The Dissociation Constants of the Carboxyl and Hydroxyl Groups in Some Insoluble and Sol-Forming Polysaccharides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cool Reaction the Endothermic Reaction Between SCIENTIFIC Barium Hydroxide and Ammonium Thiocyanate
Cool Reaction The Endothermic Reaction Between SCIENTIFIC Barium Hydroxide and Ammonium Thiocyanate Introduction Many reactions produce heat, in fact when people think of chemical reactions, heat production is often expected. However, endothermic reactions, reactions which consume heat, can be just as exciting. One of the most striking examples of this is when the solids barium hydroxide and ammonium thiocyanate are mixed together in a beaker. Materials Ammonium thiocyanate, NH4SCN, 10 g Stirring rod Barium hydroxide octahydrate, Ba(OH)28H2O, 20 g Thermometer graduated to at least –30 °C Erlenmeyer flask, small, with stopper, or a 50-mL beaker Safety Precautions Barium salts are toxic by ingestion. Ammonium thiocyanate is also toxic by ingestion. Use caution when handling the beaker or flask. Use tongs if available. The temperatures involved are cold enough to freeze skin. Ammonia vapor is very irritating to eyes and the respiratory tract. Do not allow students to inhale this gas. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Transfer 20 g of barium hydroxide and 10 g of ammonium thiocyanate to a flask and mix with a glass or plastic stirring rod. 2. In less than two minutes the solids become liquid. A thermometer placed in the mixture shows the temperature falling far below freezing. An ammonia odor is evident to all who are near the flask. 3. Place the flask in a small puddle of water and your students will clearly see just how cool this reaction is; the water will freeze the flask to the counter top. -
Writing Total and Net Ionic Equations
WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3. -
Acetal (POM) Chemical Compatibility Chart From
ver 31-Mar-2020 Acetal (POM) Chemical Compatibility Chart Chemical Chemical Acetaldehyde A Ammonium Acetate C Acetamide A Ammonium Bifluoride D Acetate Solvents A Ammonium Carbonate D Acetic Acid D Ammonium Caseinate D Acetic Acid, 20% C Ammonium Chloride, 10% B Acetic Acid, 80% D Ammonium Hydroxide D Acetic Acid, Glacial D Ammonium Nitrate, 10% A Acetic Anhydride D Ammonium Oxalate B Acetone A Ammonium Persulfate D Acetyl Chloride, dry D Ammonium Phosphate, Dibasic B Acetylene A Ammonium Phosphate, Monobasic B Alcohols: Amyl A Ammonium Phosphate, Tribasic B Alcohols: Benzyl A Ammonium Sulfate B Alcohols: Butyl A Ammonium Sulfite D Alcohols: Diacetone A Ammonium Thiosulfate B Alcohols: Ethyl A Amyl Acetate B Alcohols: Hexyl A Amyl Alcohol A Alcohols: Isobutyl A Amyl Chloride A Alcohols: Isopropyl A Aniline A Alcohols: Methyl A Aniline Oil D Alcohols: Octyl A Anise Oil D Alcohols: Propyl (1-Propanol) A Antifreeze D Aluminum chloride, 20% C Aqua Regia (80% HCl, 20% HNO3) D Aluminum Fluoride C Aromatic Hydrocarbons A Aluminum Hydroxide A Arsenic Acid D Aluminum Nitrate B Asphalt B Aluminum Potassium Sulfate, 10% C Barium Carbonate A Aluminum Potassium Sulfate, 100% C Barium Chloride A Aluminum Sulfate, 10% B Barium Cyanide B Alums C Barium Hydroxide D Amines D Barium Nitrate B Ammonia, 10% (Ammonium Hydroxide) C Barium Sulfate B Ammonia, 10% D Barium Sulfide A Ammonia, anhydrous D Bay Oil D Ammonia, liquid D Beer A Ammonia Nitrate C Beet Sugar Liquids B Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. -
Potassium Hydroxide Cas N°: 1310-58-3
OECD SIDS POTASSIUM HYDROXIDE FOREWORD INTRODUCTION POTASSIUM HYDROXIDE CAS N°: 1310-58-3 UNEP PUBLICATIONS 1 OECD SIDS POTASSIUM HYDROXIDE SIDS Initial Assessment Report For SIAM 13 Bern, Switzerland, 6-9 November 2001 1. Chemical Name: Potassium hydroxide 2. CAS Number: 1310-58-3 3. Sponsor Country: Belgium Dr. Thaly LAKHANISKY J. Wytsman 16 B-1050 Brussels, Belgium Tel : + 32 2 642 5104 Fax : +32 2 642 5224 E-mail : [email protected] 4. Shared Partnership with: ICCA (Tessenderlo Chemie NV) 5. Roles/Responsibilities of the Partners: · Name of industry sponsor /consortium · Process used 6. Sponsorship History · How was the chemical or In 2001, ICCA (Tessenderlo Chemie NV)) had proposed sponsor category brought into the and prepared draft documents(Dossier, SIAR, SIAP). It was OECD HPV Chemicals submitted to the SIDS contact point of Belgium on May 2001. Programme? The draft documents were revised by Belgium after discussion with Tessenderlo Chemie NV. The revised draft was discussed in detail with Tessenderlo Chemie NV on June and July 2001. After agreement, the documents were finalized and the checklist was developed by jointly by Belgium and Tessenderlo Chemie NV 7. Review Process Prior to the SIAM: 8. Quality check process: 9. Date of Submission: 10. Date of last Update: February 2002 11. Comments: No testing 2 UNEP PUBLICATIONS OECD SIDS POTASSIUM HYDROXIDE SIDS INITIAL ASSESSMENT PROFILE CAS No. 1310-58-3 Chemical Name Potassium hydroxide Structural Formula KOH RECOMMENDATIONS The chemical is currently of low priority for further work. SUMMARY CONCLUSIONS OF THE SIAR Human Health Solid KOH is corrosive. -
Exposure to Potassium Hydroxide Can Cause Headache, Eye Contact Dizziness, Nausea and Vomiting
Right to Know Hazardous Substance Fact Sheet Common Name: POTASSIUM HYDROXIDE Synonyms: Caustic Potash; Lye; Potassium Hydrate CAS Number: 1310-58-3 Chemical Name: Potassium Hydroxide (KOH) RTK Substance Number: 1571 Date: May 2001 Revision: January 2010 DOT Number: UN 1813 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Potassium Hydroxide is an odorless, white or slightly yellow, Hazard Summary flakey or lumpy solid which is often in a water solution. It is Hazard Rating NJDOH NFPA used in making soap, as an electrolyte in alkaline batteries and HEALTH - 3 in electroplating, lithography, and paint and varnish removers. FLAMMABILITY - 0 Liquid drain cleaners contain 25 to 36% of Potassium REACTIVITY - 1 Hydroxide. CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE DOES NOT BURN Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Potassium Hydroxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by ACGIH, DOT, NIOSH, NFPA and EPA. f Potassium Hydroxide can affect you when inhaled and by f This chemical is on the Special Health Hazard Substance passing through the skin. List. f Potassium Hydroxide is a HIGHLY CORROSIVE CHEMICAL and contact can severely irritate and burn the skin and eyes leading to eye damage. f Contact can irritate the nose and throat. f Inhaling Potassium Hydroxide can irritate the lungs. SEE GLOSSARY ON PAGE 5. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. FIRST AID f Exposure to Potassium Hydroxide can cause headache, Eye Contact dizziness, nausea and vomiting. -
PCTM 17 ISSUED-1996 Method to Determine Rosin Acids in Tall Oil
PCTM 17 ISSUED-1996 Method to determine rosin acids in tall oil Scope 3. Methyl sulfuric acid solution, 20% - Caution: This method covers the determination of rosin acids in Slowly pour 100 g of concentrated sulfuric acid (- tall oils containing more than 15% rosin acids. 96%), while stirring constantly, into 400 g of methanol. This method may not be applicable to adducts or 4 . Thymol blue indicator - Weigh 0.1 g thymol blue in derivatives of tall oils, or other naval stores products. 100 mL methanol. Fatty acids are esterified by methanol in the presence of sulfuric Sample Preparation acid catalyst, and rosin acids are determined by titration after neutralization of the sulfuric acid. 1. Dissolve 5 ± 0.5 g of sample, weighed to the nearest 0.001 g, into a 250-m1. Erlenmeyer flask. Apparatus 2. Add 100 mL of methanol and swirl to dissolve. 3. Add 5.0 mL of methyl sulfuric acid solution. 1. Beaker, tall-form, 300-mL capacity. 4. Connect the flask to the condenser and reflux for 2. Buret, 50-mL capacity with 0.1-mL divisions. 30 minutes. Allow the flask to cool to Electronic burets are preferable for increased approximately room temperature. accuracy and precision. 3. Erlenmeyer flask, 250-mL flat-bottom fitted with a Method A - Potentiometric Titration condenser. 4. pH meter, capable of reading ± 0.1 pH over a 1. Titrate with the KOH solution to a fixed pH of range of pH 1 to pH 13 in alcoholic "solutions. 4.0, the first end point. 5. Pipet, 5-mL. -
Succinic Acid
ENVIRONMENTAL FACTSHEET: SUCCINIC ACID PRODUCT INFORMATION Succinic acid (COOH(CH2)2COOH) is a carboxylic acid used in food (as an acidulant), pharmaceutical (as an excipient), personal care (soaps) and chemical (pesticides, dyes and lacquers) industries. Bio-based succinic acid is seen as an important platform chemical for the production of biodegradable plastics and as a substitute of several chemicals (such as adipic acid) [1]. Lignocellulosic Crops and Starch Crops Sugar Crops Today succinic acid is mainly produced Type of Type Biomass Residues from fossil resources through maleic acid hydrogenation. It can also be produced through fermentation of sugars. In that Cultivation and Harvesting case, in addition to succinic acid, other Biomass carboxylic acids (such as lactic acid, formic Production acid, propionic acid) and alcohols (such as ethanol) are also obtained. The production Starch Sugar Pretreatment Extraction & Extraction & ratios of these by-product compounds Separation Separation depend on the microorganism strain used and on the operation conditions. Several Hemicellulose Food Food Feed companies and industrial consortiums Lignin Cellulose Starch Feed Saccharose started bio-based production of succinic acid at demonstration scale (up to 70 ktonnes/year of full capacity, per Hydrolysis production plant [2]). Two strategies are being used for succinic acid fermentation [1]: (1) Use of bacteria strains, isolated Glucose from rumen. This strains are excellent Biomass Conversion Biomass natural succinic acid producers and their yields can be improved, though metabolic engineering; (2) Use of well-known Fermentation industrial microorganisms (such as Escherichia coli or Saccharomyces cervisiae) and modify their minor succinic acid production capability into high yields Succinic Acid through metabolic engineering. -
Mccord (Pmccord) – HW6 Acids, Bases and Salts – Mccord – (51520) 1 This Print-Out Should Have 45 Questions
mccord (pmccord) – HW6 Acids, Bases and Salts – mccord – (51520) 1 This print-out should have 45 questions. 6. The term is misleading, because the am- Multiple-choice questions may continue on monium ion is not an acid. the next column or page – find all choices Explanation: before answering. 003 10.0 points 001 10.0 points −9 If the value of Kb for pyridine is 1.8 × 10 , Assume that five weak acids, identified only calculate the equilibrium constant for by numbers (1, 2, 3, 4, and 5), have the + C5H5NH (aq)+ H2O(ℓ) → following ionization constants. + C5H5N(aq) + H3O (aq) . − Ionization 1. 5.6 × 10 6 correct Acid Constant − Ka value 2. 1.8 × 10 9 − 1 1.0 × 10 3 − × −16 2 3.0 × 10 5 3. 1.8 10 − 3 2.6 × 10 7 − × 8 4 4.0 × 10 9 4. 5.6 10 −11 5 7.3 × 10 − 5. −1.8 × 10 9 The anion of which acid is the strongest Explanation: base? 004 10.0 points 1. 4 Which of the following is true in pure water at any temperature? 2. 5 correct 1. Kw decreases with increasing tempera- 3. 2 ture. + − −14 4. 3 2. [H3O ][OH ] = 1.0 × 10 + − 5. 1 3. [H3O ] = [OH ] correct Explanation: 4. pH = 7.0 or greater than 7.0 002 10.0 points 5. pH = 7.0 The term “Ka for the ammonium ion” de- scribes the equilibrium constant for which of Explanation: the following reactions? Kw is shown to INCREASE with increas- ing temperature. pH = 7 is only true when + ⇀ + ◦ + − 1. -
SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision Date: 2020-06-15 Version: 1.0
SAFETY DATA SHEET Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Name: Potassium Hydroxide, Liquid 45-50% Synonyms: Chemical manufacturing, fertilizer, batteries, soaps Product Form: Liquid Recommended use of the chemical and restrictions on use Recommended Use: Professional use, Industrial use. Chemical manufacturing, fertilizer, batteries, soaps Restrictions on Use: Use as recommended by the label Details of the supplier and of the safety data sheet Supplier Tersus Environmental, LLC 1116 Colonial Club Rd Wake Forest, NC 27587 Phone: +1-919-453-5577 Email: [email protected] Contact Person David F. Alden Phone: +1-919-453-5577 x2002 Email: [email protected] Emergency telephone number For leak, fire, spill or accident emergencies, call: +1-919-453-5577 (Tersus Office Hours, 8:00 AM to 5:00 PM Eastern) +1-800-424-9300 (Chemtrec 24 Hour Service – Emergency Only) +1-703-527-3887 (Chemtrec Outside United States 24 Hour Service – Emergency Only) +1-919-638-7892 Gary M. Birk (Outside office hours) 2. HAZARD IDENTIFICATION Relevant identified uses of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) GHS label elements, including precautionary statements: Signal Word: Danger Pictogram(s): GHS05 GHS07 Page 1 of 10 Potassium Hydroxide, Liquid 45-50% Revision date: 2020-06-15 Version: 1.0 Hazard statement H290 May be corrosive to metals. H302 Harmful if swallowed. H314 Causes severe skin burns and eye damage H318 Causes serious eye damage. H402 Harmful to aquatic life. Precautionary statement P234 Keep only in original container. -
Potassium Hydroxide Safety Data Sheet According to Federal Register / Vol
Potassium Hydroxide Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 10/09/2004 Revision date: 02/06/2018 Supersedes: 02/06/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Potassium Hydroxide CAS-No. : 1310-58-3 Product code : LC19190 Formula : KOH Synonyms : caustic potash / caustic potash dry / caustic potash, dry solid, flake, bead or granular / caustic potash, solid / caustic potash,solid / hydrate of potash / hydrate of potassium / hydroxide of potash / hydroxide of potassium / lye (=potassium hydroxide) / potash / potash hydrate / potash lye / potassium hydrate / potassium hydroxide (K(OH)) / potassium hydroxide dry / potassium hydroxide pellets / potassium hydroxide, dry solid, flake, bead or granular / potassium hydroxide, electrolytical, solid / potassium hydroxide, solid / Potassium hydroxide, solid / potassium lye 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) H302 Harmful if swallowed Category 4 Skin corrosion/irritation H314 Causes severe skin burns and eye damage Category 1A Hazardous to the aquatic H402 Harmful to aquatic life environment - Acute Hazard Category 3 Full text of H statements : see section 16 2.2. -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
Step-By-Step Guide to Better Laboratory Management Practices
Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12