Exposure to Potassium Hydroxide Can Cause Headache, Eye Contact Dizziness, Nausea and Vomiting

Total Page:16

File Type:pdf, Size:1020Kb

Exposure to Potassium Hydroxide Can Cause Headache, Eye Contact Dizziness, Nausea and Vomiting Right to Know Hazardous Substance Fact Sheet Common Name: POTASSIUM HYDROXIDE Synonyms: Caustic Potash; Lye; Potassium Hydrate CAS Number: 1310-58-3 Chemical Name: Potassium Hydroxide (KOH) RTK Substance Number: 1571 Date: May 2001 Revision: January 2010 DOT Number: UN 1813 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Potassium Hydroxide is an odorless, white or slightly yellow, Hazard Summary flakey or lumpy solid which is often in a water solution. It is Hazard Rating NJDOH NFPA used in making soap, as an electrolyte in alkaline batteries and HEALTH - 3 in electroplating, lithography, and paint and varnish removers. FLAMMABILITY - 0 Liquid drain cleaners contain 25 to 36% of Potassium REACTIVITY - 1 Hydroxide. CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE DOES NOT BURN Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Potassium Hydroxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by ACGIH, DOT, NIOSH, NFPA and EPA. f Potassium Hydroxide can affect you when inhaled and by f This chemical is on the Special Health Hazard Substance passing through the skin. List. f Potassium Hydroxide is a HIGHLY CORROSIVE CHEMICAL and contact can severely irritate and burn the skin and eyes leading to eye damage. f Contact can irritate the nose and throat. f Inhaling Potassium Hydroxide can irritate the lungs. SEE GLOSSARY ON PAGE 5. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. FIRST AID f Exposure to Potassium Hydroxide can cause headache, Eye Contact dizziness, nausea and vomiting. f Quickly brush off excess chemical from the face. f Potassium Hydroxide may cause a skin allergy. Immediately flush with large amounts of water for at least 30 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention Workplace Exposure Limits immediately. NIOSH: The recommended airborne exposure limit (REL) is Skin Contact 2 mg/m3, which should not be exceeded at any time. f Quickly remove contaminated clothing. Immediately blot or brush off excess chemical and wash gently with large ACGIH: The threshold limit value (TLV) is 2 mg/m3, which amounts of soap and water for at least 30 minutes. Seek should not be exceeded at any time. medical attention immediately. Inhalation f The above exposure limits are for air levels only. When skin f Remove the person from exposure. contact also occurs, you may be overexposed, even though f Begin rescue breathing (using universal precautions) if air levels are less than the limits listed above. breathing has stopped and CPR if heart action has stopped. f Transfer promptly to a medical facility. f Medical observation is recommended for 24 to 48 hours after overexposure, as pulmonary edema may be delayed. EMERGENCY NUMBERS Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802 POTASSIUM HYDROXIDE Page 2 of 6 Determining Your Exposure Rproductive Hazard f According to the information presently available to the New f Read the product manufacturer’s Material Safety Data Jersey Department of Health, Potassium Hydroxide has Sheet (MSDS) and the label to determine product not been tested for its ability to affect reproduction. ingredients and important safety and health information about the product mixture. Other Effects f Potassium Hydroxide can irritate the lungs. Repeated f For each individual hazardous ingredient, read the New exposure may cause bronchitis to develop with coughing, Jersey Department of Health Hazardous Substance Fact phlegm, and/or shortness of breath. Sheet, available on the RTK website f Skin allergy may occur with itching, redness and/or an rash. (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK If allergy develops, very low future exposure can trigger Central File or Hazard Communication Standard file. symptoms. f You have a right to this information under the New Jersey Worker and Community Right to Know Act and the Public Employees Occupational Safety and Health (PEOSH) Act Medical if you are a public worker in New Jersey, and under the Medical Testing federal Occupational Safety and Health Act (OSHA) if you Before beginning employment and at regular times thereafter, are a private worker. (at least annually), the following are recommended: f The New Jersey Right to Know Act requires most f Lung function tests employers to label chemicals in the workplace and requires public employers to provide their employees with If symptoms develop or overexposure is suspected, the information concerning chemical hazards and controls. following are recommended: The federal OSHA Hazard Communication Standard (29 f Consider chest x-ray after acute overexposure CFR 1910.1200) and the PEOSH Hazard Communication f Evaluation by a qualified allergist can help diagnose skin Standard (N.J.A.C. 12:100-7) require employers to provide allergy. similar information and training to their employees. f Exam of the eyes and vision This Fact Sheet is a summary of available information Any evaluation should include a careful history of past and regarding the health hazards that may result from exposure. present symptoms with an exam. Medical tests that look for Duration of exposure, concentration of the substance and other damage already done are not a substitute for controlling factors will affect your susceptibility to any of the potential exposure. effects described below. Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Health Hazard Information Exposure and Medical Records Standard (29 CFR 1910.1020). Acute Health Effects Mixed Exposures The following acute (short-term) health effects may occur f Smoking can cause heart disease, lung cancer, immediately or shortly after exposure to Potassium emphysema, and other respiratory problems. It may worsen Hydroxide: respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce f Contact can severely irritate and burn the skin and eyes with your risk of developing health problems. possible eye damage. f Contact can irritate the nose and throat. f Inhaling Potassium Hydroxide can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath. f Exposure to Potassium Hydroxide can cause headache, dizziness, nausea and vomiting. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Potassium Hydroxide and can last for months or years: Cancer Hazard f According to the information presently available to the New Jersey Department of Health, Potassium Hydroxide has not been tested for its ability to cause cancer in animals. POTASSIUM HYDROXIDE Page 3 of 6 Workplace Controls and Practices Eye Protection Very toxic chemicals, or those that are reproductive hazards or f For solid Potassium Hydroxide wear eye protection with sensitizers, require expert advice on control measures if a less side shields or goggles. toxic chemical cannot be substituted. Control measures f Wear indirect-vent, impact and splash resistant goggles include: (1) enclosing chemical processes for severely when working with liquids. irritating and corrosive chemicals, (2) using local exhaust f Wear a face shield along with goggles when working with ventilation for chemicals that may be harmful with a single corrosive, highly irritating or toxic substances. exposure, and (3) using general ventilation to control f Do not wear contact lenses when working with this exposures to skin and eye irritants. For further information on substance. workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/. Respiratory Protection Improper use of respirators is dangerous. Respirators The following work practices are also recommended: should only be used if the employer has implemented a written program that takes into account workplace conditions, f Label process containers. requirements for worker training, respirator fit testing, and f Provide employees with hazard information and training. medical exams, as described in the OSHA Respiratory f Monitor airborne chemical concentrations. f Use engineering controls if concentrations exceed Protection Standard (29 CFR 1910.134). recommended exposure levels. 3 f Provide eye wash fountains and emergency showers. f Where the potential exists for exposure over 2 mg/m , use a f Wash or shower if skin comes in contact with a hazardous NIOSH approved full facepiece negative pressure, air- material. purifying, particulate filter respirator with an N, R or P95 f Always wash at the end of the workshift. filter. More protection is provided by a full facepiece f Change into clean clothing if clothing becomes respirator than by a half-mask respirator, and even greater contaminated. protection is provided by a powered-air purifying respirator. f Do not take contaminated clothing home. f Leave the area immediately if (1) while wearing a filter or f Get special training to wash contaminated clothing. cartridge respirator you can smell, taste, or otherwise detect f Do not eat, smoke, or drink in areas where chemicals are Potassium Hydroxide, (2) while wearing particulate filters being handled, processed or stored. abnormal resistance to breathing is experienced, or (3) eye f Wash hands carefully before eating, smoking, drinking, irritation occurs while wearing a full facepiece respirator. applying cosmetics or using the toilet. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer In addition, the following may be useful or required: good, you may need a new respirator. f Consider all potential sources of exposure in your workplace. f For solid Potassium Hydroxide, use a vacuum to reduce You may need a combination of filters, prefilters or cartridges dust during clean-up.
Recommended publications
  • (Oxy)Hydroxide Electrocatalysts for Water Oxidation Bryan R
    www.acsami.org Research Article Effect of Selenium Content on Nickel Sulfoselenide-Derived Nickel (Oxy)hydroxide Electrocatalysts for Water Oxidation Bryan R. Wygant, Anna H. Poterek, James N. Burrow, and C. Buddie Mullins* Cite This: ACS Appl. Mater. Interfaces 2020, 12, 20366−20375 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An efficient and inexpensive electrocatalyst for the oxygen evolution reaction (OER) must be found in order to improve the viability of hydrogen fuel production via water electrolysis. Recent work has indicated that nickel chalcogenide materials show promise as electrocatalysts for this reaction and that their performance can be further enhanced with the generation of ternary, bimetallic chalcogenides (i.e., Ni1−aMaX2); however, relatively few studies have investigated ternary chalcogenides created through the addition of a second chalcogen (i.e., NiX2−aYa). To address this, we fi studied a series of Se-modi ed Ni3S2 composites for use as OER electrocatalysts in alkaline solution. We found that the addition of Se results in the creation of Ni3S2/NiSe composites composed of cross-doped metal chalcogenides and show that the addition of 10% Se reduces the overpotential required to reach a current density of 10 mA/cm2 by 40 mV versus a pure nickel sulfide material. Chemical analysis of the composites’ surfaces shows a reduction in the amount of nickel oxide species with Se incorporation, which is supported by transmission electron microscopy; this reduction is correlated with a decrease in the OER overpotentials measured for these samples. Together, our results suggest that the incorporation of Se into Ni3S2 creates a more conductive material with a less-oxidized surface that is more electrocatalytically active and resistant to further oxidation.
    [Show full text]
  • Potassium Hydroxide Cas N°: 1310-58-3
    OECD SIDS POTASSIUM HYDROXIDE FOREWORD INTRODUCTION POTASSIUM HYDROXIDE CAS N°: 1310-58-3 UNEP PUBLICATIONS 1 OECD SIDS POTASSIUM HYDROXIDE SIDS Initial Assessment Report For SIAM 13 Bern, Switzerland, 6-9 November 2001 1. Chemical Name: Potassium hydroxide 2. CAS Number: 1310-58-3 3. Sponsor Country: Belgium Dr. Thaly LAKHANISKY J. Wytsman 16 B-1050 Brussels, Belgium Tel : + 32 2 642 5104 Fax : +32 2 642 5224 E-mail : [email protected] 4. Shared Partnership with: ICCA (Tessenderlo Chemie NV) 5. Roles/Responsibilities of the Partners: · Name of industry sponsor /consortium · Process used 6. Sponsorship History · How was the chemical or In 2001, ICCA (Tessenderlo Chemie NV)) had proposed sponsor category brought into the and prepared draft documents(Dossier, SIAR, SIAP). It was OECD HPV Chemicals submitted to the SIDS contact point of Belgium on May 2001. Programme? The draft documents were revised by Belgium after discussion with Tessenderlo Chemie NV. The revised draft was discussed in detail with Tessenderlo Chemie NV on June and July 2001. After agreement, the documents were finalized and the checklist was developed by jointly by Belgium and Tessenderlo Chemie NV 7. Review Process Prior to the SIAM: 8. Quality check process: 9. Date of Submission: 10. Date of last Update: February 2002 11. Comments: No testing 2 UNEP PUBLICATIONS OECD SIDS POTASSIUM HYDROXIDE SIDS INITIAL ASSESSMENT PROFILE CAS No. 1310-58-3 Chemical Name Potassium hydroxide Structural Formula KOH RECOMMENDATIONS The chemical is currently of low priority for further work. SUMMARY CONCLUSIONS OF THE SIAR Human Health Solid KOH is corrosive.
    [Show full text]
  • The Influence of Sodium Hydroxide Concentration on the Phase, Morphology and Agglomeration of Cobalt Oxide Nanoparticles and Application As Fenton Catalyst
    Digest Journal of Nanomaterials and Biostructures Vol.14, No.4, October-December 2019, p. 1131-1137 THE INFLUENCE OF SODIUM HYDROXIDE CONCENTRATION ON THE PHASE, MORPHOLOGY AND AGGLOMERATION OF COBALT OXIDE NANOPARTICLES AND APPLICATION AS FENTON CATALYST E. L. VILJOENa,*, P. M. THABEDEa, M. J. MOLOTOa, K. P. MUBIAYIb, B. W. DIKIZAa aDepartment of Chemistry, Vaal University of Technology Private, Bag X021, Vanderbijlpark 1900, South Africa bSchool of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein Johannesburg 2000, South Africa The concentration of NaOH was varied from 0.2 M to 0.7 M during the preparation of the cobalt oxide/cobalt oxide hydroxide nanoparticles by precipitation and air oxidation. Cubic shaped and less well defined Co3O4 nanoparticles formed at 0.2 M NaOH. An increase in the NaOH concentration increased the number of well-defined cubic shaped nanoparticles. Agglomerated CoO(OH) particles with different shapes formed at the highest NaOH concentration. The cubic shaped Co3O4 nanoparticles were subsequently used as catalyst for the Fenton degradation of methylene blue and it was found that the least agglomerated nanoparticles were the most catalytically active. (Received June 25, 2019; Accepted December 6, 2019) Keywords: Cobalt oxide, Nanoparticles, Precipitation, pH, Fenton reaction 1. Introduction Controlling the size and the shape of nanoparticles using simple, inexpensive precipitation methods without sophisticated capping molecules, remains a challenge. Literature has indicated that the concentration of the base (pH) is an important parameter to control the size, shape and phase of metal oxide nanoparticles. Obodo et al.[1] used chemical bath deposition at atmospheric pressure and 70 °C to precipitate Co3O4 crystallites on a glass substrate and they showed that the crystallite sizes were larger at a higher pH of 12 in comparison to when a pH of 10 was used.
    [Show full text]
  • SODIUM HYDROXIDE @Lye, Limewater, Lyewater@
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: ENVIRONMENTAL TOXICOLOGY SECTION OCTOBER, 1998 SODIUM HYDROXIDE @Lye, limewater, lyewater@ For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information Sodium Hydroxide Page 2 SYNONYMS: Caustic soda, sodium hydrate, soda lye, lye, natrium hydroxide CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: NaOH - White solid, crystals or powder, will draw moisture from the air and become damp on exposure - Odorless, flat, sweetish flavor - Pure solid material or concentrated solutions are extremely caustic, immediately injurious to skin, eyes and respiratory system WHERE DOES IT COME FROM? Sodium hydroxide is extracted from seawater or other brines by industrial processes. WHAT ARE THE PRINCIPLE USES OF SODIUM HYDROXIDE? Sodium hydroxide is an ingredient of many household products used for cleaning and disinfecting, in many cosmetic products such as mouth washes, tooth paste and lotions, and in food and beverage production for adjustment of pH and as a stabilizer. In its concentrated form (lye) it is used as a household drain cleaner because of its ability to dissolve organic solids. It is also used in many industries including glassmaking, paper manufacturing and mining. It is used widely in medications, for regulation of acidity. Sodium hydroxide may be used to counteract acidity in swimming pool water, or in drinking water. IS SODIUM HYDROXIDE NATURALLY PRESENT IN DRINKING WATER? Yes, because sodium and hydroxide ions are common natural mineral substances, they are present in many natural soils, in groundwater, in plants and in animal tissues.
    [Show full text]
  • Carbon Dioxide Capture from Atmospheric Air Using Sodium
    Environ. Sci. Technol. 2008, 42, 2728–2735 Carbon Dioxide Capture from Nearly all current research on CCS focuses on capturing CO2 from large, stationary sources such as power plants. Atmospheric Air Using Sodium Such plans usually entail separating CO2 from flue gas, compressing it, and transporting it via pipeline to be Hydroxide Spray sequestered underground. In contrast, the system described in this paper captures CO2 directly from ambient air (“air § capture”). This strategy will be expensive compared to capture JOSHUAH K. STOLAROFF, from point sources, but may nevertheless act as an important DAVID W. KEITH,‡ AND complement, since CO emissions from any sector can be GREGORY V. LOWRY*,† 2 captured, including emissions from diffuse sources such as Chemical and Petroleum Engineering, University of Calgary, aircraft or automobiles, where on-board carbon capture is and Departments of Civil and Environmental Engineering very difficult and the cost of alternatives is high. Additionally, and Engineering and Public Policy, Carnegie Mellon in a future economy with low carbon emissions, air capture University, Pittsburgh, Pennsylvania 15213 might be deployed to generate negative net emissions (1). This ability to reduce atmospheric CO2 concentrations faster Received October 15, 2007. Revised manuscript received than natural cycles allow would be particularly desirable in February 05, 2008. Accepted February 06, 2008. scenarios where climate sensitivity is on the high end of what is expected, resulting in unacceptable shifts in land usability and stress to ecosystems. In contrast to conventional carbon capture systems for Previous research has shown that air capture is theoreti- cally feasible in terms of thermodynamic energy require- power plants and other large point sources, the system described ments, land use (2), and local atmospheric transport of CO2 in this paper captures CO2 directly from ambient air.
    [Show full text]
  • PCTM 17 ISSUED-1996 Method to Determine Rosin Acids in Tall Oil
    PCTM 17 ISSUED-1996 Method to determine rosin acids in tall oil Scope 3. Methyl sulfuric acid solution, 20% - Caution: This method covers the determination of rosin acids in Slowly pour 100 g of concentrated sulfuric acid (- tall oils containing more than 15% rosin acids. 96%), while stirring constantly, into 400 g of methanol. This method may not be applicable to adducts or 4 . Thymol blue indicator - Weigh 0.1 g thymol blue in derivatives of tall oils, or other naval stores products. 100 mL methanol. Fatty acids are esterified by methanol in the presence of sulfuric Sample Preparation acid catalyst, and rosin acids are determined by titration after neutralization of the sulfuric acid. 1. Dissolve 5 ± 0.5 g of sample, weighed to the nearest 0.001 g, into a 250-m1. Erlenmeyer flask. Apparatus 2. Add 100 mL of methanol and swirl to dissolve. 3. Add 5.0 mL of methyl sulfuric acid solution. 1. Beaker, tall-form, 300-mL capacity. 4. Connect the flask to the condenser and reflux for 2. Buret, 50-mL capacity with 0.1-mL divisions. 30 minutes. Allow the flask to cool to Electronic burets are preferable for increased approximately room temperature. accuracy and precision. 3. Erlenmeyer flask, 250-mL flat-bottom fitted with a Method A - Potentiometric Titration condenser. 4. pH meter, capable of reading ± 0.1 pH over a 1. Titrate with the KOH solution to a fixed pH of range of pH 1 to pH 13 in alcoholic "solutions. 4.0, the first end point. 5. Pipet, 5-mL.
    [Show full text]
  • SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision Date: 2020-06-15 Version: 1.0
    SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Name: Potassium Hydroxide, Liquid 45-50% Synonyms: Chemical manufacturing, fertilizer, batteries, soaps Product Form: Liquid Recommended use of the chemical and restrictions on use Recommended Use: Professional use, Industrial use. Chemical manufacturing, fertilizer, batteries, soaps Restrictions on Use: Use as recommended by the label Details of the supplier and of the safety data sheet Supplier Tersus Environmental, LLC 1116 Colonial Club Rd Wake Forest, NC 27587 Phone: +1-919-453-5577 Email: [email protected] Contact Person David F. Alden Phone: +1-919-453-5577 x2002 Email: [email protected] Emergency telephone number For leak, fire, spill or accident emergencies, call: +1-919-453-5577 (Tersus Office Hours, 8:00 AM to 5:00 PM Eastern) +1-800-424-9300 (Chemtrec 24 Hour Service – Emergency Only) +1-703-527-3887 (Chemtrec Outside United States 24 Hour Service – Emergency Only) +1-919-638-7892 Gary M. Birk (Outside office hours) 2. HAZARD IDENTIFICATION Relevant identified uses of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) GHS label elements, including precautionary statements: Signal Word: Danger Pictogram(s): GHS05 GHS07 Page 1 of 10 Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 Hazard statement H290 May be corrosive to metals. H302 Harmful if swallowed. H314 Causes severe skin burns and eye damage H318 Causes serious eye damage. H402 Harmful to aquatic life. Precautionary statement P234 Keep only in original container.
    [Show full text]
  • Potassium Hydroxide Safety Data Sheet According to Federal Register / Vol
    Potassium Hydroxide Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 10/09/2004 Revision date: 02/06/2018 Supersedes: 02/06/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Potassium Hydroxide CAS-No. : 1310-58-3 Product code : LC19190 Formula : KOH Synonyms : caustic potash / caustic potash dry / caustic potash, dry solid, flake, bead or granular / caustic potash, solid / caustic potash,solid / hydrate of potash / hydrate of potassium / hydroxide of potash / hydroxide of potassium / lye (=potassium hydroxide) / potash / potash hydrate / potash lye / potassium hydrate / potassium hydroxide (K(OH)) / potassium hydroxide dry / potassium hydroxide pellets / potassium hydroxide, dry solid, flake, bead or granular / potassium hydroxide, electrolytical, solid / potassium hydroxide, solid / Potassium hydroxide, solid / potassium lye 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) H302 Harmful if swallowed Category 4 Skin corrosion/irritation H314 Causes severe skin burns and eye damage Category 1A Hazardous to the aquatic H402 Harmful to aquatic life environment - Acute Hazard Category 3 Full text of H statements : see section 16 2.2.
    [Show full text]
  • Aluminium Distearate, Aluminium Hydroxide Acetate, Aluminium Phosphate and Aluminium Tristearate
    The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/393/98-FINAL April 1998 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS ALUMINIUM DISTEARATE, ALUMINIUM HYDROXIDE ACETATE, ALUMINIUM PHOSPHATE AND ALUMINIUM TRISTEARATE SUMMARY REPORT 1. Aluminium is an ubiquitous element in the environment. It is present in varying concentrations in living organisms and in foods. Aluminium compounds are widely used in veterinary and human medicine. Other uses are as an analytical reagent, food additives (e.g. sodium aluminium phosphate as anticaking agent) and in cosmetic preparations (aluminium chloride). Aluminium distearate is used for thickening lubricating oils. Aluminium hydroxide acetate and phosphate are antacids with common indications in veterinary medicine: gastric hyperacidity, peptic ulcer, gastritis and reflux esophagitis. A major use of antacids in veterinary medicine is in treatment and prevention of ruminal acidosis from grain overload, adsorbent and antidiarrheal. The dosage of aluminium hydroxide is 30 g/animal in cattle and 2 g/animal in calves and foals. Gel preparations contain approximately 4% aluminium hydroxide. Aluminium potassium sulphate is used topically as a antiseptic, astringent (i.e. washes, powders, and ‘leg tighteners’ for horses (30 to 60 g/animal) and antimycotic (1% solution for dipping or spraying sheeps with dermatophilus mycotic dermatitis). In cattle it is occasionally used for stomatitis and vaginal and intrauterine therapy at doses of 30 to 500 g/animal. In human medicine, aluminium hydroxide-based preparations have a widespread use in gastroenterology as antacids (doses of about 1 g/person orally) and as phosphate binders (doses of about 0.8 g/person orally) in patients an impairment of renal function.
    [Show full text]
  • Potassium Hydroxide, 0.1N (0.1M) in Ethanol Safety Data Sheet According to Federal Register / Vol
    Potassium Hydroxide, 0.1N (0.1M) in Ethanol Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 12/19/2013 Revision date: 02/06/2018 Supersedes: 02/06/2018 Version: 1.3 SECTION 1: Identification 1.1. Identification Product form : Mixtures Product name : Potassium Hydroxide, 0.1N (0.1M) in Ethanol Product code : LC19310 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids H225 Highly flammable liquid and vapour Category 2 Serious eye damage/eye H319 Causes serious eye irritation irritation Category 2A Carcinogenicity Category H350 May cause cancer 1A Reproductive toxicity H361 Developmental toxicity (oral) Category 2 Specific target organ H370 Causes damage to organs (central nervous system, optic nerve) (oral, Dermal) toxicity (single exposure) Category 1 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H225 - Highly flammable liquid and vapour H319 - Causes serious eye irritation H350 - May cause cancer H361 - Developmental toxicity (oral) H370 - Causes damage to organs (central nervous system, optic nerve) (oral, Dermal) Precautionary statements (GHS-US) : P201 - Obtain special instructions before use.
    [Show full text]
  • Potassium Hydroxide (P6310)
    Potassium hydroxide ACS Reagent Product Number P 6310 Store at Room Temperature 22,147-3 is an exact replacement for P 6310 Product Description Preparation Instructions Molecular Formula: KOH This product is soluble in water (100 mg/ml), yielding a Molecular Weight: 56.11 clear, colorless solution. Potassium hydroxide is also CAS Number: 1310-58-3 soluble in alcohol (1 part in 3) and glycerol (1 part Melting point: 360 °C, 380 °C (anhydrous)1 in 2.5). The dissolution of potassium hydroxide in water or alcohol is a highly exothermic (heat- This product is in the form of pellets. It is designated producing) process.1 as ACS Reagent grade, and meets the specifications of the American Chemical Society (ACS) for reagent Storage/Stability chemicals. Potassium hydroxide rapidly absorbs carbon dioxide and water from the air and deliquesces.1 Potassium Potassium hydroxide (KOH) is a caustic reagent that is hydroxide solutions should be stored in plastic bottles widely used to neutralize acids and prepare potassium (polyethylene or polypropylene). KOH solutions will salts of reagents. It is used in a variety of large-scale etch glass over a period of just a few days. applications, such as the manufacture of soap, the mercerizing of cotton, electroplating, photoengraving, References and lithography.1 1. The Merck Index, 12th ed., Entry# 7806. 2. Philip, N. S., and Green, D. M., Recovery and Potassium hydroxide is used in the analysis of bone enhancement of faded cleared and double stained and cartilage samples by histology.2,3 A protocol for specimens. Biotech. Histochem., 75(4), 193-196 the amplification of DNA from single cells by PCR that (2000).
    [Show full text]
  • CHANGES in Ph ASSOCIATED with the APPLICATION of AMMONIA and POTASSIUM HYDROXIDE to DIAPAUSING EGGS of TELEOGRYLLUS OOMMODUS (WALK.) (ORTHOPTERA: GRYLLIDAE)
    CHANGES IN pH ASSOCIATED WITH THE APPLICATION OF AMMONIA AND POTASSIUM HYDROXIDE TO DIAPAUSING EGGS OF TELEOGRYLLUS OOMMODUS (WALK.) (ORTHOPTERA: GRYLLIDAE) By T. W. HOGAN* [Manuscript received September 9, 1964] Summary Diapausing eggs of T. commodus were exposed to a:mmonia evolved from solutions of ammonium hydroxide in desiccators for specific periods. It was found that the pH of the egg contents increased with increase in concentration of the ammonium hydroxide and the period of exposure. Toxic symptoms and mortality of eggs were associated with a rise of pH exceeding 0·4 of a unit. This occurred at the higher concentrations, viz. exposure for 3 days to O· 3M or for 2-3 days to 0 ·IM ammonium hydroxide. The most favourable effect on the termination of diapause was with exposure for 3 days to O· 01M ammonium hydroxide, which raised the pH to 7· O. This was also the highest non-toxic concentration. On the basis that the rise in pH might be the causal factor for the termination of diapause, the effect of potassium hydroxide solutions on the pH of the eggs was tested and found to be moderately effective both in this regard and in accelerating the rate of termination of diapause. However, there was some termination of diapause before any significant rise in pH occurred. It appears, therefore, that the action of ammonia and of potassium hydroxide must have a common factor other than raising the pH of the egg contents. 1. INTRODUCTION It has been shown that when diapausing eggs of Teleogryllu8 commodu8 (Walk.) are exposed to ammonia evolved from solutions of ammonium hydroxide for an adequate period, diapause is terminated in a high proportion of the eggs.
    [Show full text]