The First Finding of Mimomys in the Russian Far East
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammalia: Rodentia) Around Amasya, Turkey
Z. ATLI ŞEKEROĞLU, H. KEFELİOĞLU, V. ŞEKEROĞLU Turk J Zool 2011; 35(4): 593-598 © TÜBİTAK Research Article doi:10.3906/zoo-0910-4 Cytogenetic characteristics of Microtus dogramacii (Mammalia: Rodentia) around Amasya, Turkey Zülal ATLI ŞEKEROĞLU1,*, Haluk KEFELİOĞLU2, Vedat ŞEKEROĞLU1 1Ordu University, Faculty of Arts and Sciences, Department of Biology, 52200 Ordu - TURKEY 2Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Biology, 55139 Kurupelit, Samsun - TURKEY Received: 02.10.2009 Abstract: Th e banding patterns of chromosomes of Microtus dogramacii, a recently described vole species endemic to Turkey, were studied. G-, C-, and Ag-NOR-banded patterns of this species are reported here for the fi rst time. In this study, 2 karyotypical forms were determined. Each form had the same diploid chromosome numbers (2n = 48), but possessed diff erent autosomal morphologies. For this reason, the samples collected from the research area were karyologically separated into 2 groups, cytotype-1 (NF = 50) and cytotype-2 (NF = 52). All chromosomes possessed centromeric/pericentromeric heterochromatin bands in both karyotypical forms. It was shown that the acrocentric chromosomes of pair 8 in cytotype-1 have been transformed into metacentric chromosomes in cytotype-2 through pericentric inversion. Variation in the number of active NORs was also observed, but the modal number of active NORs was 8. Due to the chromosomal variation found in M. dogramacii, the cytogenetic results presented in this study may represent a process of chromosomal speciation. Key words: Microtus dogramacii, karyology, pericentric inversion, Turkey Amasya (Türkiye) çevresindeki Microtus dogramacii (Mammalia: Rodentia)’nin sitogenetik özellikleri Özet: Türkiye için endemik olan yeni tanımlanmış bir tarla faresi, Microtus dogramacii’nin kromozomlarının bantlı örnekleri çalışıldı. -
Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Downloaded from Ensembl (Www
Lin et al. BMC Genomics 2014, 15:32 http://www.biomedcentral.com/1471-2164/15/32 RESEARCH ARTICLE Open Access Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia) Gong-Hua Lin1, Kun Wang2, Xiao-Gong Deng1,3, Eviatar Nevo4, Fang Zhao1, Jian-Ping Su1, Song-Chang Guo1, Tong-Zuo Zhang1* and Huabin Zhao5* Abstract Background: Subterranean mammals have been of great interest for evolutionary biologists because of their highly specialized traits for the life underground. Owing to the convergence of morphological traits and the incongruence of molecular evidence, the phylogenetic relationships among three subfamilies Myospalacinae (zokors), Spalacinae (blind mole rats) and Rhizomyinae (bamboo rats) within the family Spalacidae remain unresolved. Here, we performed de novo transcriptome sequencing of four RNA-seq libraries prepared from brain and liver tissues of a plateau zokor (Eospalax baileyi) and a hoary bamboo rat (Rhizomys pruinosus), and analyzed the transcriptome sequences alongside a published transcriptome of the Middle East blind mole rat (Spalax galili). We characterize the transcriptome assemblies of the two spalacids, and recover the phylogeny of the three subfamilies using a phylogenomic approach. Results: Approximately 50.3 million clean reads from the zokor and 140.8 million clean reads from the bamboo ratwere generated by Illumina paired-end RNA-seq technology. All clean reads were assembled into 138,872 (the zokor) and 157,167 (the bamboo rat) unigenes, which were annotated by the public databases: the Swiss-prot, Trembl, NCBI non-redundant protein (NR), NCBI nucleotide sequence (NT), Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). -
Tesakov A.S. Et Al. (2019) Early-Middle Pleistocene
Palaeontologia Electronica palaeo-electronica.org Early-Middle Pleistocene environmental and biotic transition in north-western Armenia, southern Caucasus Alexey S. Tesakov, Alexandra N. Simakova, Pavel D. Frolov, Eugenia K. Sytchevskaya, Elena V. Syromyatnikova, Irina V. Foronova, Eugenia A. Shalaeva, and Vladimir G. Trifonov ABSTRACT Quaternary biota of north-western Armenia is studied from several localities in the Ani and Arapi fluvial formations of the Shirak and Upper Akhuryan sedimentary basins. Palynology of lacustrine deposits of the Ani Formation indicates cyclic alternation of forest-steppe and steppe coenoses in the Shirak Depression. The patchy pollen record from the sections of the Arapi Formation indicates forest-steppe coenoses. Aquatic molluscs from the Ani Formation are dominated by gastropods and dreissenid bivalves. Molluscs of the Arapi Formation are characterised by limnophilic freshwater species with mostly extant forms. The Arapi deposits yielded remains of fishes, amphibians, and small mammals. The freshwater fish assemblage comprises cyprinid species that derived from the earlier Plio-Pleistocene fish communities of Armenia. The assemblage indicates lacustrine and river habitats with rocky bottoms and the pres- ence of water plants overgrowth. The herpetofauna from the Arapi Formation includes remains of anuran amphibians that indicate aquatic habitats. Small mammals include Sorex cf. runtonensis, Neomys cf. hintoni, Ochotona sp., Mimomys intermedius, Terri- cola sp., Microtus gr. nutiensis, Prolagurus pannonicus transylvanicus,and Ellobius pomeli. This fauna characterises the Leninakan (Gyumri) faunal assemblage cor- related to the late Biharian of the European land mammal biochronology, Tiraspol fau- nal complex of Eastern Europe, and the Cromerian of NW Europe. The studied record has an important biogeographic significance for the southern rim of the Ponto-Caspian region. -
Ecological Niche Evolution and Its Relation To
514 G. Shenbrot Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 514–540 ECOLOGICAL NICHE EVOLUTION AND ITS RELATION TO PHYLOGENY AND GEOGRAPHY: A CASE STUDY OF ARVICOLINE VOLES (RODENTIA: ARVICOLINI) Georgy Shenbrot Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev; [email protected] Relations between ecological niches, genetic distances and geographic ranges were analyzed by pair-wise comparisons of 43 species and 38 intra- specifi c phylogenetic lineages of arvicoline voles (genera Alexandromys, Chi onomys, Lasiopodomys, Microtus). The level of niche divergence was found to be positively correlated with the level of genetic divergence and negatively correlated with the level of differences in position of geographic ranges of species and intraspecifi c forms. Frequency of different types of niche evolution (divergence, convergence, equivalence) was found to depend on genetic and geographic relations of compared forms. Among the latter with allopatric distribution, divergence was less frequent and convergence more frequent between intra-specifi c genetic lineages than between either clo sely-related or distant species. Among the forms with parapatric dis- tri bution, frequency of divergence gradually increased and frequencies of both convergence and equivalence gradually decreased from intra-specifi c genetic lineages via closely related to distant species. Among species with allopatric distribution, frequencies of niche divergence, con vergence and equivalence in closely related and distant species were si milar. The results obtained allowed suggesting that the main direction of the niche evolution was their divergence that gradually increased with ti me since population split. -
Lipotyphla: Talpidae: Euroscaptor)
Proceedings of the Zoological Institute RAS Vol. 320, No. 2, 2016, рр. 193–220 УДК 599.362 (597) SECRETS OF THE UNDERGROUND VIETNAM: AN UNDERESTIMATED SPECIES DIVERSITY OF ASIAN MOLES (LIPOTYPHLA: TALPIDAE: EUROSCAPTOR) E.D. Zemlemerova1, A.A. Bannikova1, V.S. Lebedev2, V.V. Rozhnov3, 5 and A.V. Abramov4, 5* 1Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia; e-mails: [email protected], [email protected] 2Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia; e-mail: [email protected] 3A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia; e-mail: [email protected] 4Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia; e-mail: [email protected] 5Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam ABSTRACT A study of the Southeast Asian moles of the genus Euroscaptor based on a combined approach, viz. DNA sequence data combined with a multivariate analysis of cranial characters, has revealed a high cryptic diversity of the group. An analysis of mitochondrial cytochrome b gene and five nuclear genes has revealed two deeply divergent clades: the western one (E. klossi + E. malayana + E. longirostris from Sichuan + Euroscaptor spp. from northern Vietnam and Yunnan, China), and the eastern one (E. parvidens s.l. + E. subanura). The pattern of genetic variation in the genus Euroscaptor discovered in the present study provides support for the existence of several cryptic lineages that could be treated as distinct species based on their genetic and morphological distinctness and geographical distribution. -
Non-Target Species Hazard Or Brodifacoum Use in Orchards for Meadow Vole Control
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Eastern Pine and Meadow Vole Symposia for March 1981 NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson Virginia Polytechnic Institute and State University, Winchester, Virginia Ross E. Byers Virginia Polytechnic Institute and State University, Winchester, Virginia Follow this and additional works at: https://digitalcommons.unl.edu/voles Part of the Environmental Health and Protection Commons Merson, Mark H. and Byers, Ross E., "NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL" (1981). Eastern Pine and Meadow Vole Symposia. 58. https://digitalcommons.unl.edu/voles/58 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eastern Pine and Meadow Vole Symposia by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NON-TARGET SPECIES HAZARD OF BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson and Ross E. Byers Winchester Fruit Research Laboratory Virginia Polytechnic Institute and State University Winchester, Virginia 22601 This year we entered into our second year of non-target species hazard assessment of Brodifacoum used (BFC; ICI Americas, Inc.) as an orchard rodenticide. The primary emphasis of this work has been to in- vestigate the effects of BFC on birds of prey through secondary poison- ing. The hazard level of BFC to raptors should be dependent on the levels found in post-treatment collections of meadow voles (Microtus pennsylvanicus). -
Arvicolinae and Outgroup Mitochondrial Genome Accession Numbers
Supplementary Materials: Table S1: Arvicolinae and outgroup mitochondrial genome accession numbers. Species Name Accession Number Lasiopodomys brandtii MN614478.1 Lasiopodomys mandarinus JX014233.1 Lasiopodomys gregalis MN199169.1 Microtus fortis fortis JF261174.1 Microtus fortis calamorum JF261175.1 Microtus kikuchii AF348082.1 Neodon irene NC016055.1 Neodon fuscus MG833880.1 Neodon sikimensis KU891252.1 Microtus rossiaemeridionalis DQ015676.1 Microtus levis NC008064.1 Microtus arvalis MG948434.1 Terricola subterraneus MN326850.1 Microtus agrestis MH152570.1 Microtus richardsoni MT225016.1 Microtus ochrogaster KT166982.1 Proedromys liangshanensis FJ463038.1 Arvicola amphibius MN122828.1 Myodes regulus NC016427.1 Myodes rufocanus KT725595.1 Myodes rutilus MK482363.1 Myodes glareolus KF918859.1 Eothenomys melanogaster KP997311.1 Eothenomys miletus KX014874.1 Eothenomys chinensis FJ483847.1 Eothenomys Inez KU200225.1 Ondatra zibethicus KU177045.1 Dicrostonyx hudsonius KX683880.1 Dicrostonyx groenlandicus KX712239.1 Dicrostonyx torquatus MN792940.1 Prometheomys schaposchnikowi NC049036.1 Cricetulus griseus DQ390542.2 Peromyscus polionotus KY707301.1 Sigmodon hispidus KY707311.1 Mus musculus V00711.1 Table S2: Sequenced Wildwood Trust water vole samples. Sample Sample Enclosure Local ID Sex No. Type No. 1 Tissue TB31 - - 2 Tissue WW46 - - 3 Tissue WW0304/34 - Male 4 Tissue WW34/39 - - 5 Hair Q88 - Male 6 Hair Q100 - Male 7 Hair R95 - Male 8 Hair R12 - Male 9 Hair R28 - Male 10 Hair Q100 - Male 11 Faecal R2 2228 Male 12 Faecal Q52 2245 Female 13 Faecal Q42 2218 Female 14 Faecal Q7 2264 Female 15 Faecal Q75a 2326 Female 16 Faecal R50 2232 Male 17 Faecal R51 2225 Male 18 Faecal Q58 2314 Male 19 Faecal Q100 2185 Female 20 Faecal R27 2445 Female Table S3: Additional water vole sequences from previous publications. -
Recovery Plan for the Amargosa Vole
Recovery Plan for the Amargosa Vole (Microtus californicus scirpensis) ( As the Nation’s principal conservation agency, the ~ Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environ mental and cultural values of our national parks ~, and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energyand mineral resourcesand works toassure that ~‘ theirdevelopment is in the best interests ofall our people. ~4 The Department also has a major responsibility for American Indian reservation communities and for people ~<‘ who live in island Territories under U.S. administration. AMARGOSA VOLE (Microtus cahfornicus scirpensis) RECOVERY PLAN September, 1997 7— U.S. Department ofthe Interior Fish and Wildlife Service Region One, Portland, Oregon DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. -
Mather Field Vernal Pools California Vole
Mather Field Vernal Pools common name California Vole scientific name Microtus californicus phylum Chordata class Mammalia order Rodentia family Muridae habitat common in grasslands, wetlands Jack Kelly Clark, © University of California Regents and wet meadows size up to 14 cm long excluding tail description The California Vole is covered with grayish-brown fur. Its ears and legs are short and it has pale feet. It has a cylindrical shape (like a toilet paper roll) with a tail that is 1/3 the length of the body. fun facts California Voles make paths through the grasslands leading to the mouths of their underground burrows. These surface "runways" are worn into the grass by daily travel. When chased by a predator, a vole can make a fast dash for the safety of its underground burrow using these cleared runways. If you walk quickly across the grassland you will often surprise a California Vole and see it scurry to its burrow. life cycle California Voles reach maturity in one month. Female voles have litters of four to eight young. In areas with abundant food and mild weather, each female can have up to five litters in a year. ecology The California Vole can dig its own underground burrow system but it often begins by using Pocket Gopher burrows. The tunnels are usually 1 to 5 meters long and up to one half meter below ground, with a nesting den somewhere inside. The ends of the burrows are left open. Many insects, spiders, centipedes, and other animals live in their burrows. Thus, the California Vole creates habitat for other species and the Pocket Gopher improves habitat for the vole.