United States Patent (19) (1) 4,428,920 Willenberg Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (1) 4,428,920 Willenberg Et Al United States Patent (19) (1) 4,428,920 Willenberg et al. 45) Jan. 31, 1984 54 PROCESS OF PRODUCING POTASSIUM 56 References Cited TETRAFLUORO ALUMINATE PUBLICATIONS Mellor, Inorganic and Theoretical Chemistry, vol. V, 75) Inventors: Heinrich Willenberg, Garbsen; (1946), Longmans, Green & Co., pp. 306, 307 Karl-Heinz Hellberg; Heinz Phillips et al., Journal of the American Ceramic Soc. Zschiesche, both of Hanover, all of vol. 49, No. 2, pp. 631-634, Dec. 1966. Fed. Rep. of Germany Equilibria in KAIF4-Containing Systems, p. 633, Dec. 1966. Chemical Abstract, vol. 84, 1976 p. 296, No. 84:78453d 73) Assignee: Kali-Chemie Aktiengesellschaft, Electric and Magnetic Phenomena, vol. 56, 1962 Hanover, Fed. Rep. of Germany "Fluoroaluminates as Dielectrics'. Primary Examiner-Helen M. McCarthy 21 Appl. No.: 368,840 Assistant Examiner-Steven Capella Attorney, Agent, or Firm-Schwartz, Jeffery, Schwaab, Mack, Blumenthal & Koch 22 Filed: Apr. 15, 1982 57 ABSTRACT Potassium tetrafluoro aluminate of a melting point not 30 Foreigl Application Priority Data exceeding 575 C. is produced by reacting an aqueous Apr. 25, 1981 DE Fed. Rep. of Germany ....... 3.16469 solution of fluoro aluminum acid with an aqueous solu tion of a potassium compound, especially of potassium hydroxide, the amount of potassium in said solution 51 Int. Cl............................. C01F 7/54; C01F 7/04 being less than the stoichiometrically required amount. 52 U.S. C. ................................... 423/465; 42.3/116 58) Field of Search ................ 423/464, 465, 116, 126 14 Claims, No Drawings 4,428,920 1 2 Mockrin in "Journ. Amer. Ceram. Soc.” vol. 49 (1966), PROCESS OF PRODUCING POTASSUM p. 631) it appears to be proven that solid phases of the TETRAFLUORO ALUMINATE composition of 50 mole percent of potassium fluoride and 50 mole percent of aluminum fluoride contain the BACKGROUND OF THE INVENTION 5 compound of the formula KAlF4 which melts at 574.” C. (1) Field of the Invention and which forms with potassium aluminum fluoride of The present invention relates to a simple and advanta the formula K3AlF6 a eutectic mixture melting at about geous process of producing potassium tetrafluoro alu 560 C. The designation of the compound produced minate and more particularly to a process of producing according to the present invention as "potassium tetra potassium tetrafluoro aluminate of a melting point not O fluoro aluminate of a melting point not exceeding 575 exceeding 575 C. C." as used herein and in the claims annexed hereto, (2) Description of the Prior Art comprises pure potassium tetrafluoro aluminate of the The corventional technical methods of producing formula KAlF4 as well as its mixtures with potassium potassium tetrafluoro aluminate comprise reacting the aluminum fluoride of the formula K3AlF6 and/or alumi hydrate of alumina, hydrofluoric acid, and potassium 15 num fluoride of the formula AlF3, provided the mix hydroxide. After separating the solid reaction product tures have a melting point not exceeding 575 C. Said from the mother liquor, there is obtained a reaction mixtures contain between about 43 mole percent and up product which does not melt below 620 C. Such a to 50 mole percent of aluminum fluoride of the formula product can be used only for certain specific purposes. AlF3, while the remainder is potassium fluoride of the In order to increase the yield when proceeding accord 20 ing to the known processes, the potassium hydroxide is formula KF. usually added in an excess up to about 20% of the theo Insofar as the data derived from the melting point retically required amount. Thereby, however, no sub diagrams can be applied to aqueous systems, one could stantial change in the melting point of the reaction prod assume that optimum results would be achieved with uct is achieved. ' 25 charges containing equimolecular amounts of potassium It is possible to produce potassium tetrafluoro alumi and aluminum or containing an excess of potassium. nate of a lower melting point by concentrating by evap When reacting fluoro aluminum acid with a potassium oration: a suspension obtained by combining stoichio compound, there is obtained, however, no satisfactory metric amounts of the reaction components. This pro product by using equimolecular amounts of the reac cess, however, is very expensive due to the high energy 30 tants. Surprisingly and in contrast to expectations, how requirements. ever, there is produced a reaction product with a melt Another technical process of producing potassium ing point not exceeding 575 C., when charging the tetrafluoroaluminate which melts below 575 C. with potassium reactant in an amount of less than the stoi out any unmelted residue, consists in melting together chiometric amount calculated with respect to the total comminuted potassium fluoride and aluminum fluoride 35 charge. According to the present invention, the pre at a temperature above 600 C. and grinding the result ferred molar ratio with respect to the total charge is a ing solidified melt. This process also demands high molar ratio of potassium to aluminum within the range energy requirements. Moreover, the resulting reaction between 0.60:1 and 0.95:1 and most advantageously a product frequently contains undesirable impurities. molar ratio between 0.80:1 and 0.90:1. It is also of advantage to freshly prepare the fluoro SUMMARY OF THE INVENTION aluminum acid each time from hydrofluoric acid and It is one object of the present invention to provide a the hydrate of alumina. Preferably a fluoro aluminum simple, advantageous, and effective process of produc acid of a concentration of 5%, by weight, to 30%, by ing potassium tetrafluoro aluminate having a melting weight, and more particularly of a concentration be point not exceeding 575 C. and completely melting at 45 tween 15%, by weight, and 25%, by weight, is used in said temperature without any unmelted residue. Said the reaction. process overcomes the above mentioned disadvantages According to a further advantageous variant of the of the known processes. process of the present invention, the fluoro aluminum Other objects of the present invention and advanta acid contains an excess of fluorine. Preferably the pro geous features thereof will become apparent as the de 50 portion of fluorine to aluminum is within the range of scription proceeds. 4.0:1 and 4.8:1 and more particularly within the range of In principle, the process according to the present 4.0:1 and 4.4:1. invention of producing a potassium tetrafluoro alumi An aqueous potassium hydroxide solution of a con nate of a melting point not exceeding 575 C. comprises centration between 2%, by weight, and 25%, by the steps of -i. • , 55 weight, and more advantageously between 10%, by reacting an aqueous solution of fluoro aluminum acid weight, and 20%, by weight, is preferably used for the with an amount of an aqueous solution of a potassium reaction with the fluoro aluminum acid. In accordance compound which is less than the stoichiometrically with a variant of the process according to the present required amount calculated with respect to the total invention, part of the potassium hydroxide can be re charge, placed by other potassium compounds, more particu if desired, subjecting the resulting reaction mixture to larly by potassium chloride. The molar ratio of potas an after-treatment to complete formation of the potas sium chloride to potassium hydroxide in the aqueous sium tetrafluoro aluminate, and solution must be below a ratio of 3.0:1 in order to subjecting the resulting suspension to a separation achieve satisfactory results. Other possible potassium operation to recover and isolate the potassium tetra 65 compounds are e.g. the carbonate, bromide, sulphate. fluoro aluminate. - - . The reaction can be carried out at a temperature By investigations regarding melting point equilibria within the range between room temperature and the (see, for instance, B. Phillips. C. M. Warshaw, and J. boiling point of the reaction mixture. The preferred 4,428,920 3 4. temperatures, however, are those between 70' C. and 7 an aqueous potassium hydroxide solution, which in 90° C. In this case it has been provided to be especially Examples 4 and 5 contains potassium chloride, is gradu economical to produce the solutions of the reactants ally added at 80 C. to an aqueous solution of fluoro immediately before the reaction takes place and to mix aluminum acid within about one hour while stirring. the resulting reactant solutions without any intermedi The concentration of the reactant solutions in percent, ate cooling so as to make use of the solution enthalpy. by weight, and the ratios of fluorine to aluminum in the The mode in which the reaction product is precipi fluoro aluminum acid solution, of potassium chloride to tated can principally be carried out in any desired man potassium hydroxide in the potassium hydroxide reac ner. However, it has been proved that, on batchwise tant solution, and of potassium to aluminum in the total reaction, the fluoro aluminum acid is preferably placed 10 charge are given in said Table. Stirring of the reaction first into the reaction vessel and that then the solution of mixture is continued for half an hour without further the potassium compound is added thereto. When carry heating. The resulting precipitated reaction product is ing out the process in continuous operation, it is of filtered off and the filter residue is dried. The character advantage, for reasons of economy, to introduce both istic data and properties of the resulting reaction prod reactant solutions simultaneously into the reaction ves ucts, such as their melting points and the ratios of potas sel. sium to aluminum and of fluorine to aluminum as well as The reactants are mixed with each other within a the yields calculated with respect to potassium and period of time from twelve minutes to two hours.
Recommended publications
  • Potassium Hydroxide Cas N°: 1310-58-3
    OECD SIDS POTASSIUM HYDROXIDE FOREWORD INTRODUCTION POTASSIUM HYDROXIDE CAS N°: 1310-58-3 UNEP PUBLICATIONS 1 OECD SIDS POTASSIUM HYDROXIDE SIDS Initial Assessment Report For SIAM 13 Bern, Switzerland, 6-9 November 2001 1. Chemical Name: Potassium hydroxide 2. CAS Number: 1310-58-3 3. Sponsor Country: Belgium Dr. Thaly LAKHANISKY J. Wytsman 16 B-1050 Brussels, Belgium Tel : + 32 2 642 5104 Fax : +32 2 642 5224 E-mail : [email protected] 4. Shared Partnership with: ICCA (Tessenderlo Chemie NV) 5. Roles/Responsibilities of the Partners: · Name of industry sponsor /consortium · Process used 6. Sponsorship History · How was the chemical or In 2001, ICCA (Tessenderlo Chemie NV)) had proposed sponsor category brought into the and prepared draft documents(Dossier, SIAR, SIAP). It was OECD HPV Chemicals submitted to the SIDS contact point of Belgium on May 2001. Programme? The draft documents were revised by Belgium after discussion with Tessenderlo Chemie NV. The revised draft was discussed in detail with Tessenderlo Chemie NV on June and July 2001. After agreement, the documents were finalized and the checklist was developed by jointly by Belgium and Tessenderlo Chemie NV 7. Review Process Prior to the SIAM: 8. Quality check process: 9. Date of Submission: 10. Date of last Update: February 2002 11. Comments: No testing 2 UNEP PUBLICATIONS OECD SIDS POTASSIUM HYDROXIDE SIDS INITIAL ASSESSMENT PROFILE CAS No. 1310-58-3 Chemical Name Potassium hydroxide Structural Formula KOH RECOMMENDATIONS The chemical is currently of low priority for further work. SUMMARY CONCLUSIONS OF THE SIAR Human Health Solid KOH is corrosive.
    [Show full text]
  • Exposure to Potassium Hydroxide Can Cause Headache, Eye Contact Dizziness, Nausea and Vomiting
    Right to Know Hazardous Substance Fact Sheet Common Name: POTASSIUM HYDROXIDE Synonyms: Caustic Potash; Lye; Potassium Hydrate CAS Number: 1310-58-3 Chemical Name: Potassium Hydroxide (KOH) RTK Substance Number: 1571 Date: May 2001 Revision: January 2010 DOT Number: UN 1813 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Potassium Hydroxide is an odorless, white or slightly yellow, Hazard Summary flakey or lumpy solid which is often in a water solution. It is Hazard Rating NJDOH NFPA used in making soap, as an electrolyte in alkaline batteries and HEALTH - 3 in electroplating, lithography, and paint and varnish removers. FLAMMABILITY - 0 Liquid drain cleaners contain 25 to 36% of Potassium REACTIVITY - 1 Hydroxide. CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE DOES NOT BURN Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Potassium Hydroxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by ACGIH, DOT, NIOSH, NFPA and EPA. f Potassium Hydroxide can affect you when inhaled and by f This chemical is on the Special Health Hazard Substance passing through the skin. List. f Potassium Hydroxide is a HIGHLY CORROSIVE CHEMICAL and contact can severely irritate and burn the skin and eyes leading to eye damage. f Contact can irritate the nose and throat. f Inhaling Potassium Hydroxide can irritate the lungs. SEE GLOSSARY ON PAGE 5. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. FIRST AID f Exposure to Potassium Hydroxide can cause headache, Eye Contact dizziness, nausea and vomiting.
    [Show full text]
  • PCTM 17 ISSUED-1996 Method to Determine Rosin Acids in Tall Oil
    PCTM 17 ISSUED-1996 Method to determine rosin acids in tall oil Scope 3. Methyl sulfuric acid solution, 20% - Caution: This method covers the determination of rosin acids in Slowly pour 100 g of concentrated sulfuric acid (- tall oils containing more than 15% rosin acids. 96%), while stirring constantly, into 400 g of methanol. This method may not be applicable to adducts or 4 . Thymol blue indicator - Weigh 0.1 g thymol blue in derivatives of tall oils, or other naval stores products. 100 mL methanol. Fatty acids are esterified by methanol in the presence of sulfuric Sample Preparation acid catalyst, and rosin acids are determined by titration after neutralization of the sulfuric acid. 1. Dissolve 5 ± 0.5 g of sample, weighed to the nearest 0.001 g, into a 250-m1. Erlenmeyer flask. Apparatus 2. Add 100 mL of methanol and swirl to dissolve. 3. Add 5.0 mL of methyl sulfuric acid solution. 1. Beaker, tall-form, 300-mL capacity. 4. Connect the flask to the condenser and reflux for 2. Buret, 50-mL capacity with 0.1-mL divisions. 30 minutes. Allow the flask to cool to Electronic burets are preferable for increased approximately room temperature. accuracy and precision. 3. Erlenmeyer flask, 250-mL flat-bottom fitted with a Method A - Potentiometric Titration condenser. 4. pH meter, capable of reading ± 0.1 pH over a 1. Titrate with the KOH solution to a fixed pH of range of pH 1 to pH 13 in alcoholic "solutions. 4.0, the first end point. 5. Pipet, 5-mL.
    [Show full text]
  • SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision Date: 2020-06-15 Version: 1.0
    SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Name: Potassium Hydroxide, Liquid 45-50% Synonyms: Chemical manufacturing, fertilizer, batteries, soaps Product Form: Liquid Recommended use of the chemical and restrictions on use Recommended Use: Professional use, Industrial use. Chemical manufacturing, fertilizer, batteries, soaps Restrictions on Use: Use as recommended by the label Details of the supplier and of the safety data sheet Supplier Tersus Environmental, LLC 1116 Colonial Club Rd Wake Forest, NC 27587 Phone: +1-919-453-5577 Email: [email protected] Contact Person David F. Alden Phone: +1-919-453-5577 x2002 Email: [email protected] Emergency telephone number For leak, fire, spill or accident emergencies, call: +1-919-453-5577 (Tersus Office Hours, 8:00 AM to 5:00 PM Eastern) +1-800-424-9300 (Chemtrec 24 Hour Service – Emergency Only) +1-703-527-3887 (Chemtrec Outside United States 24 Hour Service – Emergency Only) +1-919-638-7892 Gary M. Birk (Outside office hours) 2. HAZARD IDENTIFICATION Relevant identified uses of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) GHS label elements, including precautionary statements: Signal Word: Danger Pictogram(s): GHS05 GHS07 Page 1 of 10 Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 Hazard statement H290 May be corrosive to metals. H302 Harmful if swallowed. H314 Causes severe skin burns and eye damage H318 Causes serious eye damage. H402 Harmful to aquatic life. Precautionary statement P234 Keep only in original container.
    [Show full text]
  • Potassium Hydroxide Safety Data Sheet According to Federal Register / Vol
    Potassium Hydroxide Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 10/09/2004 Revision date: 02/06/2018 Supersedes: 02/06/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Potassium Hydroxide CAS-No. : 1310-58-3 Product code : LC19190 Formula : KOH Synonyms : caustic potash / caustic potash dry / caustic potash, dry solid, flake, bead or granular / caustic potash, solid / caustic potash,solid / hydrate of potash / hydrate of potassium / hydroxide of potash / hydroxide of potassium / lye (=potassium hydroxide) / potash / potash hydrate / potash lye / potassium hydrate / potassium hydroxide (K(OH)) / potassium hydroxide dry / potassium hydroxide pellets / potassium hydroxide, dry solid, flake, bead or granular / potassium hydroxide, electrolytical, solid / potassium hydroxide, solid / Potassium hydroxide, solid / potassium lye 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) H302 Harmful if swallowed Category 4 Skin corrosion/irritation H314 Causes severe skin burns and eye damage Category 1A Hazardous to the aquatic H402 Harmful to aquatic life environment - Acute Hazard Category 3 Full text of H statements : see section 16 2.2.
    [Show full text]
  • Potassium Hydroxide, 0.1N (0.1M) in Ethanol Safety Data Sheet According to Federal Register / Vol
    Potassium Hydroxide, 0.1N (0.1M) in Ethanol Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 12/19/2013 Revision date: 02/06/2018 Supersedes: 02/06/2018 Version: 1.3 SECTION 1: Identification 1.1. Identification Product form : Mixtures Product name : Potassium Hydroxide, 0.1N (0.1M) in Ethanol Product code : LC19310 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids H225 Highly flammable liquid and vapour Category 2 Serious eye damage/eye H319 Causes serious eye irritation irritation Category 2A Carcinogenicity Category H350 May cause cancer 1A Reproductive toxicity H361 Developmental toxicity (oral) Category 2 Specific target organ H370 Causes damage to organs (central nervous system, optic nerve) (oral, Dermal) toxicity (single exposure) Category 1 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H225 - Highly flammable liquid and vapour H319 - Causes serious eye irritation H350 - May cause cancer H361 - Developmental toxicity (oral) H370 - Causes damage to organs (central nervous system, optic nerve) (oral, Dermal) Precautionary statements (GHS-US) : P201 - Obtain special instructions before use.
    [Show full text]
  • Potassium Hydroxide (P6310)
    Potassium hydroxide ACS Reagent Product Number P 6310 Store at Room Temperature 22,147-3 is an exact replacement for P 6310 Product Description Preparation Instructions Molecular Formula: KOH This product is soluble in water (100 mg/ml), yielding a Molecular Weight: 56.11 clear, colorless solution. Potassium hydroxide is also CAS Number: 1310-58-3 soluble in alcohol (1 part in 3) and glycerol (1 part Melting point: 360 °C, 380 °C (anhydrous)1 in 2.5). The dissolution of potassium hydroxide in water or alcohol is a highly exothermic (heat- This product is in the form of pellets. It is designated producing) process.1 as ACS Reagent grade, and meets the specifications of the American Chemical Society (ACS) for reagent Storage/Stability chemicals. Potassium hydroxide rapidly absorbs carbon dioxide and water from the air and deliquesces.1 Potassium Potassium hydroxide (KOH) is a caustic reagent that is hydroxide solutions should be stored in plastic bottles widely used to neutralize acids and prepare potassium (polyethylene or polypropylene). KOH solutions will salts of reagents. It is used in a variety of large-scale etch glass over a period of just a few days. applications, such as the manufacture of soap, the mercerizing of cotton, electroplating, photoengraving, References and lithography.1 1. The Merck Index, 12th ed., Entry# 7806. 2. Philip, N. S., and Green, D. M., Recovery and Potassium hydroxide is used in the analysis of bone enhancement of faded cleared and double stained and cartilage samples by histology.2,3 A protocol for specimens. Biotech. Histochem., 75(4), 193-196 the amplification of DNA from single cells by PCR that (2000).
    [Show full text]
  • CHANGES in Ph ASSOCIATED with the APPLICATION of AMMONIA and POTASSIUM HYDROXIDE to DIAPAUSING EGGS of TELEOGRYLLUS OOMMODUS (WALK.) (ORTHOPTERA: GRYLLIDAE)
    CHANGES IN pH ASSOCIATED WITH THE APPLICATION OF AMMONIA AND POTASSIUM HYDROXIDE TO DIAPAUSING EGGS OF TELEOGRYLLUS OOMMODUS (WALK.) (ORTHOPTERA: GRYLLIDAE) By T. W. HOGAN* [Manuscript received September 9, 1964] Summary Diapausing eggs of T. commodus were exposed to a:mmonia evolved from solutions of ammonium hydroxide in desiccators for specific periods. It was found that the pH of the egg contents increased with increase in concentration of the ammonium hydroxide and the period of exposure. Toxic symptoms and mortality of eggs were associated with a rise of pH exceeding 0·4 of a unit. This occurred at the higher concentrations, viz. exposure for 3 days to O· 3M or for 2-3 days to 0 ·IM ammonium hydroxide. The most favourable effect on the termination of diapause was with exposure for 3 days to O· 01M ammonium hydroxide, which raised the pH to 7· O. This was also the highest non-toxic concentration. On the basis that the rise in pH might be the causal factor for the termination of diapause, the effect of potassium hydroxide solutions on the pH of the eggs was tested and found to be moderately effective both in this regard and in accelerating the rate of termination of diapause. However, there was some termination of diapause before any significant rise in pH occurred. It appears, therefore, that the action of ammonia and of potassium hydroxide must have a common factor other than raising the pH of the egg contents. 1. INTRODUCTION It has been shown that when diapausing eggs of Teleogryllu8 commodu8 (Walk.) are exposed to ammonia evolved from solutions of ammonium hydroxide for an adequate period, diapause is terminated in a high proportion of the eggs.
    [Show full text]
  • Study of the Reactions of Chloroform with Carbonyl Compounds
    A STUDY OF .ACTIONS OF CHLOROFORM WITH CARBOHTL COMPOUNDS by ERNEST ALVA IKENBERRY A. B., McPherson College, 1947 A THESIS Submitted In partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemistry KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1951 mervV LO II TABLE OF CONTENTS ia INTRODUCTION 1 LITER. :,\IU! 2 DISCOS 3 10» 6 Products from Potassium Hydroxide 8atalyzed Pveactions . 8 Products from Quaternary Base Catalyzed Reactions ........ 13 Polymer-plastics Obtained from Chloroform- crotonaldehyde Reactions 19 Attempted Free-radical Type Reactions of Chloroform and Cinnamaldehyde 20 EXP. TAL 21 Prepare tion of Starting Materials 21 The Reaction of Chloroform and Croton- aldehyde in the Pressence of Solid Potassium Hydroxide 22 The Reaction of Chloroform and Cinnam- aldehyde and Mesityl Oxide in the Presence of Solid Potassium Hydroxide . 24 The Reaction of Chloroform and Croton- aldehyde in the Presence of an Organic Quaternary Base 25 Attempted Free-radical Type Reactions of Chloroform and Cinnamaldehyde 27 Number of Experiments Carried Oub 28 SUMMARY. 29 irinrnwTifiniwiB 31 LITERATURE CITED - 2 — INTRODUCTION Since Willgerodt (1) in 1881 reacted chloroform with acetone in the presence of solid potassium hydroxide to form trichloromethyl dimethyl carbinol, this reaction has been extended to a great number of aldehydes and ketones. G R» 0H Rt __ __ R—0=0 + R-CC13 * R C 0H cci3 The mechanism is thought to follow the usual course of base catalyzed condensations in which addition occurs between the polarized carbonyl group and the base generated trichloro- methyl anion. This investigation was undertaken to study the reaction of chloroform with acrylaldehydes.
    [Show full text]
  • Winter Caustic Blend – Canada – English
    SAFETY DATA SHEET OLIN CORPORATION Product name: Winter Caustic Blend Issue Date: 05/17/2017 Print Date: 05/31/2017 OLIN CORPORATION encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions. 1. IDENTIFICATION Product name: Winter Caustic Blend Recommended use of the chemical and restrictions on use Identified uses: Chemical intermediate. COMPANY IDENTIFICATION OLIN CORPORATION 190 CARONDELET PLAZA CLAYTON MO 63105 UNITED STATES Customer Information Number: +1 844-238-3445 [email protected] EMERGENCY TELEPHONE NUMBER Local Emergency Contact: 1 613-996-6666 2. HAZARDS IDENTIFICATION Hazard classification This product is hazardous under the criteria of the Hazardous Products Regulation (HPR) as implemented under the Workplace Hazardous Materials Information System (WHMIS 2015). Corrosive to metals - Category 1 Acute toxicity - Category 4 - Oral Skin corrosion - Category 1A Serious eye damage - Category 1 Label elements Hazard pictograms Page 1 of 11 Product name: Winter Caustic Blend Issue Date: 05/17/2017 Signal word: DANGER! Hazards May be corrosive to metals. Harmful if swallowed. Causes severe skin burns and eye damage. Precautionary statements Prevention Keep only in original packaging. Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product. Wear protective gloves/ protective clothing/ eye protection/ face protection. Response IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell. Rinse mouth. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing.
    [Show full text]
  • 3Ga.NH3 + KOH = (CH3)2Gaok + CH4 + NH3. 1 DUPONT FELLOW in Chemistry
    298 CHEMISTRY: KRA US AND TOONDER PROC. N. A. S. were treated with 7.5 N potassium hydroxide. The gases produced in the reaction were carried through standard sulphuric acid to absorb the ammonia and the remaining gas was collected over mercury by means of a Toepler pump. The residue remaining in the reaction tube was ana- lyzed for gallium. (4) Analysis for Nitrogen: substance, 0.1619, 0.2141; cc. 0.09367 N H2SO4, 13.15, 17.38; % N found, 10.66, 10.65, mean 10.65; % N required for (CH3)3Ga.NH3, 10.63. (5). Analysis for Gallium: substance, 0.1619, 0.2141; Ga203, 0.1152, 0.1525; % Ga found: 52.93, 52.98, mean 52.95; % Ga required for (CH3)3- Ga NH3, 52.89. (6) Methane Determination: m. mols (CH3)3Ga-NH3, 1.23, 1.63; cc. of gas, 27.4, 56.9; mol. wt., 16.3, 16.3; m. mols. CH4, 1.22, 1.64. Hydrolysis evidently occurs according to the equation: (CH3)3Ga.NH3 + KOH = (CH3)2GaOK + CH4 + NH3. 1 DUPONT FELLOW in Chemistry. 2 Dennis and Patnode, Jour. Amer. Chem. Soc., 54, 182 (1932). 3 Renwanz, Ber., 65, 1308 (1932). 4 Hein, Z. anorg. aligem. Chem., 141, 212 (1924). CHLORINA TION PRODUCTS OF TRIMETHYL GALLIUM By CHARLES A. KRAUS AND FRANK E. TOONDER' CHEMICAL LABORATORY, BROWN UNIVERSITY Communicated January 31, 1933 The fact that trimethyl gallium hydrolyzes in an aqueous solution of potassium hydroxide with the formation of one molecule of methane at ordinary temperatures and two molecules at higher temperatures2 indi- cates that the methyl groups are readily replaceable by more electronega- tive elements or groups.
    [Show full text]
  • Common Name: SODIUM ALUMINUM FLUORIDE HAZARD
    Common Name: SODIUM ALUMINUM FLUORIDE CAS Number: 15096-52-3 RTK Substance number: 1676 DOT Number: None Date: September 1987 Revision: April 2000 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Sodium Aluminum Fluoride can affect you when The following exposure limits are for Hydrogen Fluoride breathed in. (measured as Fluorine): * Contact can irritate and burn the skin and eyes with possible eye damage. OSHA: The legal airborne permissible exposure limit * Breathing Sodium Aluminum Fluoride can irritate the (PEL) is 2.5 mg/m3 averaged over an 8-hour nose, throat and lungs causing coughing, wheezing and/or workshift. shortness of breath. * Exposure to high levels of Sodium Aluminum Fluoride NIOSH: The recommended airborne exposure limit is can cause nausea, vomiting, abdominal pain, and 2.5 mg/m3 averaged over a 10-hour workshift salivation. and 5 mg/m3, not to be exceeded during any 15 * Long term exposure may affect joints and ligaments minute work period. causing stiffness and disability. ACGIH: The recommended airborne exposure limit is IDENTIFICATION 2.5 mg/m3 averaged over an 8-hour workshift. Sodium Aluminum Fluoride is a colorless to white powder or chunk. It is used in aluminum refining and in making WAYS OF REDUCING EXPOSURE pesticides, ceramics, glass and polishes. * Where possible, enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust REASON FOR CITATION ventilation or enclosure is not used, respirators should be * Sodium Aluminum Fluoride is on the Hazardous worn. Substance List because it is regulated by OSHA and cited * Wear protective work clothing. by ACGIH and NIOSH.
    [Show full text]