A History of CRISPR-CAS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Program Monday, September 12
Scientific Program Monday, September 12 13:30- Registration 15:30-16:00 Opening Ceremony Room A 16:00-18:00 Opening Session Room A Chairs: Michael W.W. Adams, Yoshizumi Ishino 16:00- OL1 Karl O. Stetter, University of Regensburg, Germany Cultivation of Unexpected and "Unculturable" Extremophiles - Facts and Ideas 16:30- OL2 Tadayuki Imanaka, Ritsumeikan University, Japan Analysis and Application of Hyperthermophiles 17:00- OL3 Patrick Forterre, Institut Pasteur/Institut de Biologie Intégrative de la cellule, France Hyperthermophiles and the Universal Tree of Life 17:30- OL4 Dieter Söll, Yale University, USA Universal Concepts learned from Archaeal Translation 18:00-19:30 Welcome Reception Room B Tuesday, September 13 9:00- Registration 9:20-10:35 Keynote Lectures Room A Chairs: Elizaveta A. Bonch-Osmolovskaya, Takuro Nunoura 9:20- KL1 Gerhard J. Herndl, University of Vienna, Austria Deep Sea Microbes: Living in a Heterogeneous World 9:45- KL2 David Prangishvili, Institut Pasteur, France How to Survive in Hell: Lessons from Viruses 10:10- KL3 Michael Terns, University of Georgia, USA Bipartite Recognition of Target RNAs Activates DNA Cleavage by the Type III-B Cmr CRISPR-Cas System of Pyrococcus furiosus 10:35-11:05 Coffee break 11:05-12:17 Oral Session 1A Room A Chairs: Don A. Cowan, Satoshi Nakagawa 11:05- O1 Kenneth M. Stedman, Portland State University, USA Genetic Analysis of the Japanese Fusellovirus SSV1 11:23- O2 Mart Krupovic, Institut Pasteur, France Eukaryotic-like Virus Budding in Archaea 11:41- O3 Takuro Nunoura, Japan Agency -
A Region of Phage Lambda Required for Antitermination of Transcription
Cell, Vol. 31, 61-70, November 1982, Copyright 0 1982 by MIT Analysis of nutR; A Region of Phage Lambda Required for Antitermination of Transcription Eric R. Olson, Eric L. Flamm* and 1971; Friedman and Baron, 1974; Keppel et al., David I. Friedman 1974; Friedman et al., 1976, 1981; Greenblatt et al., Department of Microbiology and Immunology 1980). The sites include putative sites of pN action, The University of Michigan Medical School called nut (Salstrom and Szybalski, 1978; Rosenberg Ann Arbor, Michigan 48109 et al., 1978), as well as termination signals (Roberts, 1969; Rosenberg et al., 1978; Rosenberg and Court, 1979). Summary Consideration of the nature of the various factors involved in pN action formed the basis for the following The N gene product of coliphage lambda acts with model of pN action (discussed by Friedman and host factors (Nus) through sites (not) to render Gottesman, 1982). Transcription initiating at the early subsequent downstream transcription resistant to promoters PR and P, extends through the n&R and a variety of termination signals. These sites, not!? nutl sites, respectively (Figure 1). At these sites RNA and nutL, are downstream, respectively, from the polymerase is modified, rendering continuing tran- early promoters PR and PL. Thus a complicated set scription resistant to termination signals. The nature of molecular interactions are likely to occur at the of the promoter appears to play no role in pN action, nut sites. We have selected mutations in the nutR since placement of the n&R region downstream from region that reduce the effectiveness of pN in alter- the bacterial gal operon promoter results in termina- ing transcription initiating at the PR promoter. -
A Framework for Automated Enrichment of Functionally Significant Inverted Repeats in Whole Genomes
Missouri University of Science and Technology Scholars' Mine Computer Science Faculty Research & Creative Works Computer Science 01 Feb 2010 A Framework for Automated Enrichment of Functionally Significant Inverted Repeats in Whole Genomes Cyriac Kandoth Fikret Ercaļ Missouri University of Science and Technology, [email protected] Ronald L. Frank Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork Part of the Biology Commons, and the Computer Sciences Commons Recommended Citation C. Kandoth et al., "A Framework for Automated Enrichment of Functionally Significant Inverted Repeats in Whole Genomes," BMC Bioinformatics, vol. 11, no. SUPPL. 6, BioMed Central Ltd., Feb 2010. The definitive version is available at https://doi.org/10.1186/1471-2105-11-S6-S20 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Kandoth et al. BMC Bioinformatics 2010, 11(Suppl 6):S20 http://www.biomedcentral.com/1471-2105/11/S6/S20 PROCEEDINGS Open Access A framework for automated enrichment of functionally significant inverted repeats in whole genomes Cyriac Kandoth1*, Fikret Ercal1†, Ronald L Frank2† From Seventh Annual MCBIOS Conference. Bioinformatics: Systems, Biology, Informatics and Computation Jonesboro, AR, USA. 19-20 February 2010 Abstract Background: RNA transcripts from genomic sequences showing dyad symmetry typically adopt hairpin-like, cloverleaf, or similar structures that act as recognition sites for proteins. -
DNA Sequence; Operator; Repressor; Regulatory Region; Dyad Symmetry; Plasmid Pbr322; Sl Nuclease Mapping)
Gene, 23 (1983) 149-156 149 Elsevier Overlapping divergent promoters control expression of TnlO tetracycline resistance (DNA sequence; operator; repressor; regulatory region; dyad symmetry; plasmid pBR322; Sl nuclease mapping) Kevin P. Bertrand *, Kathleen Posh, Lewis V. Wray Jr. ** and William S. Reznikoff ** Department of Microbiology, University of California, Irvine, CA 92717 (U.S.A.) Tel. (714) 833- 6115, and ** Depart- ment of Biochemistry, University of Wisconsin, Madison, WI 53706 (U.S.A.) Tel. (608) 262 - 3608 (Received February 7th, 1983) (Accpeted February l&h, 1983) SUMMARY We have previously examined the genetic organization and regulation of the TnZO tetracycline-resistance determinant in Escherichia coli K-12. The structural genes for retA, the TnlO tetracycline-resistance function, and for tetR, the TnlO lef repressor, are transcribed in opposite directions from promoters in a regulatory region located between the two structural genes. Expression of both t&I and t&R is induced by tetracycline. Here we report the DNA sequence of the TnlO tet regulatory region. The locations of the tetA and tetR promoters within this region were defined by Sl nuclease mapping of the 5’ ends of in vivo tet RNA. The t&4 and tetR promoters overlap; the transcription start points are separated by 36 bp. We propose that two similar regions of dyad symmetry within the TnlO tet regulatory region are operator sites at which tet repressor binds to tet DNA, thereby in~biting transcription initiation at the ietA and tetR promoters. The TnlO ret regulatory region and the pBR322 tet regulatory region show significant DNA sequence homology (53%). -
The Regulatory Region of the Divergent Argecbh Operon in Escherichia Coli K-12
Volume 10 Number 24 1982 Nucleic Acids Research The regulatory region of the divergent argECBH operon in Escherichia coli K-12 Jacques Piette*, Raymond Cunin*, Anne Boyen*, Daniel Charlier*, Marjolaine Crabeel*, Franpoise Van Vliet*, Nicolas Glansdorff*, Craig Squires+ and Catherine L.Squires + *Nficrobiology, Vrije Universiteit Brussel, and Research Institute of the CERIA, 1, Ave. E. Giyson, B-1070 Brussels, Belgium, and +Department of Biological Sciences, Columbia University, New York, NY 10027, USA Received 24 September 1982; Revised and Accepted 24 November 1982 ABSTRACT The nucleotide sequence of the control region of the divergent argECBH operon has been established in the wild type and in mutants affecting expression of these genes. The argE and argCBH promoters face each other and overlap with an operator region containing two domains which may act as distinct repressor binding sites. A long leader sequence - not involved in attenuation - precedes argCBH. Overlapping of the argCBH promoter and the region involved in ribosome mobilization for argE translation explains the dual effect of some mutations. Mutations causing semi-constitutive expression of argE improve putative promoter sequences within argC. Implications of these results regarding control mechanisms in amino acid biosynthesis and their evolution are discussed. INTRODUCTION Divergently transcribed groups of functionally related genes are not exceptional in Escherichia coli (1-10). In only a few instances, however, are the sites responsible for the expression and the regulation of the flanking genes organized in an inte- grated fashion such that the gene cluster constitutes a bipolar operon, with an internal operator region flanked by promoters facing each other. The argECBH cluster (Fig.1) is one of the earliest reported examples of such a pattern. -
FARE, a New Family of Foldback Transposons in Arabidopsis
Copyright 2000 by the Genetics Society of America FARE, a New Family of Foldback Transposons in Arabidopsis Aaron J. Windsor and Candace S. Waddell Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada Manuscript received June 23, 2000 Accepted for publication August 16, 2000 ABSTRACT A new family of transposons, FARE, has been identi®ed in Arabidopsis. The structure of these elements is typical of foldback transposons, a distinct subset of mobile DNA elements found in both plants and animals. The ends of FARE elements are long, conserved inverted repeat sequences typically 550 bp in length. These inverted repeats are modular in organization and are predicted to confer extensive secondary structure to the elements. FARE elements are present in high copy number, are heterogeneous in size, and can be divided into two subgroups. FARE1's average 1.1 kb in length and are composed entirely of the long inverted repeats. FARE2's are larger, up to 16.7 kb in length, and contain a large internal region in addition to the inverted repeat ends. The internal region is predicted to encode three proteins, one of which bears homology to a known transposase. FARE1.1 was isolated as an insertion polymorphism between the ecotypes Columbia and Nossen. This, coupled with the presence of 9-bp target-site duplications, strongly suggests that FARE elements have transposed recently. The termini of FARE elements and other foldback transposons are imperfect palindromic sequences, a unique organization that further distinguishes these elements from other mobile DNAs. RANSPOSABLE elements (TEs) are ubiquitous IVR ends and contain no protein coding sequences. -
OKAZAKI Fragment Memorial Symposium: Celebrating the 50Th Anniversary of the Discontinuous DNA Replication Model Sakata and Hira
OKAZAKI Fragment Memorial Symposium: Celebrating the 50th anniversary of the discontinuous DNA replication model Sakata and Hirata Hall, Nagoya University December 17 - 18, 2018 Organizing committee: Tsuneko Okazaki (Chair) Fuyuhiko Tamanoi (Kyoto University) Kunihiro Matsumoto Ikue Mori Takumi Kamura Michio Homma (secretariat) Program committee: Hisao Masai (Chair, Tokyo Metropolitan Institute of Medical Science) Katsuhiko Shirahige (The University of Tokyo) Takehiko Kobayashi (The University of Tokyo) Preface One of the mysteries of DNA replication after the proposal of semiconservative replicaiton model and discovery of DNA polymerase was how the double-stranded DNA consisting of two antiparallel chains can be replicated by an enzyme which can extend DNA chains only in one direction from 5' to 3'. The late Dr. Reiji Okazaki and his wife Tsuneko proposed that on the lagging strand DNA is discontinuously synthesized as short DNA fragments and that the fragments are ligated to become mature, longer DNAs, on the basis of their analyses on the nascent DNA fragments produced in E. coli infected with T4 phage. This short lagging strand DNA fragment was named "Okazaki fragment" and this name is still used worldwide today. Subsequent studies demonstrated that the discontinuous synthesis of lagging strand through Okazaki fragments was conserved through bacteria to animal cells, and has become one of the most basic principles on DNA replication. Reiji died of leukemia at the age of 44 in 1975, due to radiation exposure in Hiroshima when he was a second year student at a junior high school. Tsuneko took over Reiji’s wishes and continued to work on DNA replication at Nagoya University, clarifying further details of lagging strand DNA synthesis. -
Introducing Your Students to Gene Editing with CRISPR
WORKSHOP: Introducing Your Students To Gene Editing With CRISPR 1.800.EDVOTEK • www.edvotek.com • [email protected] WORKSHOP: Introducing Your Students To Gene Editing With CRISPR Background Information The gene editing tool CRISPR-Cas9 was developed by bacteria at the beginning of evolutionary history as a defense against viral attacks. It was created by nature, not human beings, but we discovered it in the late 1980s. We figured out how it worked in the early years of this century, and have now made it into a valuable part of our efforts to improve human health, make our food supply hardier and more resistant to disease, and advance any arm of science that involves living cells, such as biofuels and waste management. The CRISPR-Cas System in Action In 1987 Yoshizumi Ishino and colleagues at Osaka University in Japan were researching a new microbial gene when they Figure 1: Bacterial CRISPR Region. discovered an area within it that contained five identical segments of DNA made up of the same 29 base pairs. The segments were separated from each other by 32-base pair blocks of DNA called spacers, and each spacer had a unique configuration (Figure 1). This section of DNA didn’t resemble anything microbiologists had seen before and its biological significance was unknown. Eventually these strange segments and spacers would be known as Clustered Regu- larly Interspaced Short Palindromic Repeats – or CRISPR. Scientists also discovered that a group of genes coding for enzymes they called Cas (CRISPR-associated enzymes) were always next to CRISPR sequences. In 2005, three labs noticed that the spacer sequences resembled viral DNA and everything fell into place. -
PG 4Th Semester
Paper No. : 04 Genetic engineering and recombinant DNA technology Module : 01 History of Genetic Material Principal Investigator: Dr Vibha Dhawan, Distinguished Fellow and Sr. Director The Energy and Resouurces Institute (TERI), New Delhi Co-Principal Investigator: Prof S K Jain, Professor, of Medical Biochemistry Jamia Hamdard University, New Delhi Paper Coordinator: Dr Mohan Chandra Joshi, Assistant Professor, Jamia Millia Islamia, New Delhi Content Writer: Dr Rohini Muthuswami, Associate Professor, Jawaharlal Nehru University Content Reviwer: Dr Mohan Chandra Joshi, Assistant Professor, Jamia Millia Islamia, New Delhi Genetic Engineering and Recombinant DNA Technology Biotechnology History of Genetic Material Description of Module Subject Name Biotechnology Paper Name Genetic Engineering and Recombinant DNA Technology Module Name/Title History of Genetic Material Module Id 01 Pre-requisites Objectives To understand how DNA was identified as genetic material Keywords DNA Genetic Engineering and Recombinant DNA Technology Biotechnology History of Genetic Material 1. Nature of the genetic material. In this module we will learn about how scientists discovered the identity of the genetic material. The foundation of modern biology was laid by scientists in mid-19th century. The principles of genetics were discovered by Gregor Mendel in 1865-66. The nuclein or what we term as nucleic acid was discovered and identified in 1869. The final identity of the genetic material was firmly established in 1952, two years after the structure of DNA was elucidated. We are going to follow this fascinating journey and I hope at the end of this module you learn to appreciate how scientists using the simple tools and techniques available to them established the identity of the genetic material. -
DNA.Bending by Negative Regulatory Proteins: Gal and Lac Repressors
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press DNA.bending by negative regulatory proteins: Gal and Lac repressors Christian Zwieb, Jin Kim, and Sankar Adhya 1 Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The ability of two negative regulatory proteins, Gal and Lac repressors, to induce DNA bending was tested by the respective cloning of ga/and lac operator DNA sequences into a sensitive vector, pBend2, pBend2 can generate a large number of DNA fragments in each of which a cloned operator is present in circularly permuted positions along the length of the DNA. Gel electrophoresis of these DNA fragments individually complexed to a repressor shows that the Gal repressor bends both of the ga/operators, O, and O~. Similarly, the Lac repressor induces a bend to a lac operator DNA. In each case, the center of the average bent segment is located at or close to the dyad symmetry axis of the operator sequence. In view of these findings, we discuss how these negative regulatory proteins may function by a more dynamic mechanism than was perceived previously. [Key Words: DNA bending; Gal and Lac repressors; gal and lac operators] Received January 13, 1989; revised version accepted March 6, 1989. It is becoming increasingly clear that biological macro- Parker 1986; Dripps and Wartell 1987; Mizuno 1987; molecular reactions involve the formation of specific Plaskon and Wartell 1987). It was suggested by Crothers DNA-multiprotein complexes. For many of these reac- and Fried (1983)that such contortions may be essential tions, such as replication or recombination, the com- for the formation and activity of the DNA-protein tran- plexes assume a higher-order structure (Echols 1986}. -
A Protein Involved in Minichromosome Maintenance in Yeast Binds a Transcriptional Enhancer Conserved in Eukaryotes
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes Steven Passmore, Randolph Elble, and Bik-Kwoon Tye Section of Biochemistry, Molecular and Cell Biology, Comell University, Ithaca, New York 14853 USA The Saccharomyces cerevisiae MCM1 gene product is a protein with multiple functions. It is a transcription factor necessary for expression of mating-type-specific genes and is also required for the maintenance of minichromosomes. MCM1 shows DNA-binding specificities similar to those of two previously reported DNA- binding factors, pheromone/receptor transcription factor (PRTF) and general regulator of mating type (GRM)~ like PRTF, its activity can be modulated by the al protein. MCM1 binds to the dyad symmetry element 5'- CCTAATTAGG and related sequences, which we refer to as MCM1 _control _elements (MCEs). MCEs are found within the regulatory regions of a- and ,,-specific genes. Direct and indirect DNA binding assays suggest that a conserved 5'-ATTAGG in one-half of the dyad symmetry element is important for MCM1 binding whereas variants in the other half are tolerated. We have used a novel DNase I 'nicking interference' assay to investigate the interaction of MCM1 with its substrate. These data suggest that MCM1 binds as a dimer, interacting symmetrically with the ATTAGG residues in each half of the binding site. MCM1 contains striking homology to the DNA-binding domain of the human serum response factor (SRF) which mediates the transient transcriptional activation of growth-stimulated genes by binding to the serum response element (SRE). -
Analysis of the DNA-Binding and Activation Properties of the Human Transcription Factor AP-2
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Analysis of the DNA-binding and activation properties of the human transcription factor AP-2 Trevor Williams ~ and Robert Tjian Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720 USA The mammalian transcription factor AP-2 is a sequence-specific DNA-binding protein expressed in neural crest lineages and regulated by retinoic acid. Here we report a structure/function analysis of the DNA-binding and transcription activation properties of the AP-2 protein. DNA contact studies indicate that AP-2 binds as a dimer to a palindromic recognition sequence. Furthermore, cross-linking and immunoprecipitation data illustrate that AP-2 exists as a dimer even in the absence of DNA. Examination of cDNA mutants reveals that the sequences responsible for DNA binding are located in the carboxy-terminal half of the protein. In addition, a domain mediating dimerization forms an integral component of this DNA-binding structure. Expression of AP-2 in mammalian cells demonstrates that transcriptional activation requires an additional amino-terminal domain that contains an unusually high concentration of proline residues. This proline-rich activation domain also functions when attached to the heterologous DNA-binding region of the GAL4 protein. This study reveals that although AP-2 shares an underlying modular organization with other transcription factors, the regions of AP-2 involved in transcriptional activation and DNA binding/dimerization have novel sequence characteristics. [Key Words: Enhancer factor~ DNA binding~ dimerization; mammalian expression~ proline-rich activator~ palindromic binding site] Received November 15, 19901 revised version accepted January 22, 1991.