Color Management Is an Extract from Martin Published by Focal Press, an Imprint of Evening’S Forthcoming Book: Adobe Photoshop CS for Harcourt Education
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dell Ultrasharp Premiercolor Monitors Brochure (EN)
Dell UltraSharp PremierColor Monitors BRING YOUR VISION TO LIFE Engineered to meet the demands of creative professionals, Dell UltraSharp PremierColor Monitors push the boundaries of monitor technology to deliver exceptional performance that sets the standard for today’s digital creators. Choose Dell UltraSharp PremierColor monitors for the tools you need that help bring your vision to life. Learn more at Dell.com/UltraSharp See everything. Do anything. VISUALS THAT RIVAL REAL LIFE High resolution Dell See visuals with astounding clarity on UltraSharp PremierColor these high resolution monitors, up to Monitors set the standard Ultra HD 8K resolution. These monitors feature IPS (In-Plane Switching) panel technology for consistent color and picture for creative professionals. quality across a wide 178°/178° viewing angle. Count on a wide color gamut, incredible color THE COLORS YOU NEED depth, powerful calibration Dell UltraSharp PremierColor Monitors oer a wide color capabilities, and consistent, coverage across professional color spaces, including AdobeRGB, accurate colors. Bringing sRGB, Rec. 709, as well as the widest DCI-P3 color coverage in a professional monitor at 99.8%*. This enables support everything you need in a for projects across dierent formats, making UltraSharp monitor for all your color- PremierColor monitors the ideal choice for photographers, lm critical projects. and video creators, animators, VFX artists and more. Features vary by model. Please visit dell.com/monitors for details. Dell UltraSharp PremierColor Monitors INCREDIBLE COLOR DEPTH AND CONTRAST Get amazingly smooth color gradients and precision across more shades with an incredible color depth of 1.07 billion colors and true 10 bit color**. -
Effects of Color Depth
EFFECTS OF COLOR DEPTH By Tom Kopin – CTS, ISF-C MARCH 2011 KRAMER WHITE PAPER WWW.KRAMERELECTRONICS.COM TABLE OF CONTENTS WHAT IS COLOR DEPTH? ...................................................................................1 DEEP COLOR ......................................................................................................1 CALCULATING HDMI BANDWIDTH ......................................................................1 BLU-RAY PLAYERS AND DEEP COLOR .................................................................3 THE SOLUTIONS .................................................................................................3 SUMMARY ..........................................................................................................4 The first few years of HDMI in ProAV have been, for lack of a better word, unpredictable. What works with one display doesn’t work with another. Why does HDMI go 50ft out of this source, but not that source? The list is endless and comments like this have almost become commonplace for HDMI, but why? Furthermore, excuses have been made in order to allow ambiguity to remain such as, "All Blu-ray players are not made equally, because their outputs must have different signal strength." However, is this the real reason? While the real answers may not truly be known, understanding how color depth quietly changes our HDMI signals will help make HDMI less unpredictable. What is Color Depth? Every HDMI signal has a color depth associated with it. Color depth defines how many different colors can be represented by each pixel of a HDMI signal. A normal HDMI signal has a color depth of 8 bits per color. This may also be referred to as 24-bit color (8-bits per color x 3 colors RGB). The number of bits refers to the amount of binary digits used to determine the maximum number of colors that can be rendered. For example, the maximum number of colors for 24-bit color would be: 111111111111111111111111(binary) = 16,777,215 = 16.7 million different colors. -
HD-SDI, HDMI, and Tempus Fugit
TECHNICALL Y SPEAKING... By Steve Somers, Vice President of Engineering HD-SDI, HDMI, and Tempus Fugit D-SDI (high definition serial digital interface) and HDMI (high definition multimedia interface) Hversion 1.3 are receiving considerable attention these days. “These days” really moved ahead rapidly now that I recall writing in this column on HD-SDI just one year ago. And, exactly two years ago the topic was DVI and HDMI. To be predictably trite, it seems like just yesterday. As with all things digital, there is much change and much to talk about. HD-SDI Redux difference channels suffice with one-half 372M spreads out the image information The HD-SDI is the 1.5 Gbps backbone the sample rate at 37.125 MHz, the ‘2s’ between the two channels to distribute of uncompressed high definition video in 4:2:2. This format is sufficient for high the data payload. Odd-numbered lines conveyance within the professional HD definition television. But, its robustness map to link A and even-numbered lines production environment. It’s been around and simplicity is pressing it into the higher map to link B. Table 1 indicates the since about 1996 and is quite literally the bandwidth demands of digital cinema and organization of 4:2:2, 4:4:4, and 4:4:4:4 savior of high definition interfacing and other uses like 12-bit, 4096 level signal data with respect to the available frame delivery at modest cost over medium-haul formats, refresh rates above 30 frames per rates. distances using RG-6 style video coax. -
The Need for Color Management
Color management Adobe Photoshop 7.0 for Photographers by Martin Evening, ISBN 0 240 51690 7 is published by Focal Press, an imprint of Elsevier Science. The title will be available from the beginning of August 2002. Here are four easy ways to order direct from the publishers: By phone: Call our Customer Services department on 01865 888180 with your credit card details. By mail: Write to Heinemann Customer Services Department, PO BOX 840, Halley Court, Jordan Hill, Oxford OX2 8YW By Fax: Fax an order on 01865 314091 By email: Send to [email protected] By web: www.focalpress.com. Orders from the US and Canada should be placed on 1-800-366-2665 (1-800-366-BOOK) or tel: 314-453-7010. Email: [email protected] The title will be stocked in most major bookstores throughout the UK and US and via many resellers worldwide. It will also be available for purchase through the online bookstores Amazon.com and Amazon.co.uk. The following extract is part one of a guide to Photoshop 7.0 color management. hotoshop 5.0 was justifiably praised as a ground-breaking upgrade when it was released in the summer of 1998. The changes made to the color management P setup were less well received in some quarters. This was because the revised system was perceived to be extremely complex and unnecessary. Some color profes- sionals felt we already had reliable methods of matching color and you did not need ICC profiles and the whole kaboodle of Photoshop ICC color management to achieve this. -
Basics of Color Management
Application Notes Basics of Color Management Basics of Color Management ErgoSoft AG Moosgrabenstr. 13 CH-8595 Altnau, Switzerland © 2010 ErgoSoft AG, All rights reserved. The information contained in this manual is based on information available at the time of publication and is sub- ject to change without notice. Accuracy and completeness are not warranted or guaranteed. No part of this manual may be reproduced or transmitted in any form or by any means, including electronic me- dium or machine-readable form, without the expressed written permission of ErgoSoft AG. Brand or product names are trademarks of their respective holders. The ErgoSoft RIP is available in different editions. Therefore the description of available features in this document does not necessarily reflect the license details of your edition of the ErgoSoft RIP. For information on the features included in your edition of the ErgoSoft RIPs refer to the ErgoSoft homepage or contact your dealer. Rev. 1.1 Basics of Color Management i Contents Introduction ................................................................................................................................................................. 1 Color Spaces ................................................................................................................................................................ 1 Basics ........................................................................................................................................................................ 1 CMYK ....................................................................................................................................................................... -
Deep Learning-Based Color Holographic Microscopy
Deep learning-based color holographic microscopy Tairan Liu1,2,3†, Zhensong Wei1†, Yair Rivenson1,2,3†,*, Kevin de Haan1,2,3, Yibo Zhang1,2,3, Yichen Wu1,2,3, and Aydogan Ozcan1,2,3,4,* † Equally contributing authors * Corresponding authors: [email protected] ; [email protected] 1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA. 2Bioengineering Department, University of California, Los Angeles, CA, 90095, USA. 3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA. 4Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. Abstract We report a framework based on a generative adversarial network (GAN) that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related arti- facts, and generates an accurate color transformation for the reconstructed image. Our framework is ex- perimentally demonstrated using lung and prostate tissue sections that are labeled with different histo- logical stains. This framework is envisaged to be applicable to point-of-care histopathology, and pre- sents a significant improvement in the throughput of coherent microscopy systems given that only a sin- gle hologram of the specimen is required for accurate color imaging. 1. INTRODUCTION Histological staining of fixed, thin tissue sections mounted on glass slides is one of the fundamental steps required for the diagnoses of various medical conditions. Histological stains are used to highlight the constituent tissue parts by enhancing the colorimetric contrast of cells and subcellular components for microscopic inspection. -
Color Management Handbook
Color Management Handbook Strategies to master color management in the digital workflow. Start applying them today. ver.5 Is that really the correct color? “Is this color good to go?” — A hesitation we often have before making prints in the digital workflow. Photographer Designer Are the application settings on the monitor correctly adjusted Is the image displayed on the monitor really accurate? and does the color match the printed image? Retoucher Printer Is the photograph edited the way it was intended? Do the colors in the design comp and color proof match? 2 Color Management Handbook 3 4 Color Management Handbook Management Color 5 makes it possible to handle data smoothly. data handle to possible it makes photographic, design, and plate making stages, and making it the shared standard, standard, shared the it making and stages, making plate and design, photographic, Maintaining an awareness of the final printed color in the finished product in the the in product finished the in color printed final the of awareness an Maintaining coincide, but color management can make them approximate one another. another. one approximate them make can management color but coincide, color gamuts that can be reproduced. These two gamuts cannot be made to to made be cannot gamuts two These reproduced. be can that gamuts color printing color standard of ISO coated v2, we can tell that there is a difference in the the in difference a is there that tell can we v2, coated ISO of standard color printing work step. work If we compare the color space widely -
Complete Reference / Web Design: TCR / Thomas A
Color profile: Generic CMYK printer profile Composite Default screen Complete Reference / Web Design: TCR / Thomas A. Powell / 222442-8 / Chapter 13 Chapter 13 Color 477 P:\010Comp\CompRef8\442-8\ch13.vp Tuesday, July 16, 2002 2:13:10 PM Color profile: Generic CMYK printer profile Composite Default screen Complete Reference / Web Design: TCR / Thomas A. Powell / 222442-8 / Chapter 13 478 Web Design: The Complete Reference olors are used on the Web not only to make sites more interesting to look at, but also to inform, entertain, or even evoke subliminal feelings in the user. Yet, using Ccolor on the Web can be difficult because of the limitations of today’s browser technology. Color reproduction is far from perfect, and the effect of Web colors on users may not always be what was intended. Apart from correct reproduction, there are other factors that affect the usability of color on the Web. For instance, a misunderstanding of the cultural significance of certain colors may cause a negative feeling in the user. In this chapter, color technology and usage on the Web will be covered, while the following chapter will focus on the use of images online. Color Basics Before discussing the technology of Web color, let’s quickly review color terms and theory. In traditional color theory, there are three primary colors: blue, red, and yellow. By mixing the primary colors you get three secondary colors: green, orange, and purple. Finally, by mixing these colors we get the tertiary colors: yellow-orange, red-orange, red-purple, blue-purple, blue-green, and yellow-green. -
Color Management Handbook
Color Management Handbook Strategies to master color management in the digital workflow. Start applying them today. ver.5 Is that really the correct color? “Is this color good to go?” — A hesitation we often have before making prints in the digital workflow. Photographer Designer Are the application settings on the monitor correctly adjusted Is the image displayed on the monitor really accurate? and does the color match the printed image? Retoucher Printer Is the photograph edited the way it was intended? Do the colors in the design comp and color proof match? 2 Color Management Handbook 3 4 Color Management Handbook Management Color 5 makes it possible to handle data smoothly. data handle to possible it makes photographic, design, and plate making stages, and making it the shared standard, standard, shared the it making and stages, making plate and design, photographic, Maintaining an awareness of the final printed color in the finished product in the the in product finished the in color printed final the of awareness an Maintaining coincide, but color management can make them approximate one another. another. one approximate them make can management color but coincide, color gamuts that can be reproduced. These two gamuts cannot be made to to made be cannot gamuts two These reproduced. be can that gamuts color printing color standard of ISO coated v2, we can tell that there is a difference in the the in difference a is there that tell can we v2, coated ISO of standard color printing work step. work If we compare the color space widely -
Got Good Color? Controlling Color Temperature in Imaging Software
Got Good Color? Controlling Color Temperature in Imaging Software When you capture an image of a specimen, you want it to look like what you saw through the eyepieces. In this article we will cover the basic concepts of color management and what you can do to make sure what you capture is as close to what you see as possible. Get a Reference Let’s define what you want to achieve: you want the image you produce on your computer screen or on the printed page to look like what you see through the eyepieces of your microscope. In order to maximize the match between these images, your system must be setup to use the same reference. White light is the primary reference that you have most control of in your imaging system. It is your responsibility to set it properly at different points in your system. Many Colors of White Although “White” sounds like a defined color, there are different shades of white. This happens because white light is made up of all wavelengths in the visible spectrum. True white light has an equal intensity at every wavelength. If any wavelength has a higher intensity than the rest, the light takes on a hue related to the dominant wavelength. A simple definition of the hue cast of white light is called “Color Temperature”. This comes from its basis in the glow of heated materials. In general the lower the temperature (in °Kelvin = C° + 273) the redder the light, the higher the temperature the bluer the light. The one standard white lighting in photography and photomicrography is 5000°K (D50) and is called daylight neutral white. -
The Effect of Object Color on Depth Ordering
Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2007-18 2007 The Effect of Object Color on Depth Ordering Reynold Bailey, Cindy Grimm, Christopher Davoli, and Richard Abrams The relationship between color and perceived depth for realistic, colored objects with varying shading was explored. Background: Studies have shown that warm-colored stimuli tend to appear nearer in depth than cool-colored stimuli. The majority of these studies asked human observers to view physically equidistant, colored stimuli and compare them for relative depth. However, in most cases, the stimuli presented were rather simple: straight colored lines, uniform color patches, point light sources, or symmetrical objects with uniform shading. Additionally, the colors were typically highly saturated. Although such stimuli are useful for isolating and studying depth cues in certain contexts, they... Read complete abstract on page 2. Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Bailey, Reynold; Grimm, Cindy; Davoli, Christopher; and Abrams, Richard, "The Effect of Object Color on Depth Ordering" Report Number: WUCSE-2007-18 (2007). All Computer Science and Engineering Research. https://openscholarship.wustl.edu/cse_research/122 Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/ cse_research/122 The Effect of Object Color on Depth Ordering Reynold Bailey, Cindy Grimm, Christopher Davoli, and Richard Abrams Complete Abstract: The relationship between color and perceived depth for realistic, colored objects with varying shading was explored. -
Simultaneously Color-Depth Super-Resolution with Conditional
1 Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network Lijun Zhao, Jie Liang, Senior Member, IEEE, Huihui Bai, Member, IEEE, Anhong Wang, Member, IEEE, and Yao Zhao, Senior Member, IEEE Abstract—Recently, Generative Adversarial Network (GAN) [3, 4, 6], a very deep convolutional network is presented in has been found wide applications in style transfer, image-to-image [5] to learn image’s residuals with extremely high learning translation and image super-resolution. In this paper, a color- rates. However, these methods’ objective functions are depth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution always the mean squared SR errors, so their SR output in 3D videos. Firstly, given the low-resolution depth image and images usually fail to have high-frequency details when the low-resolution color image, a generative network is proposed to up-sampling factor is large. In [7, 8], a generative adversarial leverage mutual information of color image and depth image to network is proposed to infer photo-realistic images in terms enhance each other in consideration of the geometry structural of the perceptual loss. In addition to the single image SR, dependency of color-depth image in the same scene. Secondly, three loss functions, including data loss, total variation loss, and image SR with its neighboring viewpoint’s high/low 8-connected gradient difference loss are introduced to train this resolution image has also been explored. For instance, in [9] generative network in order to keep generated images close to high-frequency information from the neighboring the real ones, in addition to the adversarial loss.