Acetal (POM) Chemical Compatibility Chart From

Total Page:16

File Type:pdf, Size:1020Kb

Acetal (POM) Chemical Compatibility Chart From ver 31-Mar-2020 Acetal (POM) Chemical Compatibility Chart Chemical Chemical Acetaldehyde A Ammonium Acetate C Acetamide A Ammonium Bifluoride D Acetate Solvents A Ammonium Carbonate D Acetic Acid D Ammonium Caseinate D Acetic Acid, 20% C Ammonium Chloride, 10% B Acetic Acid, 80% D Ammonium Hydroxide D Acetic Acid, Glacial D Ammonium Nitrate, 10% A Acetic Anhydride D Ammonium Oxalate B Acetone A Ammonium Persulfate D Acetyl Chloride, dry D Ammonium Phosphate, Dibasic B Acetylene A Ammonium Phosphate, Monobasic B Alcohols: Amyl A Ammonium Phosphate, Tribasic B Alcohols: Benzyl A Ammonium Sulfate B Alcohols: Butyl A Ammonium Sulfite D Alcohols: Diacetone A Ammonium Thiosulfate B Alcohols: Ethyl A Amyl Acetate B Alcohols: Hexyl A Amyl Alcohol A Alcohols: Isobutyl A Amyl Chloride A Alcohols: Isopropyl A Aniline A Alcohols: Methyl A Aniline Oil D Alcohols: Octyl A Anise Oil D Alcohols: Propyl (1-Propanol) A Antifreeze D Aluminum chloride, 20% C Aqua Regia (80% HCl, 20% HNO3) D Aluminum Fluoride C Aromatic Hydrocarbons A Aluminum Hydroxide A Arsenic Acid D Aluminum Nitrate B Asphalt B Aluminum Potassium Sulfate, 10% C Barium Carbonate A Aluminum Potassium Sulfate, 100% C Barium Chloride A Aluminum Sulfate, 10% B Barium Cyanide B Alums C Barium Hydroxide D Amines D Barium Nitrate B Ammonia, 10% (Ammonium Hydroxide) C Barium Sulfate B Ammonia, 10% D Barium Sulfide A Ammonia, anhydrous D Bay Oil D Ammonia, liquid D Beer A Ammonia Nitrate C Beet Sugar Liquids B Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or product damage. Industrial Specialties Mfg. 4091 S. Eliot St., Englewood, CO 80110-4396 and IS MED Specialties Phone 303-781-8486 I Fax 303-761-7939 ISM End your search, simplify your supply chain industrialspec.com I ismedspec.com ISO 9001:2015 Certified Companies © Copyright 2020 Industrial Specialties Mfg. Acetal (POM) Chemical Compatibility Chart ver 04-Feb-2018 Chemical Chemical Benzaldehyde A Carbon Dioxide, dry A Benzene A Carbon Dioxide, wet A Benzene Sulfonic Acid C Carbon Disulfide A Benzoic Acid B Carbon Monoxide Gas A Benzol A Carbon Tetrachloride, wet A Benzyl Chloride A Carbonated Water (carbonic acid) A Bone Oil D Carbonic Acid (carbonated water) B Borax (Sodium Borate) B Castor Oil A Boric Acid, 10% A Catsup B Brewery Slop B Chloric Acid D Bromine Gas D Chlorine, anhydrous liquid A Butadiene A Chlorine Gas, dry 10% D Butane Gas A Chlorine Water (5-10 ppm) D Butanol (Butyl Alcohol) A Chloroacetic Acid D Butter A Chlorobenzene (mono) D Buttermilk A Chlorobromomethane B Butylene A Chloroform A Butyl Acetate A Chlorosulfonic Acid D Butyl Amine C Chocolate Syrup A Butyl Ether D Chromic Acid, 5% D Butyric Acid, 20% A Chromic Acid, 10% D Calcium Bisulfide D Chromic Acid, 30% D Calcium Bisulfite D Chromic Acid, 50% D Calcium Carbonate (Chalk) CaCO3 A Cider A Calcium Chlorate A Cinnamon Oil D Calcium Chloride, 10% D Citric Acid, aqueous 10% B Calcium Hydroxide (Lye), 10% D Citric Oils D Calcium Hypochlorite D Citrus Oil or Terpene (d-Limonene) D Calcium Nitrate D Clorox® Bleach D Calcium Oxide (Unslaked Lime) CaO A Coconut Oil A Calcium Sulfate, 10% D Coffee A Calgon A Copper Chloride A Cane Juice A Copper cyanide A Carbolic Acid (Phenol) D Copper Fluoroborate B Carbon Bisulfide A Copper Nitrate A Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or product damage. Industrial Specialties Mfg. 4091 S. Eliot St., Englewood, CO 80110-4396 and IS MED Specialties Phone 303-781-8486 I Fax 303-761-7939 ISM End your search, simplify your supply chain industrialspec.com I ismedspec.com ISO 9001:2015 Certified Companies © Copyright 2019 Industrial Specialties Mfg. Acetal (POM) Chemical Compatibility Chart ver 04-Feb-2018 Chemical Chemical Copper Sulfate, 5% D Ethylene Oxide Gas (EtO), dry 3% D Copper Sulfate, over 5% D Fatty Acids A Cream A Ferric Chloride, 10% D Creosote Oil D Ferric Nitrate D Cresols D Ferric Sulfate D Cresylic Acid D Ferrous Chloride D Cyanic Acid D Ferrous Sulfate D Cyclohexane A Fluobric Acid A Cyclohexanone A Fluorine Gas D Detergents A Fluosilicic Acid, 20% B Diacetone Alcohol A Fluosilicic Acid, 100% A Dichlorobenzene B Formaldehyde, 40% A Dichloroethane A Formaldehyde, 100% A Diesel Fuel A Formic Acid (methanoic acid), 10% A Diethyl Ether A Freon 11 D Diethylamine B Freon 12 B Diethylene Glycol A Freon 22 A Dimethyl Aniline D Freon TF A Dimethylformamide D Fruit Juices D Diphenyl Oxide D Fuel Oils A Dyes C Furan Resin D Epsom Salts (magnesium sulfate) B Furfural (ant oil ) C5H4O2 A Ethane A Gasoline, high-aromatic B Ethanol (ethyl alcohol) A Gasoline, leaded A Ethanolamine D Gasoline, unleaded A Ether A Gelatin B Ethyl Acetate A Ginger Oil A Ethyl Benzoate A Glucose A Ethyl Chloride A Glue, PVA (polyvinyl acetate) A Ethyl Ether A Glycerin A Ethylene Chloride A Glycolic Acid A Ethylene Chlorohydrin D Gold Monocyanide A Ethyl Diamine D Grape Juice A Ethylene Dichloride B Grease D Ethylene Glycol B Heptane A Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or product damage. Industrial Specialties Mfg. 4091 S. Eliot St., Englewood, CO 80110-4396 and IS MED Specialties Phone 303-781-8486 I Fax 303-761-7939 ISM End your search, simplify your supply chain industrialspec.com I ismedspec.com ISO 9001:2015 Certified Companies © Copyright 2019 Industrial Specialties Mfg. Acetal (POM) Chemical Compatibility Chart ver 04-Feb-2018 Chemical Chemical Hexane A Lacquer Thinners D Hexyl Alcohol A Lacquers D Honey A Lactic Acid B Hydraulic Oil, petroleum based B Lard A Hydraulic Oil, synthetic B Latex B Hydrazine (Diamine) H2NNH2 B Lead Acetate B Hydrobromic Acid, 20% C Lead Sulfamate A Hydrobromic Acid, 100% D Lemon Oil D Hydrochloric Acid, 20% C Ligroin B Hydrochloric Acid, 37% C Lime (CaO) B Hydrochloric Acid, 100% C Linoleic Acid B Hydrocyanic Acid A Linseed Oil A Hydrocyanic Acid Gas, 10% C Lithium Chloride A Hydrofluoric Acid, 20% D Lubricants A Hydrofluoric Acid, 50% D Lye (Ca(OH)2, calcium hydroxide) D Hydrofluoric Acid, 75% D Lye (KOH, potassium hydroxide) A Hydrofluoric Acid, 100% D Lye (NaOH, sodium hydroxide) C Hydrofluosilicic Acid, 20% B Magnesium Carbonate A Hydrofluosilicic Acid, 100% A Magnesium Chloride, 10% B Hydrogen Peroxide, 10% D Magnesium Hydroxide, 10% A Hydrogen Peroxide, 30% D Magnesium Nitrate A Hydrogen Peroxide, 50% D Magnesium Oxide A Hydrogen Peroxide, 100% D Magnesium Sulfate (Epsom salts) B Hydrogen Sulfide, aqueous C Maleic Acid A Hydrogen Sulfide, dry A Maleic Anhydride D Hydroquinone A Malic Acid (Apple Acid) C4H6O5 A Hydroxyacetic Acid, 70% A Manganese Sulfate A Ink B Mash A Iodine D Mayonnaise A Iodine, in alcohol D Melamine A Isopropyl Acetate D Mercuric chloride, dilute B Isopropyl Ether D Mercury A Jet Fuel (JP3, JP4, JP5) A Methane Gas A Kerosene A Methanol (methyl alcohol) A Ketones D Methyl Acetate B Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or product damage. Industrial Specialties Mfg. 4091 S. Eliot St., Englewood, CO 80110-4396 and IS MED Specialties Phone 303-781-8486 I Fax 303-761-7939 ISM End your search, simplify your supply chain industrialspec.com
Recommended publications
  • Cool Reaction the Endothermic Reaction Between SCIENTIFIC Barium Hydroxide and Ammonium Thiocyanate
    Cool Reaction The Endothermic Reaction Between SCIENTIFIC Barium Hydroxide and Ammonium Thiocyanate Introduction Many reactions produce heat, in fact when people think of chemical reactions, heat production is often expected. However, endothermic reactions, reactions which consume heat, can be just as exciting. One of the most striking examples of this is when the solids barium hydroxide and ammonium thiocyanate are mixed together in a beaker. Materials Ammonium thiocyanate, NH4SCN, 10 g Stirring rod Barium hydroxide octahydrate, Ba(OH)28H2O, 20 g Thermometer graduated to at least –30 °C Erlenmeyer flask, small, with stopper, or a 50-mL beaker Safety Precautions Barium salts are toxic by ingestion. Ammonium thiocyanate is also toxic by ingestion. Use caution when handling the beaker or flask. Use tongs if available. The temperatures involved are cold enough to freeze skin. Ammonia vapor is very irritating to eyes and the respiratory tract. Do not allow students to inhale this gas. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Transfer 20 g of barium hydroxide and 10 g of ammonium thiocyanate to a flask and mix with a glass or plastic stirring rod. 2. In less than two minutes the solids become liquid. A thermometer placed in the mixture shows the temperature falling far below freezing. An ammonia odor is evident to all who are near the flask. 3. Place the flask in a small puddle of water and your students will clearly see just how cool this reaction is; the water will freeze the flask to the counter top.
    [Show full text]
  • Writing Total and Net Ionic Equations
    WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3.
    [Show full text]
  • INDOLES from 2-METHYLNITROBENZENES by CONDENSATION with FORMAMIDE ACETALS FOLLOWED by REDUCTION: 4-BENZYLOXYINDOLE [1H-Indole, 4-(Phenylmethoxy)-]
    DOI:10.15227/orgsyn.063.0214 Organic Syntheses, Coll. Vol. 7, p.34 (1990); Vol. 63, p.214 (1985). INDOLES FROM 2-METHYLNITROBENZENES BY CONDENSATION WITH FORMAMIDE ACETALS FOLLOWED BY REDUCTION: 4-BENZYLOXYINDOLE [1H-Indole, 4-(phenylmethoxy)-] Submitted by Andrew D. Batcho1 and Willy Leimgruber2. Checked by David J. Wustrow and Andrew S. Kende. 1. Procedure A. 6-Benzyloxy-2-nitrotoluene. A stirred mixture of 124.7 g (0.81 mol) of 2-methyl-3-nitrophenol (Note 1), 113.2 g (0.90 mol) of benzyl chloride, 112.2 g (0.81 mol) of anhydrous potassium carbonate, and 800 mL of dimethylformamide (DMF) is heated at 90°C for 3 hr. Most of the DMF is removed on a rotary evaporator (20 mm) and the oily residue is poured into 400 mL of 1 N sodium hydroxide and extracted with ether (3 × 800 mL). The combined extracts are dried (Na2SO4), filtered, and evaporated to give 203.5 g of yellowish solid. Recrystallization from 1 L of methanol cooled to 0°C affords 177.6 (90%) of 6-benzyloxy-2-nitrotoluene as pale-yellow crystals, mp 61–63°C3 (Note 2). B. (E)-6-Benzyloxy-2-nitro-β-pyrrolidinostyrene. To a solution of 175.4 g (0.72 mol) of 6- benzyloxy-2-nitrotoluene in 400 mL of DMF are added 102.5 g (0.84 mol) of N,N-dimethylformamide dimethyl acetal (Note 3) and 59.8 g (0.84 mol) of pyrrolidine. The solution is heated at reflux (110°C) for 3 hr (Note 4) under nitrogen and allowed to cool to room temperature.
    [Show full text]
  • Handout: Organic Chemistry Reactions
    Handout: Organic Chemistry Reactions Reactions Organized by Compound Families Alkanes 1. Combustion 2. Halogenation Alkenes and Alkynes 1. Additions: hydrogenation, halogenation, hydrohalogenation, hydration 2. Polymerization Aromatic Compounds Substitutions: nitration, halogenation, sulfonation Alcohols 1. Elimination: dehydration 2. Oxidations Thiols Oxidation Amines Acid-Base reactions Aldehydes and Ketones 1. Addition: Acetal/hemiacetal formation by alcohol addition (Reverse rxn: Acetal hydrolysis with acid) 2. Oxidation and Reduction for aldehydes (*Ketones go through reduction only) Carboxylic Acids 1. Substitutions: esterification, amidation (Reverse rxns: ester hydrolysis with acid or base, amide hydrolysis with acid or base) 2. Acid-base reactions Phosphoric acid and Phosphates Phosphoric acid: Esterification with alcohol Phosphates: Phosphorylation H. Kim for Chem 30B 1 Reactions Organized by Reaction Type Family Reaction Example 1. ADDITION Alkenes and Hydrogenation H H Pd catalyst H H C C + H2 H C C H alkynes H H H H H H Pd catalyst H C C H + 2 H2 H C C H H H Halogenation H H Cl Cl C C + Cl2 (or Br2) H C C H H H H H H Cl Hydro- H H Markonikov’s Rule halogenation C C + HCl (or HBr) H C C H applies: H adds to C H CH3 H CH3 with more Hs already. H OH Hydration H H H+ catalyst C C + H2O H C C H Markonikov’s Rule H CH3 H CH3 applies. Aldehydes Addition of O OH H+ catalyst H3C C H(R) + CH3CH2OH and ketones alcohol to get H3C C H(R) + CH3CH2OH hemiacetals or O CH2CH3 acetals hemiacetal O CH2CH3 H+ catalyst H3C C H(R) + H2O O CH2CH3 acetal 2.
    [Show full text]
  • Mccord (Pmccord) – HW6 Acids, Bases and Salts – Mccord – (51520) 1 This Print-Out Should Have 45 Questions
    mccord (pmccord) – HW6 Acids, Bases and Salts – mccord – (51520) 1 This print-out should have 45 questions. 6. The term is misleading, because the am- Multiple-choice questions may continue on monium ion is not an acid. the next column or page – find all choices Explanation: before answering. 003 10.0 points 001 10.0 points −9 If the value of Kb for pyridine is 1.8 × 10 , Assume that five weak acids, identified only calculate the equilibrium constant for by numbers (1, 2, 3, 4, and 5), have the + C5H5NH (aq)+ H2O(ℓ) → following ionization constants. + C5H5N(aq) + H3O (aq) . − Ionization 1. 5.6 × 10 6 correct Acid Constant − Ka value 2. 1.8 × 10 9 − 1 1.0 × 10 3 − × −16 2 3.0 × 10 5 3. 1.8 10 − 3 2.6 × 10 7 − × 8 4 4.0 × 10 9 4. 5.6 10 −11 5 7.3 × 10 − 5. −1.8 × 10 9 The anion of which acid is the strongest Explanation: base? 004 10.0 points 1. 4 Which of the following is true in pure water at any temperature? 2. 5 correct 1. Kw decreases with increasing tempera- 3. 2 ture. + − −14 4. 3 2. [H3O ][OH ] = 1.0 × 10 + − 5. 1 3. [H3O ] = [OH ] correct Explanation: 4. pH = 7.0 or greater than 7.0 002 10.0 points 5. pH = 7.0 The term “Ka for the ammonium ion” de- scribes the equilibrium constant for which of Explanation: the following reactions? Kw is shown to INCREASE with increas- ing temperature. pH = 7 is only true when + ⇀ + ◦ + − 1.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • Toxicological Profile for Barium and Barium Compounds
    TOXICOLOGICAL PROFILE FOR BARIUM AND BARIUM COMPOUNDS U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2007 BARIUM AND BARIUM COMPOUNDS ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. BARIUM AND BARIUM COMPOUNDS iii UPDATE STATEMENT A Toxicological Profile for Barium and Barium Compounds, Draft for Public Comment was released in September 2005. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 BARIUM AND BARIUM COMPOUNDS iv This page is intentionally blank. v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 26-Sep-2009 Revision Date 10-Feb-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Barium hydroxide, anhydrous Cat No. : 12195 CAS-No 17194-00-2 EC-No. 241-234-5 Molecular Formula BaH2O2 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards ______________________________________________________________________________________________ ALFAA12195 Page 1 / 11 SAFETY DATA SHEET Barium hydroxide, anhydrous Revision Date 10-Feb-2021 ______________________________________________________________________________________________ Acute oral toxicity Category 4 (H302) Acute Inhalation Toxicity - Dusts and Mists
    [Show full text]
  • Chapter 3. the Concept of Protecting Functional Groups
    Chapter 3. The Concept of Protecting Functional Groups When a chemical reaction is to be carried out selectively at one reactive site in a multifunctional compound, other reactive sites must be temporarily blocked. A protecting group must fulfill a number of requirements: • The protecting group reagent must react selectively (kinetic chemoselectivity) in good yield to give a protected substrate that is stable to the projected reactions. • The protecting group must be selectively removed in good yield by readily available reagents. • The protecting group should not have additional functionality that might provide additional sites of reaction. 3.1 Protecting of NH groups Primary and secondary amines are prone to oxidation, and N-H bonds undergo metallation on exposure to organolithium and Grignard reagents. Moreover, the amino group possesses a lone pair electrons, which can be protonated or reacted with electrophiles. To render the lone pair electrons less reactive, the amine can be converted into an amide via acylation. N-Benzylamine Useful for exposure to organometallic reagents or metal hydrides Hydrogenolysis Benzylamines are not cleaved by Lewis acid Pearlman’s catalyst Amides Basicity of nitrogen is reduced, making them less susceptible to attack by electrophilic reagent The group is stable to pH 1-14, nucleophiles, organometallics (except organolithium reagents), catalytic hydrogenation, and oxidation. Cleaved by strong acid (6N HCl, HBr) or diisobutylaluminum hydride Carbamates Behave like a amides, hence no longer act as nucleophile Stable to oxidizing agents and aqueous bases but may react with reducing agents. Iodotrimethylsilane is often the reagent for removal of this protecting group Stable to both aqueous acid and base Benzoyloxycarbonyl group for peptide synthesis t-butoxycarbonyl group(Boc) is inert to hydrogenolysis and resistant to bases and nucleophilic reagent.
    [Show full text]
  • Lab #9: Respiration
    BIOL 442 – Plant Physiology Lab #9: Respiration Report due: 30 Nov 2019 Germinating seeds are not yet able to acquire the energy they need through photosynthesis, and so they depend largely upon respiration for their early development. Germination and establishment are very important parts of a plant's life cycle through which numerous individuals do not survive. Therefore, measuring respiration rate of this stage under different environmental conditions will supply us with a greater understanding of these critical developmental stages. In the first experiment of this exercise, we will measure the respiration rate of germinating seeds at four different temperatures comparing them to controls which do not contain seeds. In the second experiment, you will stain seeds that have been germinated at three different temperatures with a compound that will become colored in actively respiring cells. These results will be used to assess the effects of temperature on respiration for developing seedlings. Objectives: Measure the respiration rate of seeds at different temperatures of seeds (seeds were germinated at room temperature). Observe respiration activity (by color changes in a dye indicating respiratory enzyme activity) for seeds germinated at three different temperatures. Materials: 0.1 M Ba(OH)2 solution -- Be careful. As a strong base, it is TOXIC. 1 M HCl 1 % phenolphthalein cheesecloth string 1 % Tetrazolium Because of time constraints, each group of students will split into two sub-groups: one sub-group will perform Experiment 1, and one sub-group will perform Experiment 2, the tetrazolium experiment. If either sub-group of your group finishes before the others, they are expected to help with the other parts of these experiments.
    [Show full text]
  • Hydration of Ketones and Aldehydes
    Hydration of Ketones and Aldehydes H H H O O H H H H HO OH H2O O O HO OH O a hydrated ketone H H O HO OH H2O Keq = 2000 uncrowded H H H H Aldehydes exist as partial hydrates in aqueous solution: O HO OH H2O Keq = 1 more crowded Me H Me H O H O HO OH Ketones generally do not favor hydration: 2 Keq = 0.002 very crowded Me Me Me Me Nucleophilic Addition of "O–" to Carbonyl Groups Na O O OH H+ (workup) O HO Na + H2O Me Me Me Me Me Me OH OH Me Me A hydrated ketone Starting material! pKa of H2O: approx. 16 pKa of alkoxide: 16-20 Na O O OH H+ (workup) O MeO Na + MeOH Me Me Me Me Me Me OMe OMe Me Me A hemiacetal Starting material! (usually unstable) pKa of MeOH: approx. 15 pKa of alkoxide: 16-20 Hydration of Ketones and Aldehydes 18 O 18 O H2 O + Me Me H cat. Me Me H H H 18O 18O H H H Me Me H H Me 18 18 O O H O OH O H H Me 18O Me Me H H H18O OH H Me Me 18 H O a hydrated ketone Me Me H 18 H O OH2 18 O 18O Me Me Me Me Addition of Alcohols to Carbonyl Groups: Acetal Formation O ROH, H+ RO OR Me Me Me Me An acetal MeOH H+ Me Me H H Me O O MeO OH H+ Me MeOHMe Me MeO OH MeOH Me Me a hemiacetal MeO OMe H Me Me Me MeO OH2 Me Me MeO OMe O Me Me Me An acetal Me MeOH H2O Acetals as Carbonyl Protecting Groups O OH MeMgCl Me Me Me Me Me MeO OMe MeMgCl No reaction Me Me O Br O Li–Bu O P(Ph)3 Br (Ph)3P X (Ph)3P Me Me Me Butyllithium will react with the ketone, and the reagent will react with itself! O MeO OMe MeOH, H+ MeO OMe (Ph) P Br Br 3 Me Me Me A stable reagent O O MeO OMe + H2O, H Me Me Cyclic Hemiacetals MeOH H+ Me H Me MeOH Me H MeO OH O O MeO OH Me
    [Show full text]