Information Display November/December 2014 Issue 6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereo Capture and Display At
Creation of a Complete Stereoscopic 3D Workflow for SoFA Allison Hettinger and Ian Krassner 1. Introduction 1.1 3D Trend Stereoscopic 3D motion pictures have recently risen to popularity once again following the success of films such as James Cameron’s Avatar. More and more films are being converted to 3D but few films are being shot in 3D. Current available technology and knowledge of that technology (along with cost) is preventing most films from being shot in 3D. Shooting in 3D is an advantage because two slightly different images are produced that mimic the two images the eyes see in normal vision. Many take the cheaper route of shooting in 2D and converting to 3D. This results in a 3D image, but usually nowhere near the quality as if the film was originally shot in 3D. This is because a computer has to create the second image, which can result in errors. It is also important to note that a 3D image does not necessarily mean a stereo image. 3D can be used to describe images that have an appearance of depth, such as 3D animations. Stereo images refer to images that make use of retinal disparity to create the illusion of objects going out of and into the screen plane. Stereo images are optical illusions that make use of several cues that the brain uses to perceive a scene. Examples of monocular cues are relative size and position, texture gradient, perspective and occlusion. These cues help us determine the relative depth positions of objects in an image. Binocular cues such as retinal disparity and convergence are what give the illusion of depth. -
Dell Ultrasharp Premiercolor Monitors Brochure (EN)
Dell UltraSharp PremierColor Monitors BRING YOUR VISION TO LIFE Engineered to meet the demands of creative professionals, Dell UltraSharp PremierColor Monitors push the boundaries of monitor technology to deliver exceptional performance that sets the standard for today’s digital creators. Choose Dell UltraSharp PremierColor monitors for the tools you need that help bring your vision to life. Learn more at Dell.com/UltraSharp See everything. Do anything. VISUALS THAT RIVAL REAL LIFE High resolution Dell See visuals with astounding clarity on UltraSharp PremierColor these high resolution monitors, up to Monitors set the standard Ultra HD 8K resolution. These monitors feature IPS (In-Plane Switching) panel technology for consistent color and picture for creative professionals. quality across a wide 178°/178° viewing angle. Count on a wide color gamut, incredible color THE COLORS YOU NEED depth, powerful calibration Dell UltraSharp PremierColor Monitors oer a wide color capabilities, and consistent, coverage across professional color spaces, including AdobeRGB, accurate colors. Bringing sRGB, Rec. 709, as well as the widest DCI-P3 color coverage in a professional monitor at 99.8%*. This enables support everything you need in a for projects across dierent formats, making UltraSharp monitor for all your color- PremierColor monitors the ideal choice for photographers, lm critical projects. and video creators, animators, VFX artists and more. Features vary by model. Please visit dell.com/monitors for details. Dell UltraSharp PremierColor Monitors INCREDIBLE COLOR DEPTH AND CONTRAST Get amazingly smooth color gradients and precision across more shades with an incredible color depth of 1.07 billion colors and true 10 bit color**. -
Effects of Color Depth
EFFECTS OF COLOR DEPTH By Tom Kopin – CTS, ISF-C MARCH 2011 KRAMER WHITE PAPER WWW.KRAMERELECTRONICS.COM TABLE OF CONTENTS WHAT IS COLOR DEPTH? ...................................................................................1 DEEP COLOR ......................................................................................................1 CALCULATING HDMI BANDWIDTH ......................................................................1 BLU-RAY PLAYERS AND DEEP COLOR .................................................................3 THE SOLUTIONS .................................................................................................3 SUMMARY ..........................................................................................................4 The first few years of HDMI in ProAV have been, for lack of a better word, unpredictable. What works with one display doesn’t work with another. Why does HDMI go 50ft out of this source, but not that source? The list is endless and comments like this have almost become commonplace for HDMI, but why? Furthermore, excuses have been made in order to allow ambiguity to remain such as, "All Blu-ray players are not made equally, because their outputs must have different signal strength." However, is this the real reason? While the real answers may not truly be known, understanding how color depth quietly changes our HDMI signals will help make HDMI less unpredictable. What is Color Depth? Every HDMI signal has a color depth associated with it. Color depth defines how many different colors can be represented by each pixel of a HDMI signal. A normal HDMI signal has a color depth of 8 bits per color. This may also be referred to as 24-bit color (8-bits per color x 3 colors RGB). The number of bits refers to the amount of binary digits used to determine the maximum number of colors that can be rendered. For example, the maximum number of colors for 24-bit color would be: 111111111111111111111111(binary) = 16,777,215 = 16.7 million different colors. -
HD-SDI, HDMI, and Tempus Fugit
TECHNICALL Y SPEAKING... By Steve Somers, Vice President of Engineering HD-SDI, HDMI, and Tempus Fugit D-SDI (high definition serial digital interface) and HDMI (high definition multimedia interface) Hversion 1.3 are receiving considerable attention these days. “These days” really moved ahead rapidly now that I recall writing in this column on HD-SDI just one year ago. And, exactly two years ago the topic was DVI and HDMI. To be predictably trite, it seems like just yesterday. As with all things digital, there is much change and much to talk about. HD-SDI Redux difference channels suffice with one-half 372M spreads out the image information The HD-SDI is the 1.5 Gbps backbone the sample rate at 37.125 MHz, the ‘2s’ between the two channels to distribute of uncompressed high definition video in 4:2:2. This format is sufficient for high the data payload. Odd-numbered lines conveyance within the professional HD definition television. But, its robustness map to link A and even-numbered lines production environment. It’s been around and simplicity is pressing it into the higher map to link B. Table 1 indicates the since about 1996 and is quite literally the bandwidth demands of digital cinema and organization of 4:2:2, 4:4:4, and 4:4:4:4 savior of high definition interfacing and other uses like 12-bit, 4096 level signal data with respect to the available frame delivery at modest cost over medium-haul formats, refresh rates above 30 frames per rates. distances using RG-6 style video coax. -
The Need for Color Management
Color management Adobe Photoshop 7.0 for Photographers by Martin Evening, ISBN 0 240 51690 7 is published by Focal Press, an imprint of Elsevier Science. The title will be available from the beginning of August 2002. Here are four easy ways to order direct from the publishers: By phone: Call our Customer Services department on 01865 888180 with your credit card details. By mail: Write to Heinemann Customer Services Department, PO BOX 840, Halley Court, Jordan Hill, Oxford OX2 8YW By Fax: Fax an order on 01865 314091 By email: Send to [email protected] By web: www.focalpress.com. Orders from the US and Canada should be placed on 1-800-366-2665 (1-800-366-BOOK) or tel: 314-453-7010. Email: [email protected] The title will be stocked in most major bookstores throughout the UK and US and via many resellers worldwide. It will also be available for purchase through the online bookstores Amazon.com and Amazon.co.uk. The following extract is part one of a guide to Photoshop 7.0 color management. hotoshop 5.0 was justifiably praised as a ground-breaking upgrade when it was released in the summer of 1998. The changes made to the color management P setup were less well received in some quarters. This was because the revised system was perceived to be extremely complex and unnecessary. Some color profes- sionals felt we already had reliable methods of matching color and you did not need ICC profiles and the whole kaboodle of Photoshop ICC color management to achieve this. -
Fast-Response Switchable Lens for 3D and Wearable Displays
Fast-response switchable lens for 3D and wearable displays Yun-Han Lee, Fenglin Peng, and Shin-Tson Wu* CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA *[email protected] Abstract: We report a switchable lens in which a twisted nematic (TN) liquid crystal cell is utilized to control the input polarization. Different polarization state leads to different path length in the proposed optical system, which in turn results in different focal length. This type of switchable lens has advantages in fast response time, low operation voltage, and inherently lower chromatic aberration. Using a pixelated TN panel, we can create depth information to the selected pixels and thus add depth information to a 2D image. By cascading three such device structures together, we can generate 8 different focuses for 3D displays, wearable virtual/augmented reality, and other head mounted display devices. ©2016 Optical Society of America OCIS codes: (230.3720) Liquid-crystal devices; (080.3620) Lens system design. References and links 1. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2(3), 199–216 (2006). 2. B. Furht, Handbook of Augmented Reality (Springer, 2011). 3. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012). 4. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004). 5. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010). -
Complete Reference / Web Design: TCR / Thomas A
Color profile: Generic CMYK printer profile Composite Default screen Complete Reference / Web Design: TCR / Thomas A. Powell / 222442-8 / Chapter 13 Chapter 13 Color 477 P:\010Comp\CompRef8\442-8\ch13.vp Tuesday, July 16, 2002 2:13:10 PM Color profile: Generic CMYK printer profile Composite Default screen Complete Reference / Web Design: TCR / Thomas A. Powell / 222442-8 / Chapter 13 478 Web Design: The Complete Reference olors are used on the Web not only to make sites more interesting to look at, but also to inform, entertain, or even evoke subliminal feelings in the user. Yet, using Ccolor on the Web can be difficult because of the limitations of today’s browser technology. Color reproduction is far from perfect, and the effect of Web colors on users may not always be what was intended. Apart from correct reproduction, there are other factors that affect the usability of color on the Web. For instance, a misunderstanding of the cultural significance of certain colors may cause a negative feeling in the user. In this chapter, color technology and usage on the Web will be covered, while the following chapter will focus on the use of images online. Color Basics Before discussing the technology of Web color, let’s quickly review color terms and theory. In traditional color theory, there are three primary colors: blue, red, and yellow. By mixing the primary colors you get three secondary colors: green, orange, and purple. Finally, by mixing these colors we get the tertiary colors: yellow-orange, red-orange, red-purple, blue-purple, blue-green, and yellow-green. -
Digital 3DTV
Digital 3DTV Alexey Polyakov The advent of the digital 3DTV era is a fait accompli. The question is: how is it going to develop in the future? Currently the Standard definition(SD) TV is being changed into High definition(HD) TV. As you know, quantitative changes tend to transform into qualitative ones. Many observers believe that the next quantum leap will be the emergence of 3D TV. They predict that such TV will appear within a decade. In this article I will explain how it is possible to create stereoscopic video systems using commercial devices. Brief historical retrospective The following important stages can be singled out in the history of TV and digital video development: 1—black and white TV – image brightness is transmitted. 2 – colored TV – image brightness and color components are transmitted. From the data volume perspective, adding color is a quantitative change. From the viewer perspective, it is a qualitative change. 3 – digital video emergence (Video CD, DVD) – a qualitative change from the data format perspective. 4 – HD digital video and TV (Blu-Ray, HDTV) – from the data volume perspectiveit is a quantitative change. However, exactly the same components are transmitted: brightness and color. Specialists and viewers have been anticipating for the change that had been predicted by sci-fi writers long ago, - 3D TV emergency. For a long time data volume was a bottleneck preventing stereoscopic video demonstration as the existing media couldn’t transmit it. Digital TV enabled to transmit enough data and became the basis for a number of devices that helped to realize 3D visualization. -
The Role of Focus Cues in Stereopsis, and the Development of a Novel Volumetric Display
The role of focus cues in stereopsis, and the development of a novel volumetric display by David Morris Hoffman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Martin S. Banks, Chair Professor Austin Roorda Professor John Canny Spring 2010 1 Abstract The role of focus cues in stereopsis, and the development of a novel volumetric display by David Morris Hoffman Doctor of Philosophy in Vision Science University of California, Berkeley Professor Martin S. Banks, Chair Typical stereoscopic displays produce a vivid impression of depth by presenting each eye with its own image on a flat display screen. This technique produces many depth signals (including disparity) that are consistent with a 3-dimensional (3d) scene; however, by using a flat display panel, focus information will be incorrect. The accommodation distance to the simulated objects will be at the screen distance, and blur will be inconsistent with the simulated depth. In this thesis I will described several studies investigating the importance of focus cues for binocular vision. These studies reveal that there are a number of benefits to presenting correct focus information in a stereoscopic display, such as making it easier to fuse a binocular image, reducing visual fatigue, mitigating disparity scaling errors, and helping to resolve the binocular correspondence problem. For each of these problems, I discuss the theory for how focus cues could be an important factor, and then present psychophysical data showing that indeed focus cues do make a difference. -
Development of a Real 3D Display System
2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C) Development of A Real 3D Display System Chong Zeng Weihua Li Hualong Guo College of Mathematics and College of Mathematics and College of Mathematics and information Engineering information Engineering information Engineering Longyan University Longyan University Longyan University Longyan, China Longyan, China Longyan, China Tung-lung Wu School of Mechanical and Automotive Engineering Dennis Bumsoo Kim Zhaoqing University College of Mathematics and information Engineering Zhaoqing, China Longyan University Longyan, China Abstract—This paper introduces a three-dimensional light achieve high fidelity of the reproduced objects by recording field display system, which is composed of a high-speed total object information on the phase, the amplitude, and the projector, a directional scattering mirror, a circular stainless- intensity at each point in the light wave [4]. steel bearing plate, a rotating shaft and a high-speed micro motor. The system reduces information redundancy and Recently, Cambridge Enterprise invented a novel 360e computational complexity by reconstructing the light intensity 3D light-field capturing and display system which can have distribution of the observed object, thus generating a real three- applications in gaming experiences, an enhanced reality and dimensional suspended image. The experimental results show autonomous vehicle infotainment and so on [5]. Motohiro et that the suspension three-dimensional image can be generated al. presented an interactive 360-degree tabletop display system by properly adjusting the projection rate of the image and the for collaborative works around a round table so that users rotation speed of the rotating mirror (i.e. -
3D TV: a Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes
3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Matusik, Wojciech, and Hanspeter Pfister. 2004. 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. Proceedings International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH 2004 Papers: August 08-12, 2004, Los Angeles, California, 814-824. New York, NY: ACM. Also published in ACM Transactions on Graphics 23(3): 814-824. Published Version doi:10.1145/1186562.1015805;doi:10.1145/1015706.1015805 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4726196 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes Wojciech Matusik Hanspeter Pfister∗ Mitsubishi Electric Research Laboratories, Cambridge, MA. Figure 1: 3D TV system. Left (top to bottom): Array of 16 cameras and projectors. Middle: Rear-projection 3D display with double-lenticular screen. Right: Front-projection 3D display with single-lenticular screen. Abstract 1 Introduction Three-dimensional TV is expected to be the next revolution in the Humans gain three-dimensional information from a variety of cues. history of television. We implemented a 3D TV prototype system Two of the most important ones are binocular parallax, scientif- with real-time acquisition, transmission, and 3D display of dynamic ically studied by Wheatstone in 1838, and motion parallax, de- scenes. -
The Effect of Object Color on Depth Ordering
Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2007-18 2007 The Effect of Object Color on Depth Ordering Reynold Bailey, Cindy Grimm, Christopher Davoli, and Richard Abrams The relationship between color and perceived depth for realistic, colored objects with varying shading was explored. Background: Studies have shown that warm-colored stimuli tend to appear nearer in depth than cool-colored stimuli. The majority of these studies asked human observers to view physically equidistant, colored stimuli and compare them for relative depth. However, in most cases, the stimuli presented were rather simple: straight colored lines, uniform color patches, point light sources, or symmetrical objects with uniform shading. Additionally, the colors were typically highly saturated. Although such stimuli are useful for isolating and studying depth cues in certain contexts, they... Read complete abstract on page 2. Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Bailey, Reynold; Grimm, Cindy; Davoli, Christopher; and Abrams, Richard, "The Effect of Object Color on Depth Ordering" Report Number: WUCSE-2007-18 (2007). All Computer Science and Engineering Research. https://openscholarship.wustl.edu/cse_research/122 Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/ cse_research/122 The Effect of Object Color on Depth Ordering Reynold Bailey, Cindy Grimm, Christopher Davoli, and Richard Abrams Complete Abstract: The relationship between color and perceived depth for realistic, colored objects with varying shading was explored.