, Cochise, Greenlee). Training sessions were held in summer 2015 (June – August) to instruct citizen- scientists in the collection of garden vegetables, as well as irrigation water, soil, and dust samples. Now, December 2016, Gardenroots is hosting community gathering and data sharing events in each county. For more information about the study, timeline, and safe gardening practices, please visit the new Gardenroots website: http://www.gardenroots.arizona.edu/.
    [Show full text]