Progressive Migration and Anagenesis in Drimys Confertifolia of the Juan Ferna´Ndez Archipelago, Chile

Total Page:16

File Type:pdf, Size:1020Kb

Progressive Migration and Anagenesis in Drimys Confertifolia of the Juan Ferna´Ndez Archipelago, Chile J Plant Res (2015) 128:73–90 DOI 10.1007/s10265-014-0666-7 REGULAR PAPER Progressive migration and anagenesis in Drimys confertifolia of the Juan Ferna´ndez Archipelago, Chile Patricio Lo´pez-Sepu´lveda • Koji Takayama • Josef Greimler • Daniel J. Crawford • Patricio Pen˜ailillo • Marcelo Baeza • Eduardo Ruiz • Gudrun Kohl • Karin Tremetsberger • Alejandro Gatica • Luis Letelier • Patricio Novoa • Johannes Novak • Tod F. Stuessy Received: 19 December 2013 / Accepted: 12 June 2014 / Published online: 8 October 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract A common mode of speciation in oceanic populations of D. confertifolia and the continental species islands is by anagenesis, wherein an immigrant arrives and D. winteri and D. andina, and to test probable migration through time transforms by mutation, recombination, and routes between the major islands. Population genetic drift into a morphologically and genetically distinct spe- analyses were conducted using AFLPs and nuclear cies, with the new species accumulating a high level of microsatellites of 421 individuals from 42 populations genetic diversity. We investigate speciation in Drimys from the Juan Ferna´ndez islands and the continent. Drimys confertifolia, endemic to the two major islands of the Juan confertifolia shows a wide genetic variation within popu- Ferna´ndez Archipelago, Chile, to determine genetic con- lations on both islands, and values of genetic diversity sequences of anagenesis, to examine relationships among within populations are similar to those found within pop- ulations of the continental progenitor. The genetic results are compatible with the hypothesis of high levels of genetic Electronic supplementary material The online version of this variation accumulating within anagenetically derived spe- article (doi:10.1007/s10265-014-0666-7) contains supplementary material, which is available to authorized users. cies in oceanic islands, and with the concept of little or no P. Lo´pez-Sepu´lveda Á M. Baeza Á E. Ruiz A. Gatica Departamento de Bota´nica, Universidad de Concepcio´n, Laboratorio de Ecofisiologı´a Vegetal, Departamento de Biologı´a, Casilla 160-C, Concepcio´n, Chile Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile K. Takayama The University Museum, The University of Tokyo, L. Letelier Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan Centro de Investigaciones en Ecosistemas, Universidad Nacional Auto´noma de Me´xico, C.P. 58190 Morelia, Michoaca´n, Mexico J. Greimler Á G. Kohl Department of Systematic and Evolutionary Botany, P. Novoa Biodiversity Center, University of Vienna, Rennweg 14, Jardı´n Bota´nico de Vin˜a del Mar, Corporacio´n Nacional Forestal, 1030 Vienna, Austria Camino El Olivar 305, Vin˜a del Mar, Chile D. J. Crawford J. Novak Department of Ecology and Evolutionary Biology and the Institute for Applied Botany and Pharmacognosy, University of Biodiversity Institute, University of Kansas, Lawrence, Veterinary Medicine, Veterina¨rplatz 1, 1210 Vienna, Austria KS 60045, USA T. F. Stuessy (&) P. Pen˜ailillo Herbarium, Department of Evolution, Ecology, and Organismal Instituto de Biologı´a Vegetal y Biotecnologı´a, Universidad de Biology, The Ohio State University, 1315 Kinnear Road, Talca, 2 Norte 685, Talca, Chile Columbus, OH 43212, USA e-mail: [email protected] K. Tremetsberger Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, 1180 Vienna, Austria 123 74 J Plant Res (2015) 128:73–90 geographical partitioning of this variation over the land- and mutation. The final result is a new species that differs scape. Analysis of the probability of migration within the genetically and morphologically from its ancestor, with archipelago confirms colonization from the older island, levels of genetic variation approximating those of the Robinson Crusoe, to the younger island Alejandro Selkirk. progenitor species (Stuessy et al. 2006). Examples of this type of speciation are less frequent, but it has been docu- Keywords AFLPs Á Anagenesis Á Genetic variation Á mented in Dystaenia (Apiaceae; Pfosser et al. 2006) and Microsatellites Á Oceanic islands Á Migration Acer (Sapindaceae; Takayama et al. 2012a, b) of Ullung Island, Korea, and in Weigela (Caprifoliaceae; Yamada and Maki 2012) of the Izu Islands, Japan. The genetic conse- Introduction quences of anagenetic speciation show relatively high levels of genetic differentiation within and among popu- Patterns and processes of speciation in oceanic islands have lations of the island endemic relative to continental source long captured the attention of evolutionary biologists populations. Obviously, many factors impact levels of (Drake et al. 2002; Rosindell and Phillimore 2011; genetic variation within island populations, such as Schaefer et al. 2011; Stuessy and Ono 1998). Important breeding systems, island age, human impact, etc. (Stuessy attributes of oceanic islands, such as geographical isola- et al. 2013), but mode of speciation is particularly tion, clearly delimited area, and restricted fauna and flora, significant. have led to islands being regarded as natural laboratories Also important for understanding patterns and processes for the study of evolution. They offer countless opportu- of evolution in oceanic islands is inferring routes of nities for investigating evolutionary processes in detail, migration among islands within archipelagos. The classical especially for studying genetic, ecological, biogeographic, hypothesis regarding archipelagos has assumed a single reproductive, and morphological divergence (Moore et al. colonization event from a continental area first to the oldest 2002; Mort et al. 2002). island and subsequent colonization of the younger islands Numerous hypotheses and discussions regarding pro- (Juan et al. 2000; Gillespie and Roderick 2002), the so- cesses of speciation in oceanic islands have occurred called ‘‘progression rule’’ (Funk and Wagner 1995). (Carlquist 1974; Grant et al. 1996; Stuessy et al. 2006). The Although this concept relies on parsimony, which is not most commonly described speciation mechanism in islands unreasonable, other possibilities have been demonstrated, is through cladogenesis. In this process, after a single such as reverse colonization (Ballemain and Ricklefs 2008; introduction, numerous lineages diverge rapidly from the Carine et al. 2004), colonization followed by extinction, or founding population as they adapt to different habitats with migration from younger to older islands (Emerson 2002; appropriate adaptations (Schluter 2000). The genetic con- Juan et al. 2000). Obviously important also are availability sequence of this process is low level of genetic variation of transportation vectors (Gillespie and Roderick 2002) and within and among populations of each species (Baldwin adaptation and dispersal of propagules (Cowie and Holland et al. 1998; Crawford and Stuessy 1997; Emerson 2002; 2006). Johnson et al. 2000; Stuessy et al. 2006). Examples of this An appropriate group of islands in which to study ana- mechanism of divergence and speciation in oceanic islands genetic speciation and migration is the Juan Ferna´ndez are numerous, such as Aeonium (Crassulaceae) and Echium Archipelago, located in the Pacific Ocean 667 km W of (Boraginaceae) in the Canary Islands (Bo¨hle et al. 1996; continental Chile (33°S/78–80°W, Fig. 1). The archipelago Jorgensen and Olesen 2001), Dendroseris and Robinsonia consists of two main islands, Robinson Crusoe (=Masati- (Asteraceae) in the Juan Ferna´ndez Archipelago (Crawford erra) and Alejandro Selkirk (=Masafuera), separated by et al. 1998), Bidens (Asteraceae), Schiedea (Caryophylla- 181 kms. At present the islands are approximately of equal ceae), Cyanea, Lobelia and Trematolobelia (Lobeliaceae) size (50 km2, Stuessy 1995), but they differ in geological in the Hawaiian Islands (Givnish et al. 2009; Knope et al. age, c. 4 million years old for Robinson Crusoe Island and 2012; Price and Wagner 2004), and Scalesia (Asteraceae) 1–2 million years old for Alejandro Selkirk Island (Stuessy in the Gala´pagos Islands (Eliasson 1974; Schilling et al. et al. 1984). The native vascular flora of the archipelago 1994). includes 75 families, 213 genera, and 361 species, with a The other major type of speciation in oceanic islands is 12 % endemism at the generic level, and 60 % at the anagenesis, also called simple geographic or phyletic spe- specific level (Marticorena et al. 1998). ciation (Simpson 1953). In this case, after colonizers A suitable genus to study the genetic consequences of establish a population on a new island, the processes of anagenetic speciation and migration in the Juan Ferna´ndez drift, recombination, and mutation modify the composition Archipelago is Drimys (Winteraceae). The genus contains of the original pioneer population and over time genetic seven species distributed in Central and South America variation accumulates by the processes of recombination, (Ehrendorfer et al. 1979; Marquı´nez et al. 2009; Rodrı´guez 123 J Plant Res (2015) 128:73–90 75 Fig. 1 Geographical position of populations sampled of Drimys winteri and D. andina in continental Chile (a) and Drimys confertifolia in Robinson Crusoe (b) and Alejandro Selkirk (c) Islands and Quezada 2001; Smith 1943), two of which, D. andina the most probable migration route(s) of the endemic spe- and D. winteri (with two varieties, var. winteri and var. cies
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Tasmannia Lanceolata
    ASPECTS OF LEAF AND EXTRACT PRODUCTION from Tasmannia lanceolata by Chris Read, B. Agr.Sc. Tas. Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy University of Tasmania, Hobart December 1995 ' s~, ... ~~ \ ·'(11 a_C\14 \t\J. \I ' This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge, contains no copy or paraphrase of material previously written or published by any other person except where due reference is given in the text. University of Tasmania HOBART March 1996 This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 University of Tasmania HOBART March 1996 Abstract This thesis examines several aspects of the preparation, extraction and analysis of solvent soluble compounds from leaf material of Tasmannia lanceolata and reports a preliminary survey of extracts of some members of the natural population of the species in Tasmania. A major constituent of these extracts, polygodial, was shown to be stored within specialised idioblastic structures scattered throughout the mesophyll, and characterised by distinctive size and shape, and a thickened wall. The contents of these cells were sampled directly, analysed and compared with the composition of extracts derived from ground, dry whole leaf. This result was supported by spectroscopic analysis of undisturbed oil cells in whole leaf tissue. In a two year field trial, the progressive accumulation of a number of leaf extract constituents (linalool, cubebene, caryophyllene, germacrene D, bicyclogermacrene, cadina-1,4 - diene, aristolone and polygodial) during the growth flush was followed by a slow decline during the subsequent dormant season.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Teacher's Guide
    The World Map / Selected Features of Political Geography Map No. 64 ISBN: 978-2-89157-186-9 PRODUCT NO.: 400 9288 Washable: We strongly recommend the use of Crayola water-soluble markers. Bands and hooks 122 cm × 94 cm / 48 in × 37 in Other markers may damage your maps. 120° 90° 60° T 9090° ° E S Bellingshausen E A 150° S Canada and the World W Sea SOUTH ANTARCTIC I A N F E D E R T ARCTIC SHETLAND ISLANDS S S A T I O R U N Amundsen AT Yenisei ALEXANDER L a 120° A N n Sea N e ISLAND T 30° L IC The Base Map L e n O a Tiksi C THURSTON E A ISLAND N 70° Khatanga N e n l Salekhard Weddell rc ia i 60° C rth L id c swo and Sea r ti Ob Ell e c Map No. 64 A r Laptev Ronne n im 180° N A t ta n A an Ice Shelf r E ri Sea c A e t C ib THE WORLD ic A • S Contours and outlines are O l C N a NEW SIBERIAN ISLANDS BERKNER i Pevek t a Kara 70° r C e c T I n p A e S [RUSSIAN FEDERATION] a l F ri Sea ISLAND e R I C O r C C selected features of political geography 150° la T 80° A scale: 1 / 40 000 000 scale: 1 / 40 000 000 o I P P Coats Land C WRANGEL 0° Be N O ring Str ISLAND N 0 1 000 km 0 1 000 km carefully stylized to capture ait O V C A A Y A M L Y 80 [RUSSIAN FEDERATION] Z E 90° 100° 110 ° 120° 130° 140° 150° 160° 170° 180° 170° 160° 150° 140° 130° 120° 110 ° 100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° ° E Arkhangelsk Queen Maud A Land N ARCTIC OCEAN Chukchi Barents N Ross Amundsen-Scott azimuthal equidistant projection azimuthal equidistant projection A Sea Sea 80 E Sea [U.S.A.] ° C ALASKA 70° 80° O the essentials.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Phytochemistry and Biological Properties of Drimys Winteri JR Et G. Forster Var Chilensis (DC) A
    BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión / Review Phytochemistry and biological properties of Drimys winteri JR et G. Forster var chilensis (DC) A. [Fitoquímica y propiedades biológicas de Drimys winteri JR et G. Forster var chilensis (DC) A.] Orlando Muñoz1, Jorge Tapia-Merino2, Wolf Nevermann, & Aurelio San-Martín3 1Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile 2Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo OHiggins, Santiago, Chile 3Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile Abstract: Drimys winteri JR et G. Forster var chilensis (DC) A. is a tree native to central and southern Chile. Also it found in part of Argentina. It is abundant in wet swampy localities from sea level to an altitude of 1700 m. This tree is sacred for the Mapuche culture; it is used in folk medicine in such as Reviewed by: inflammatory and painful processes. Phytochemical studies have demonstrated that this plant contains Arnaldo Bandoni Universidad de Buenos Aires mainly sesquiterpenes of the drimane type, flavonoids, essential oils, phytosterols and some lignans. Argentina These drimanes have attracted interest because of their antifeedant, plant growth regulation, cytotoxic, antimicrobial and insecticidal properties. The objective of this review is to establish clearly the Ali Parlar phytochemistry and biological activity of Drimys winteri JR et G. Forster var chilensis (DC) A. Articles Adiyaman University based on other varieties are not considered. Turkey Keywords: Drimys winteri; Sesquiterpenes; Essential oils; Lignans; Flavonoids; Biological properties.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Name: Darko Davor Cotoras Viedma Place of Birth: Santiago, Chile e-mail: [email protected] Website: https://www.calacademy.org/staff/ibss/entomology/darko-cotoras 1.- Researcher positions - February, 2018 – today: Research Associate. Entomology dept. California Academy of Sciences - April-May, 2018: Visiting Scholar. Ecology and Evolution Unit. Okinawa Institute of Science and Technology - January, 2015 – December, 2017: Post Doctoral Researcher. University of California, Santa Cruz (Advisors: Beth Shapiro and Ed Green) / California Academy of Sciences (Advisors: Charles Griswold and Brian Simison) - September-November, 2014: Junior Specialist. NSF Hawai’i Dimensions of Biodiversity project. University of California, Berkeley - January-August, 2014: Graduate Student Researcher. NSF Hawai’i Dimensions of Biodiversity project. University of California, Berkeley 2.- Education - 2009-2014: PhD Integrative Biology. University of California, Berkeley Advisors: David Lindberg - Rosemary Gillespie Dissertation: “Diversification of spiders on volcanic islands from the Pacific Ocean” - 2008-2009: Master in Biological Sciences with mention in Ecology & Evolutionary Biology, Universidad de Chile (Highest distinction) Advisors: Miguel Allende – Verónica Cambiazo Thesis: “In the footsteps of Urbilateria, or Evolution of the gene network involved in appendage development in arthropods (Drosophila melanogaster) and vertebrates (Danio rerio)” - 2004-2007: Bachelor in Sciences with mention in Biology, Universidad de Chile. (Highest distinction. Promotion ranking: 1st. Final grade: 6,5 been 7,0 the maximum) Research internships: Zebrafish developmental biology lab (Miguel Allende) and Evolutionary ecology lab (Rodrigo Medel) - 1991-2003: Colegio San Ignacio (Santiago, Chile) 3.- Research interests Island Biogeography, Phylogenetics, Population Genetics, Paleogenomics and Evolutionary Developmental Biology (EvoDevo). 4.- Grants, fellowships and awards - 2016: Percy Sladen Memorial Fund.
    [Show full text]
  • Conservation, Restoration, and Development of the Juan Fernandez Islands, Chile"
    Revista Chilena de Historia Natural 74:899-910, 2001 DOCUMENT Project "Conservation, Restoration, and Development of the Juan Fernandez islands, Chile" Proyecto conservaci6n, restauraci6n y desarrollo de las islas Juan Fernandez, Chile JAIME G. CUEVAS 1 & GART VAN LEERSUM 1Corresponding author: Corporaci6n Nacional Forestal, Parque Nacional Archipielago de Juan Fernandez, Vicente Gonzalez 130, Isla Robinson Crusoe, Chile ABSTRACT From a scientific point of view, the Juan Fernandez islands contain one of the most interesting floras of the planet. Although protected as a National Park and a World Biosphere Reserve, 400 years of human interference have left deep traces in the native plant communities. Repeated burning, overexploitation of species, and the introduction of animal and plant plagues have taken 75 % of the endemic vascular flora to the verge of extinction. In 1997, Chile's national forest service (Corporaci6n Nacional Forestal, CONAF) started an ambitious project, whose objective is the recovery of this highly complex ecosystem with a socio-ecological focus. Juan Fernandez makes an interesting case, as the local people (600 persons) practically live within the park, therefore impeding the exclusion of the people from any 2 conservation program. Secondly, the relatively small size of the archipelago (100 km ) permits the observation of the effects of whatever modification in the ecosystem on small scales in time and space. Thirdly, the native and introduced biota are interrelated in such a way that human-caused changes in one species population may provoke unexpected results amongst other, non-target species. The project mainly deals with the eradication or control of some animal and plant plagues, the active conservation and restoration of the flora and the inclusion of the local people in conservation planning.
    [Show full text]
  • Restoring Globally-Threatened Seabirds Strategy for Removal of Invasive Animals
    Strategy and analysis to solve urgent social issues. March 5, 2008 Restoring Globally-threatened Seabirds Strategy for Removal of Invasive Animals Packard Marine Bird Program Redstone Strategy Group is a leading advisor to private foundations and non-profits worldwide. We help clients identify their highest-return investments, track and learn from results, and continually improve their efforts to solve urgent social issues. Our approach combines substantial experience across all sectors of philanthropy with deep appreciation of our clients’ knowledge and expertise. This allows us to collaborate effectively with clients as they improve their ability to achieve social good and learn from their results. Table of Contents Restoring Globally-threatened Seabirds Strategy for Removal of Invasive Animals Summary ...........................................................................................................1 1. Removing invasive animals eliminates a major threat to seabirds .....3 Invasive species threats ���������������������������������������������������������������������������������������������������������������������������3 Benefits of invasive animal removal ����������������������������������������������������������������������������������������������������4 2. Packard can restore 10-15 globally-threatened seabird species .........5 Program outcome and logic model ������������������������������������������������������������������������������������������������������5 Program benefits �����������������������������������������������������������������������������������������������������������������������������������������6
    [Show full text]
  • The Wild West Coast
    NEW! SOUTH THEAMERICA WILD WEST COAST Transit the Panama Canal & Explore With FREE AIRFARE PLUS Iconic Experiences In Peru & Chile Wild Wonders In Patagonia & Argentina TM ABOARD NATIONAL GEOGRAPHIC EXPLORER | 2015 As astonishing as the photos in National Geographic. And an exhilarating life adventure: A Lindblad-National Geographic expedition— a complete experience in a thrilling geography. TM Lindblad Expeditions and National Geographic have joined forces to further inspire the world through expedition travel. Our collaboration in exploration, research, technology and conservation will provide extraordinary travel experi- ences and disseminate geographic knowledge around the globe. Cover photo: Rockhopper penguins. This page: Guanaco, Torres Del Paine National Park, Patagonia. ©Ralph Lee Hopkins Ship’s registry: Bahamas Dear Traveler, As we were making plans for the National Geographic Explorer for October and November, 2015, at one point we all looked at each other with the same realization: the west coast of South America offers so many different experiences, so many rich cultures, so many great landscapes, and so much nature that it’s a natural place for us to go. We’ve explored some of these regions not infrequently in the past, but it’s been a number of years since we were last there. So the decision was made—and the result is a set of plans that I hope will intrigue and delight you. We’ll take advantage of the Explorer’s capabilities as an expedition ship to go to many extraordinary places that would otherwise be difficult to reach (and virtually impossible to combine in one journey). And we’ll explore in depth in the company of an expedition team that will make all the difference in the world.
    [Show full text]