Phylogenetic Relationships Between Zokors Myospalax

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships Between Zokors Myospalax PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 74 (2020), No. 1 (724), pp. 25–34. DOI: 10.2478/prolas-2020-0005 PHYLOGENETIC RELATIONSHIPS BETWEEN ZOKORS MYOSPALAX (MAMMALIA, RODENTIA) DETERMINED ON THE BASIS OF MORPHOMETRIC AND MOLECULAR ANALYSES Dalius Butkauskas1,#, Marija Starodubaitë1, Mikhail Potapov2, Olga Potapova2, Sergei Abramov2, and Yury Litvinov2 1 Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, LITHUANIA 2 Institute of Systematics and Ecology of Animals Siberian Branch of Russian Academy of Science, 11 Frunze Str., Novosibirsk, 630091, RUSSIA # Corresponding author, [email protected] Communicated by Isaak Rashal Phylogenetic relationships between zokors living in different territories of Russia: Altai zokors Myospalax myospalax from “Altai” (Altai Republic and Altaiskii Krai) and “Priobie” from the River Ob zone (Tomsk oblast and Novosibirsk oblast) and subspecies M. m. tarbagataicus from Ka- zakhstan (ridge Tarbagatai) and M. aspalax and M. psilurus from Zabaikalskii Krai were deter- mined on the basis of craniometrical and molecular analysis of the mitochondrial 12S rRNA gene. The comparison of the craniometrical and molecular data revealed significant differences be- tween the Altai zokors of the “Priobie” (the River Ob zone) and “Altai” populations. The impor- tance of geographic isolation to the formation of morphometric and genetic differentiation of distinct geographic forms of the investigated zokors is shown. Specific ecological and morphologi- cal adaptations and distinct genetic features of two forms of zokors indicate the existence of separate subspecies of the species M. myospalax. Key words: Myospalacinae, Myospalax spp., Altai zokor, craniometric analysis, systematics, molecular-genetic variability. INTRODUCTION zokors became extinct or were forced to migrate due to changing climatic conditions. Therefore, the current distri- Zokors belong to a group of rodents adapted to underground bution of the zokors of the Myospalax genus in Russia is life and inhabiting steppes and meadows of Europe and fragmented with geographically isolated areas due to frag- Asia (Gromov and Erbaeva, 1995). This group of rodents mentation of the former continuous area in Pleistocene (Fig. originated in Central Asia during the Miocene epoch in 1) (Galkina et al, 1969; Galkina, 1975; Galkina and Mongolia. Other forms of the Prosiphneus genus were very Nadeev, 1980). Nowadays the degradation of the zokors ar- abundant and widespread during the Pliocene, both in Asia eas is still going on. and Europe (Sukhov, 1970; Bazarov and Erbaeva, 1976; Sukhov, 1977). Zokors belong to a group of mammals that have been taxo- nomically and evolutionarily poorly studied. Only a few in- From the beginning of the middle Miocene, active climate vestigations into morphometric-craniological variability of aridisation was followed by repeated phases of a fall and the zokors are known (Galkina and Nadeev, 1980; Law- rise in temperature forming the zone of periglaciation, the rence, 1991). Some genetic-karyological (Martynova and widespread cold tundra-steppe during the Pliocene–Mio- Vorontsov, 1975; Vorontsov and Martynova, 1976; Marty- cene and the formation of a xerophytic steppe at the Pleisto- nova, 1976; 1977; Puzachenko, 2014), molecular-genetic cene – Holocene transition, which contributed to the forma- (Zhou, 2004; Zhijin, 2011; Junhu, 2014; Yangwei, 2016), tion of typical meadows. As a result, the steppe forms of the morphometric-genetic (Pavlenko, 2014; Puzachenko, 2014), Proc. Latvian Acad. Sci., Section B, Vol. 74 (2020), No. 1. 25 (Cai et al., 2007; Zhou and Zhou, 2008; Tsvirka et al., 2011). New data on the distribution of the endemic Asian zokors in Eastern Russia (Transbaikalia and Khanka Plain) based on taxonomic, genetic (karyotype and mtDNA markers) and morphological (craniometry) research were obtained. It was established that four distinct species inhabited that region: M. aspalax, M. armandii, and M. epsilanus in south Trans- baikalia and M. psilurus in Khanka Plain (Pavlenko, 2014). The zokor species inhabiting North China were described earlier: M. p. psilurus and M. p. epsilanus. Taxonomic Fig. 1. Current distribution of zokors and the locations where zokor fossils status of these forms is being debated. The diploid number were found in the territory of Russia. of chromosomes in the tested zokors was 64, but there were notable differences in the karyotype structures from Za- baykalskii Krai (‘epsilanus’: 9-12 M-SM, 10-13 ST, 8-9 A) myological (Gambaryan, 1960) and ecological (Anony- and from Primorskii Krai (‘psilurus’: 9 M-SM, 13-14 ST, mous, 1978; Gromov and Erbaeva, 1995; Zhang and Liu, 8-9 A). These populations were observed to clearly differ in 2003; Zhang et al., 2003; Zhang, 2007; Lin, 2014; Zhao, the spectra of blood serum proteins (transferrins); all sam- 2016; Sun, 2017) investigations have been carried out in or- ples from Primorskii Krai were found to be monomorphic der to study taxonomy, evolution and biology of the zokors. by TF-B, while the samples from Zabaykalskii Krai pos- Among other subterranean rodents, zokors have not been sessed TF-C only. Marginal populations from Zabaykalskii extensively studied from the viewpoint of taxonomy and Krai and Primorskii Krai showed significant differences ac- evolution (Cao et al., 2001; Norris et al., 2004). Recent mo- cording to RAPD results. It may be supposed that these dif- lecular phylogenetic studies carried out based on sequenc- ferences indicate the interspecies level. Genetic distance be- ing the mitochondrial 12S rRNA gene, the mitochondrial tween geographically separated samples is high and it may cytochrome b (cyt b) gene (Norris et al., 2004) and the nu- be compared with the distance between other zokor species, clear IRBP gene (Jansa and Weksler, 2004) demonstrated M. aspalax and M. armandii (Pavlenko and Korablev, 2003; that zokors of the subfamily Myospalacinae were closely re- Puzachenko et al., 2009; Tsvirka et al., 2011). A similar lated to Spalacinae and Rhyzomyinae in the family Spalaci- pattern of differentiation was detected by sequencing mito- dae. However, the phylogenetic analysis of the nuclear chondrial markers: hypervariable region D-loop and cyto- LCAT gene placed zokors in the subfamily Cricetinae chrome b. (Michaux and Catzeflis, 2000). Main morphological differences within the North China Systematics of the representatives of the Myospalax genera zokor were found in hard palate features (foramina incisive has not been developed sufficiently and should be revised. size and construction, the length of the maxillary bone). Ac- The position of the zokors is represented by the “groups of cording to available data, the zokors from Primorskii Krai genera” within the Myospalax genera: PSILURUS (one are identical to the zokors from the southern part of the spe- nominal species), MYOSPALAX (M. epsilanus, M. aspalax, cies range and are considered typical of M. p. psilurus. The M. myospalax), and FONTANIERI (M. fontanieri, M. zokors from the Great Khingan region must be considered rothschildi, M. smithi). One of the questions is generic dis- M. p. epsilanus. The zokors from Zabaykalskii Krai and crimination of Eospalax as a separate genera of the subfam- Eastern Mongolia are definitely close to M. p. epsilanus by ily Myospalacinae (Zang, 2007). According to some authors morphometric data, but they have some specific features in (Gromov and Erbaeva, 1995), the Myospalax genera include foramina incisiva construction, the length of the odontic M1 two subgenera Myospalax and Eospalax. Three zokor spe- and M2 and the total length of the upper tooth-row. The cies (Altai zokor (M. myospalax Laxmann, 1773), Daurian authors propose that this form should be regarded as a sepa- zokor (M. aspalax Pallas, 1776) and Manjurian zokor (M. rate subspecies of the North China zokor provisionally. For psilurus Milne-Edwards, 1874)) inhabit the territory of Rus- a further revision, integrated genetic and morphological sia and are considered to belong to the subgenera Myospa- study of the zokors from the Chinese part of the species lax. range is necessary (Puzachenko, 2014). The taxonomy of the contemporary Myospalacinae includes The aim of the current study was to analyse the geographi- five to ten species (Allen, 1909; Ognev, 1947; Li and Chen, cal, craniometrical and molecular-genetic variability of the 1987; Lawrence, 1991; Zheng and Cai, 1991; Zheng, 1994; representatives of the Myospalax genus inhabiting geo- McKenna and Bell, 1997; Nowak, 1999; Carleton and graphically separated territories of Russia, to determine Musser, 2005; Smith and Xie, 2008). No recent full-scale their systematic position and to establish phylogenetic rela- revision of zokors has been carried out. New evidence in- tionships between separate geographical forms of the Altai cluding the combined results of genetic and morphometric zokor (Myospalax myospalax) from the West Siberia studies is needed for revision of Myospalacinae taxonomy forest-steppe zone. 26 Proc. Latvian Acad. Sci., Section B, Vol. 74 (2020), No. 1. MATERIALS AND METHODS To explore the variation patterns among different species and geographic samples, canonical discriminant analysis of Morphometrical analysis. Skull material from the zoologi- craniometric characters was used (Klecka, 1980). The un- cal collections of the Siberian Zoological Museum of the In- weighted pair group method with an arithmetic mean (UP- stitute of Systematics and Ecology of Animals, the Zoologi- GMA)
Recommended publications
  • Downloaded from Ensembl (Www
    Lin et al. BMC Genomics 2014, 15:32 http://www.biomedcentral.com/1471-2164/15/32 RESEARCH ARTICLE Open Access Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia) Gong-Hua Lin1, Kun Wang2, Xiao-Gong Deng1,3, Eviatar Nevo4, Fang Zhao1, Jian-Ping Su1, Song-Chang Guo1, Tong-Zuo Zhang1* and Huabin Zhao5* Abstract Background: Subterranean mammals have been of great interest for evolutionary biologists because of their highly specialized traits for the life underground. Owing to the convergence of morphological traits and the incongruence of molecular evidence, the phylogenetic relationships among three subfamilies Myospalacinae (zokors), Spalacinae (blind mole rats) and Rhizomyinae (bamboo rats) within the family Spalacidae remain unresolved. Here, we performed de novo transcriptome sequencing of four RNA-seq libraries prepared from brain and liver tissues of a plateau zokor (Eospalax baileyi) and a hoary bamboo rat (Rhizomys pruinosus), and analyzed the transcriptome sequences alongside a published transcriptome of the Middle East blind mole rat (Spalax galili). We characterize the transcriptome assemblies of the two spalacids, and recover the phylogeny of the three subfamilies using a phylogenomic approach. Results: Approximately 50.3 million clean reads from the zokor and 140.8 million clean reads from the bamboo ratwere generated by Illumina paired-end RNA-seq technology. All clean reads were assembled into 138,872 (the zokor) and 157,167 (the bamboo rat) unigenes, which were annotated by the public databases: the Swiss-prot, Trembl, NCBI non-redundant protein (NR), NCBI nucleotide sequence (NT), Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG).
    [Show full text]
  • Dry Grassland of Europe: Biodiversity, Classification, Conservation and Management
    8th European Dry Grassland Meeting Dry Grassland of Europe: biodiversity, classification, conservation and management 13-17 June 2011, Ym`n’, Ykq`ine Abstracts & Excursion Guides Edited by Anna Kuzemko National Academy of Sciences of Ukraine, Uman' Ukraine O`tion`l Dendqologic`l R`qk “Uofiyivk`” 8th European Dry Grassland Meeting Dry Grassland of Europe: biodiversity, classification, conservation and management 13-17 June 2011, Ym`n’, Ykq`ine Abstracts & Excursion Guides Edited by Anna Kuzemko Ym`n’ 2011 8th European Dry Grassland Meeting. Dry Grassland of Europe: biodiversity, classification, conservation and management. Abstracts & Excursion Guides – XŃ_ń)# 2011& Programme Committee: Local Organising Committee Anna KuzeŃko (XŃ_ń)# Xkr_ińe) Jv_ń LoŚeńko (XŃ_ń)# Xkr_ińe) Kürgeń Deńgler (I_Ńburg# HerŃ_ńy) Yakiv Didukh (Kyiv, Ukraine) Nońik_ K_ńišov` (B_ńŚk` ByŚtric_# Sergei Mosyakin (Kyiv, Ukraine) Slovak Republic) Alexandr Khodosovtsev (Kherson, Ukraine) Uolvit_ TūŚiņ_ (Tig_# M_tvi_) Jńń_ Dideńko (XŃ_ń) Xkr_ińe) Stephen Venn (Helsinki, Finland) Michael Vrahnakis (Karditsa, Greece) Ivan Moysienko (Kherson, Ukraine) Mykyta Peregrym (Kyiv, Ukraine) Organized and sponsored by European dry Grassland Group (EDGG), a Working group of the Inernational Association for Vegetation Science (IAVS) National Dendrologic_l R_rk *Uofiyvk_+ of the O_tioń_l Ac_deŃy of UcieńceŚ of Xkr_ińe# M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kherson state University Floristisch-soziologische Arbeitsgemeinschaft e V. Abstracts
    [Show full text]
  • Phytochemical and Pharmacological Studies on Species of Dorstenia Genus (2000-2016)
    Article J. Mex. Chem. Soc. 2018, 62(3) ©2018, Sociedad Química de México ISSN-e 2594-0317 Phytochemical and Pharmacological Studies on Species of Dorstenia Genus (2000-2016) Héctor A. Peniche-Pavía, Marina Vera-Ku, and Sergio R. Peraza-Sánchez* 1 Centro de Investigación Científica de Yucatán, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán, México 97205. * Corresponding author: S.R. Peraza-Sánchez Tel. (999) 942-8330, Ext. 264, e-mail: [email protected] Received November 15th, 2017; Accepted February 19th, 2018. DOI: http://dx.doi.org/10.29356/jmcs.v62i3.381 Abstract. The main objective of this review is to update the current knowledge on species of Dorstenia genus. Previous review was published in 2000. This genus includes 117 accepted named species, from which metabolites with a great variety of structures are found. In the last fifteen years, a blooming has occurred in the research of the genus, with more than 60 original research papers on the chemistry and pharmacology of many species, being one of the main reasons to this thriving the generalized use of Dorstenia species in the traditional medicine around the world. Keywords: Phytochemistry and Pharmacology; Dorstenia; coumarins; terpenes; flavonoids. Resumen. El objetivo principal de esta revisión es actualizar los conocimientos existentes sobre especies del género Dorstenia. Una revisión previa fue publicada en 2000. Este género incluye 117 especies aceptadas, las cuales se encuentran metabolitos con una gran variedad de estructuras. En los últimos quince años se ha producido un gran auge en la investigación del género, con más de 60 trabajos de investigación originales sobre la química y farmacología de muchas especies, siendo una de las principales razones para este florecimiento el uso generalizado de especies de Dorstenia en la medicina tradicional en todo el mundo.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Potent Cytotoxicity of Four Cameroonian Plant Extracts on Different Cancer Cell Lines
    pharmaceuticals Article Potent Cytotoxicity of Four Cameroonian Plant Extracts on Different Cancer Cell Lines Ahmed Somaida 1 , Imran Tariq 1,2 , Ghazala Ambreen 1 , Ahmed Mohamed Abdelsalam 1,3, Abdallah Mohamed Ayoub 1,4, Matthias Wojcik 1, Jean Paul Dzoyem 5,* and Udo Bakowsky 1,* 1 Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; somaida@staff.uni-marburg.de (A.S.); [email protected] (I.T.); [email protected] (G.A.); [email protected] (A.M.A.); ayoub@staff.uni-marburg.de (A.M.A.); [email protected] (M.W.) 2 Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan 3 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 11865, Egypt 4 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt 5 Department of Biochemistry, Faculty of Science, University of Dschang. P.O Box. 67 Dschang, Cameroon * Correspondence: [email protected] (J.P.D.); [email protected] (U.B.) Received: 5 September 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: In this study, the potential cytotoxicity of four plant extracts originated from Cameroon: Xylopia aethiopica (XA), Imperata cylindrica (IC), Echinops giganteus (EG) and Dorstenia psilurus (DP) were examined in vitro. We tested the anti-proliferative activity of the methanolic extracts of these compounds using MTT assay on seven different human cancer cell lines: HeLa, MDA-MB-231, A549, HepG2, U-87, SK-OV-3 and HL60. Induction of cell death was assessed by cell cycle analysis, apoptosis was determined by Annexin V-FITC binding and caspase 3/7 activity.
    [Show full text]
  • Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad De Zaragoza, Huesca, Spain
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 31 2007 A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad de Zaragoza, Huesca, Spain Pedro Torrecilla Universidad Central de Venezuela, Maracay, Venezuela José A. López-Rodríguez Universidad de Zaragoza, Huesca, Spain Jochen Müller Friedrich-Schiller-Universität, Jena, Germany Clive A. Stace University of Leicester, Leicester, UK Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Catalán, Pilar; Torrecilla, Pedro; López-Rodríguez, José A.; Müller, Jochen; and Stace, Clive A. (2007) "A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 31. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/31 Aliso 23, pp. 380–405 ᭧ 2007, Rancho Santa Ana Botanic Garden A SYSTEMATIC APPROACH TO SUBTRIBE LOLIINAE (POACEAE: POOIDEAE) BASED ON PHYLOGENETIC EVIDENCE PILAR CATALA´ N,1,6 PEDRO TORRECILLA,2 JOSE´ A. LO´ PEZ-RODR´ıGUEZ,1,3 JOCHEN MU¨ LLER,4 AND CLIVE A. STACE5 1Departamento de Agricultura, Universidad de Zaragoza, Escuela Polite´cnica Superior de Huesca, Ctra. Cuarte km 1, Huesca 22071, Spain; 2Ca´tedra de Bota´nica Sistema´tica, Universidad Central de Venezuela, Avenida El Limo´n s. n., Apartado Postal 4579, 456323 Maracay, Estado de Aragua,
    [Show full text]
  • Taxonomy and Phylogenetic Relationship of Zokors
    Journal of Genetics (2020)99:38 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-020-01200-2 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE Taxonomy and phylogenetic relationship of zokors YAO ZOU1, MIAO XU1, SHIEN REN1, NANNAN LIANG1, CHONGXUAN HAN1*, XIAONING NAN1* and JIANNING SHI2 1Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling 712100, People’s Republic of China 2Ningxia Hui Autonomous Region Forest Disease and Pest Control Quarantine Station, Yinchuan 750001, People’s Republic of China *For correspondence. E-mail: Chongxuan Han, [email protected]; Xiaoning Nan, [email protected]. Received 24 October 2019; revised 19 February 2020; accepted 2 March 2020 Abstract. Zokor (Myospalacinae) is one of the subterranean rodents, endemic to east Asia. Due to the convergent and parallel evolution induced by its special lifestyles, the controversies in morphological classification of zokor appeared at the level of family and genus. To resolve these controversies about taxonomy and phylogeny, the phylogenetic relationships of 20 species of Muroidea and six species of zokors were studied based on complete mitochondrial genome and mitochondrial Cytb gene, respectively. Phylogeny analysis of 20 species of Muroidea indicated that the zokor belonged to the family Spalacidae, and it was closer to mole rat rather than bamboo rat. Besides, by investigating the phylogenetic relationships of six species of zokors, the status of two genera of Eospalax and Myospalax was affirmed because the two clades differentiated in phylogenetic tree represented two types of zokors, convex occiput type and flat occiput type, respectively.
    [Show full text]
  • Chapter 4 the Antiquity of Rhizomys and Independent Acquisition of Fossorial Traits in Subterranean Muroids
    Chapter 4 The Antiquity of Rhizomys and Independent Acquisition of Fossorial Traits in Subterranean Muroids LAWRENCE J. FLYNN1 ABSTRACT In parallel with the growing body of molecular data bearing on the relationships of muroids, particularly subterranean lineages, the relevant fossil record has improved to the point that its data constrain scenarios of evolution about both the timing and mode of evolution of burrowing muroids, especially bamboo rats, blind mole rats, and zokors. Morphologists have considered these groups phylogenetically distinct from each other, but the three lineages appear to be related as a monophyletic Family Spalacidae, sister taxon to all other living muroids, based on both nuclear and mitochondrial genes. Although living genera are fully subterranean, the fossil record shows that the three groups evolved burrowing characteristics independently. Bamboo rats (Rhizomyinae) have the longest fossil record, extending into the Late Oligocene, but do not show fossorial traits until the Late Miocene. Blind mole rats (Spalacinae) have a fossil record nearly that long, and its early members also lack burrowing traits. Zokors (Myospalacinae) show characteristics considered derived relative to other groups, and have a shorter fossil record. The fossil record of the Tribe Rhizomyini, living Asian bamboo rats, extends to about 10 million years ago, with early species distinct at the generic level from living Rhizomys. The oldest well- known species assignable to an extant genus is Rhizomys (Brachyrhizomys) shansius from the early Pliocene of Yushe Basin, China, north of the geographic range of modern Rhizomys.A hypothesis of close relationship of bamboo rats, blind mole rats, and zokors leads to a reevaluation of affinities of certain Asian fossil taxa and reevaluation of polarity of some features, but molecular data are not yet robust enough to clarify interrelationships of the groups.
    [Show full text]
  • Hystrx It. J. Mamm. (Ns) Supp. (2007) V European Congress of Mammalogy
    Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy RODENTS AND LAGOMORPHS 51 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy 52 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy A COMPARATIVE GEOMETRIC MORPHOMETRIC ANALYSIS OF NON-GEOGRAPHIC VARIATION IN TWO SPECIES OF MURID RODENTS, AETHOMYS INEPTUS FROM SOUTH AFRICA AND ARVICANTHIS NILOTICUS FROM SUDAN EITIMAD H. ABDEL-RAHMAN 1, CHRISTIAN T. CHIMIMBA, PETER J. TAYLOR, GIANCARLO CONTRAFATTO, JENNIFER M. LAMB 1 Sudan Natural History Museum, Faculty of Science, University of Khartoum P. O. Box 321 Khartoum, Sudan Non-geographic morphometric variation particularly at the level of sexual dimorphism and age variation has been extensively documented in many organisms including rodents, and is useful for establishing whether to analyse sexes separately or together and for selecting adult specimens to consider for subsequent data recording and analysis. However, such studies have largely been based on linear measurement-based traditional morphometric analyses that mainly focus on the partitioning of overall size- rather than shape-related morphological variation. Nevertheless, recent advances in unit-free, landmark/outline-based geometric morphometric analyses offer a new tool to assess shape-related morphological variation. In the present study, we used geometric morphometric analysis to comparatively evaluate non-geographic variation in two geographically disparate murid rodent species, Aethmoys ineptus from South Africa and Arvicanthis niloticus from Sudan , the results of which are also compared with previously published results based on traditional morphometric data. Our results show that while the results of the traditional morphometric analyses of both species were congruent, they were not sensitive enough to detect some signals of non-geographic morphological variation.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
    bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).
    [Show full text]
  • Weed Categories for Natural and Agricultural Ecosystem Management
    Weed Categories for Natural and Agricultural Ecosystem Management R.H. Groves (Convenor), J.R. Hosking, G.N. Batianoff, D.A. Cooke, I.D. Cowie, R.W. Johnson, G.J. Keighery, B.J. Lepschi, A.A. Mitchell, M. Moerkerk, R.P. Randall, A.C. Rozefelds, N.G. Walsh and B.M. Waterhouse DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Weed categories for natural and agricultural ecosystem management R.H. Groves1 (Convenor), J.R. Hosking2, G.N. Batianoff3, D.A. Cooke4, I.D. Cowie5, R.W. Johnson3, G.J. Keighery6, B.J. Lepschi7, A.A. Mitchell8, M. Moerkerk9, R.P. Randall10, A.C. Rozefelds11, N.G. Walsh12 and B.M. Waterhouse13 1 CSIRO Plant Industry & CRC for Australian Weed Management, GPO Box 1600, Canberra, ACT 2601 2 NSW Agriculture & CRC for Australian Weed Management, RMB 944, Tamworth, NSW 2340 3 Queensland Herbarium, Mt Coot-tha Road, Toowong, Qld 4066 4 Animal & Plant Control Commission, Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide, SA 5001 5 NT Herbarium, Department of Primary Industries & Fisheries, GPO Box 990, Darwin, NT 0801 6 Department of Conservation & Land Management, PO Box 51, Wanneroo, WA 6065 7 Australian National Herbarium, GPO Box 1600, Canberra, ACT 2601 8 Northern Australia Quarantine Strategy, AQIS & CRC for Australian Weed Management, c/- NT Department of Primary Industries & Fisheries, GPO Box 3000, Darwin, NT 0801 9 Victorian Institute for Dryland Agriculture, NRE & CRC for Australian Weed Management, Private Bag 260, Horsham, Vic. 3401 10 Department of Agriculture Western Australia & CRC for Australian Weed Management, Locked Bag No. 4, Bentley, WA 6983 11 Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart, Tas.
    [Show full text]