Human and State Security Implications of Water Scarcity in Chile

Total Page:16

File Type:pdf, Size:1020Kb

Human and State Security Implications of Water Scarcity in Chile Red Hot Hydropolitics: Human And State Security Implications Of Water Scarcity In Chile by JOSÉ PABLO ZAMBRANO RAMÍREZ Submitted in total fulfilment of the requirements of the degree of Master of Arts April 2012 School of Social and Political Sciences The University of Melbourne 2 Abstract The relationship between environment and security is generally approached from either a state security framework, in so far environmental problems are a source of intra-state or inter-state violent conflict, or from a human security perspective, focusing on the impacts of these problems on people’s livelihoods. To date, that I am aware, there is no research that considers the effects of an environmental problem on these two dimensions of security simultaneously. This thesis bridges this gap by studying the security implications of water scarcity in Chile. It examines the two main drivers of water scarcity, droughts and socioeconomic development, to determine the exposure and vulnerability of Chile to this environmental problem. Based on the work of the Copenhagen School, it develops a framework that disaggregates and locates the impacts of droughts in analytical levels and security sectors. Additionally, it develops a typology of environment related problems as security issues, according to the sectors and analytical levels affected. Through the application of this framework and typology this research determines that in Chile water scarcity is a source of human insecurity, because it alters the livelihoods and the access to livelihood resources for a significant part of the population. It is also a source of strategic insecurity, as it jeopardizes the generation of energy, affecting the overall capabilities of the country, and thereby limiting the policy options of the authorities and the potential to give material responses to any given crisis. Finally, water scarcity is a source of strategic vulnerability, since a neighbouring country uses the subsequent energy insecurity as leverage in a long-lasting bilateral territorial dispute. This thesis uses the Regional Security Complex and the Hydropolitical Security Complex theories to assess the effects of water scarcity in the sub-system level. This research makes two relevant contributions to the security debate. First, an analytical framework that facilitates studying the security implications of droughts in any given nation-state. Second, it establishes a nexus between human and State security: if a non-traditional security problem, such as water scarcity, can become a source of State insecurity, then non-traditional security measures, originally aimed at improving human security, can be a source of State security. Although the context of this security analysis is Chile, a nation-state in which water is a relatively scarce resource and whose regional security complex is determined by patterns of enmity, two conditions that are not shared by every nation- state, the findings of this research are relevant nonetheless for the security debate, since it establishes that human and State security are not necessarily competing articulations, but two narratives with common fields in which they can strengthen each other. 3 4 Acknowledgements First and foremost, I want to thank my wife and family for their infinite love and support. My supervisor, David Mickler, for his guidance, assistance and patience; and Ralph Pettman, for simply being there. I would also like to thank Ernesto Brown and David Gutierrez for their hydrological assistance. 5 6 Table of contents Abstract 3 Acknowledgements 5 List of figures 9 List of tables 9 Introduction 11 Chapter 1: Research Framework 19 Methodology 19 Literature review 27 Analytical framework 45 Chapter 2: Internal Security Implications of Water Scarcity in Chile 59 Factors and conditions that determine the security vulnerabilities of Chile to the scarcity of water 60 Impacts of Drought in Chile by security sector 78 Strategic sector 85 Chapter 3: External Security Implications of Water Scarcity 97 South American regional security complex 98 Hydropolitics on a hot border 104 Energy (in)security 114 Chapter 4: Analysis 129 Security Implications of water scarcity in Chile 131 Non-traditional sources of traditional security 136 A securitization of water? 139 Conclusion 145 References 149 Appendix 167 7 8 List of Figures Figure 1: General map of Chile 17 Figure 2: Politico-Administrative division of Chile 61 Figure 3: Rainfall intensity and mean annual precipitation at different latitudes in Chile 67 Figure 4: Map of Lauca and Silala basins 106 Figure 5: Annual gas consumption in Chile 1965-2006 120 Figure 6: Installed capacity by energy source in SIC system 2009 134 Figure 7: Map of mean annual isohyets 168 List of Tables Table 1: Aspects of a transboundary basin that enhance resilience or increase vulnerability 36 Table 2: Matrix of analysis of environment-related problems as security issues 52 Table 3: Drought Impacts 55 Table 4: Maximum rainfall intensity in different stations in Chile. 66 Table 5: Main basins of Chile 69 Table 6: Aspects of a transboundary basin that increase vulnerability 111 Table 7: Presidential Energy Input 124 9 10 Introduction On February 27, 2010, an earthquake of 8.8 degrees on the Richter scale, the sixth strongest on record, shook the central and southern regions of Chile, followed by a tsunami. As a consequence of these two consecutive events roads and bridges were cut, public infrastructure destroyed, seaside towns and coastal cities ravaged by the ocean, and houses and buildings were either ruined or left uninhabitable. In the most affected areas communication systems –phone, Internet and civilian radio networks– collapsed and basic services such as water, electricity and gas were not regularized until weeks later. In the following days fear of shortages of basic supplies and collective panic led to theft and looting. As a result, the government declared a State of Catastrophe, which allowed him to take armed forces out to the streets to restore order. 2010 also marks the beginning of a drought that affects the country since then. After years of constant declines in rainfall, with deficits that vary between fifteen percent and fifty percent, by 2012 more than a 100 municipalities have been declared water and agricultural emergency zones. In the arid regions in the north there are towns that have less than 23.9 litres1 of water a day per person2, which has made agriculture and cattle herding, the main sources of livelihood, impossible. Due to the lack of precipitations, and the subsequent flow reduction during thaw, the reservoir levels are at historical lows. In February 2011 the government established a Decree of Energy Rationing, by which it took control over the electric generation system and enacted measures to alleviate the crisis, such as reducing the voltage. However, by February 2012 the water available in the reservoirs throughout the country amounted only to 28.9% of the total capacity. If the conditions persist, according to the authorities there are enough reserves to secure consumption of potable water during 2012. However, power cuts have not been ruled out. Due to its exceptionally tangible and graphic consequences, extreme geological events, such as the Chilean mega-earthquake and its following tsunami, are one of the most straightforward ways to link the environment to the security of a country and its population. But such natural hazards constitute exceptional events. They have a clear cause, very low probability of occurrence and they usually happen unexpectedly. Their 1 The daily average water consumption per capita in a city of a developed country is above 80 litres. 2 Que pasa, 2011 11 consequences have high social, political and economic impacts, which generate states of disorder and confusion relatively short in time and geographically delimited. In contrast, most contemporary global environmental problems, such as climate change or the depletion of the ozone layer, are not the result of a single cause, but of a multiplicity of factors, related in complex, systemic, non-linear ways. Environmental problems are not restricted by any political or geographical border, and their effects differ according to the particular characteristics of each region. Their most dangerous threat is not a sudden disruption of the established order, but the accumulated effect of long-term problems, of varied nature and magnitude, that gradually lessen the livelihoods of people and progressively reduce the range of effective policy responses of the competent authorities. This thesis examines the relationship between environment and security, studying the security implications of water scarcity in Chile. It focuses on the impacts of droughts, a major driver of water scarcity, on the livelihoods of the population, on how they limit normal functioning of the country, and the geopolitical consequences that affect the regional security complex. The study of water-related problems is relevant for security studies, because water is probably the only natural resource present in all aspects of human life: from subsistence to spiritual practices or aesthetics, from agricultural production to energy generation. Consequently, food security, health security, economic security and energy security are all related to water. From a human security perspective, the study of water-related problems is important because water is essential for personal and social welfare, for economic development and for the sustainability of ecosystems. Correspondingly, from a state security perspective water has unique characteristics that transform it into a strategic natural resource: it has no substitute, knows no political boundaries and its distribution vary in space and time. The study of the security implications of water scarcity is timely, first, because it is expected that global climate change is going to make droughts more severe, recurrent and extended, both in duration and in the area affected. According to the latest Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), in recent decades around the globe there have been increases in average temperatures, longer and more intense droughts, as well as violent rains and floods.
Recommended publications
  • Th Em Es of Act Ivit Ies Dur Ing Rep Orti Ng Per
    Reporting format for UNESCO’s Water-related Centres on activities for the period October 2018 – March 2021 1. Basic information Water Center for Arid and Semi-Arid Zones of Full Name of the Centre Latin America and the Caribbean (CAZALAC) Name of Centre holder/Director Gabriel Mancilla Escobar Other contacts (other focal points/Deputy Director, etc.) E-mail [email protected] Telephone number +56 51 2204493 Website http://www.cazalac.org Mailing Address Benavente 980, La Serena, Chile Geographic scope 1* ☐ International x regional Specify which Region(s) (if Latin America and Caribbean applicable) Year of establishment 2006 Year of renewal 2016 x groundwater ☐ urban water management x rural water management x arid / semi-arid zones ☐ humid tropics Th ☐ cryosphere (snow, ice, glaciers) em x water related disasters (drought/floods) x Erosion/sedimentation, and landslides es x ecohydrology/ecosystems Of x water law and policy act x social/cultural/gender dimension of water/youth ivit ☐ transboundary river basins/ aquifers ies ☐ mathematical modelling Focal Areas 2♦ dur hydroinformatics ing x remote sensing/GIS x IWRM rep x Watershed processes/management orti x global and change and impact assessment ng ☐ mathematical modelling per x water education iod ☐ water quality ☐ nano-technology x waste water management/re-use ☐ water/energy/food nexus ☐ water systems and infrastructure ☐ Water Diplomacy x Climate Change 1* check on appropriate box 2♦ check all that apply ☐ other: (please specify) ___________________ x vocational training x postgraduate education ☐ continuing education x public outreach x research x institutional capacity-building Scope of Activities 3♦ ☐ advising/ consulting x software development x data-sets/data-bases development xKnowledge/sharing x Policy Advice/Support x Publication and documentation ☐ other: (please specify) __________________ UNESCO Water Family; G-WADI Program Existing networks network; UNCCD;FAO; European Union /cooperation/partnerships 4 (EUROCLIMA project; RALCEA); Technological Consortium Quitai-Anko (Chile).
    [Show full text]
  • ENSO and Solar Activity Signals from Oxygen Isotopes in Diatom Silica During Late
    ENSO and solar activity signals from oxygen isotopes in diatom silica during Late Glacial-Holocene transition in Central Andes (18ºS) Armand Hernández1*, Santiago Giralt1, Roberto Bao2, Alberto Sáez3, Melanie J. Leng4,5, Philip A. Barker6 1Institute of Earth Sciences Jaume Almera-CSIC, C/Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain 2Faculty of Sciences, University of A Coruña, Campus da Zapateira s/n, 15701 A Coruña, Spain 3Faculty of Geology, University of Barcelona, C/ Martí Franquès s/n, 08028 Barcelona, Spain 4NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK 5School of Geography, University of Nottingham, Nottingham NG7 2RD, UK 6 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK *Correspondence to: Armand Hernández; Institute of Earth Sciences 'Jaume Almera' (CSIC). C/Lluis Solé i Sabarís s/n. E-08028 Barcelona (Spain). Phone: +34.934.095.410 Fax: +34.934.110.012 E-mail: [email protected] 1 Abstract The Late Glacial-Holocene transition from the Lago Chungará sedimentary record in northern Chilean Altiplano (18ºS) is made up of laminated sediments composed of light and dark pluriannual couplets of diatomaceous ooze. Light sediment laminae accumulated during short- term extraordinary diatom blooms whereas dark sediment laminae represent the baseline limnological conditions during several years of deposition. Diatom oxygen isotope data 18 (δ Odiatom) analyzed in 40 succesive (lamina by lamina) dark laminae, from 11,990 to 11,450 cal years BP, suggest that there occurred a series of decadal-to-centennial dry–wet oscillations. Dry periods are marked by relatively high isotope values whereas wet episodes are indicated by lower values.
    [Show full text]
  • Catalog of the Types of Curculionoidea (Insecta, Coleoptera) Deposited at the Museo Argentino De Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires
    Rev. Mus. Argentino Cienc. Nat., n.s. 15(2): 209-280, 2013 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Catalog of the types of Curculionoidea (Insecta, Coleoptera) deposited at the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires Axel O. BACHMANN 1 & Analía A. LANTERI 2 1Museo Argentino de Ciencias Naturales, División Entomología, Buenos Aires C1405DJR. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EHA, e-mail: [email protected]. uba.ar. 2 Museo de La Plata, División Entomología, Paseo del Bosque s/n, La Plata, B1900FWA, Argentina, e-mail: [email protected] Abstract: The type specimens of Curculionoidea (Apionidae, Brentidae, Anhribidae, Curculionidae, Platypodidae, and Scolytidae) from the Museo Argentino de Ciencias Naturales (MACN), corresponding to all current categories, are herein catalogued. A total of 344 specific and subspecific names are alphabetically recorded, for their original binomina or trinomina, and spellings. Later combinations and synonyms are mentioned, as well as the informa- tion of all the labels associated to the specimens. In order to assist future research, three further lists are added: 1. specimens deemed to be deposited at MACN but not found in the collection; 2. specimens labeled as types of species which descriptions have probably never been published (non available names); and 3. specimens of dubi- ous type status, because the information on the labels does not agree with that of the original publication. Key words: Type specimens, Curculionoidea, Coleoptera, Insecta. Resumen: Catálogo de los tipos de Curculionoidea (Insecta, Coleoptera) depositados en el Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires.
    [Show full text]
  • Lacustrine Sedimentation in Active Volcanic Settings: the Late Quaternary Depositional Evolution of Lake Chungará (Northern Chile)
    Sedimentology (2007, in press) Lacustrine sedimentation in active volcanic settings: The Late Quaternary depositional evolution of Lake Chungará (Northern Chile) Sáez, A.1*, Valero-Garcés, B.L.2, Moreno, A.2, Bao, R.3, Pueyo, J.J.1, González-Sampériz, P.2, Giralt, S.4, Taberner, C.4, Herrera, C.5, and Gibert, R.O.1 1 Facultat de Geologia, Universitat de Barcelona, c/ Martí Franques s/n, 08028 Barcelona (Spain) 2 Instituto Pirenaico de Ecología. Consejo Superior de Investigaciones Científicas. Apdo 202, 50080 Zaragoza (Spain) 3 Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña (Spain) 4 Instituto de Ciencias de la Tierra 'Jaume Almera' - CSIC, c/ Lluís Sole Sabaris s/n, 08028 Barcelona (Spain) 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile) (*) E-mail: [email protected] ABSTRACT Lake Chungará is the largest (22.5 Km2) and deepest (40 m) lacustrine ecosystem in the Chilean Altiplano and its location in an active volcanic setting provides an opportunity to evaluate environmental (volcanic versus climatic) controls on lacustrine sedimentation. The Late Quaternary depositional history of Lake Chungará (18º15' S, 69º09 W, 4520 m a.s.l.) is reconstructed by means of a multiproxy study of 15 Kullenberg cores and seismic data. The chronological framework is supported by 10 14C AMS and 1 230Th/234U dates. Lake Chungará was formed prior to 12.8 cal. kyr BP following the partial collapse of the Parinacota volcano that impounded the Lauca river. The sedimentary architecture of the lacustrine sequence has been controlled by (1) the strong inherited palaeo-relief, and (2) changes in the accommodation, caused by lake level fluctuations and tectonic subsidence.
    [Show full text]
  • The 2010–2015 Megadrought in Central Chile: Impacts on Regional Hydroclimate and Vegetation
    Hydrol. Earth Syst. Sci., 21, 6307–6327, 2017 https://doi.org/10.5194/hess-21-6307-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation René D. Garreaud1,2, Camila Alvarez-Garreton3,2, Jonathan Barichivich3,2, Juan Pablo Boisier1,2, Duncan Christie3,2, Mauricio Galleguillos4,2, Carlos LeQuesne3, James McPhee5,6, and Mauricio Zambrano-Bigiarini7,2 1Department of Geophysics, Universidad de Chile, Santiago, Chile 2Center for Climate and Resilience Research (CR2), Santiago, Chile 3Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile 4Faculty of Agronomic Sciences, Universidad de Chile, Santiago, Chile 5Department of Civil Engineering, Universidad de Chile, Santiago, Chile 6Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile 7Department of Civil Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco, Chile Correspondence: René D. Garreaud ([email protected]) Received: 31 March 2017 – Discussion started: 26 April 2017 Revised: 8 September 2017 – Accepted: 5 November 2017 – Published: 13 December 2017 Abstract. Since 2010 an uninterrupted sequence of ongoing warming in central Chile, making the MD one of dry years, with annual rainfall deficits ranging from 25 to the warmest 6-year periods on record, may have also con- 45 %, has prevailed in central Chile (western South Amer- tributed to such complex vegetation changes by increasing ica, 30–38◦ S). Although intense 1- or 2-year droughts are potential evapotranspiration. We also report some of the mea- recurrent in this Mediterranean-like region, the ongoing sures taken by the central government to relieve the MD ef- event stands out because of its longevity and large extent.
    [Show full text]
  • Aves Acuáticas Parque Nacional Lauca
    81 80 Aves Acuáticas del Parque Nacional Lauca 1 2 Aves Acuáticas del Parque Nacional Lauca Aquatic Birds of Uma Jamach’inaka Lauca National Park Parki Nasiwnal Lawka Uthiripan Hernán Rojas Reyes Jorge Herreros de Lartundo 2006 UNIDAD DE GESTIÓN PATRIMONIO SILVESTRE CORPORACIÓN NACIONAL FORESTAL REGIÓN DE TARAPACÁ - CHILE 3 Aves Acuáticas del Parque Nacional Lauca Autores Hernán Rojas Reyes Guardaparque de Reserva Nacional Pampa del Tamarugal Dedica este libro a Cristina y Alonso Jorge Herreros de Lartundo Encargado Regional de Fauna, CONAF Unidad de Gestión Patrimonio Silvestre Corporación Nacional Forestal Región de Tarapacá - Chile Primera edición, 2.000 ejemplares, Noviembre de 2006 Traducción al inglés Jerry Laker Agradecemos el generoso auspicio, Traducción al aymará que hizo posible la producción e impresión de este libro, Elsa Flores de Revisión: Teodoro Marka Fotografía Jorge Herrreros de Lartundo Juan Aguirre Diseño y Producción Gráfica Guillermo Feuerhake Compañía Minera Impresión Cerro Colorado Ltda. Imprenta Salesianos 4 A manera de presentación Generalmente, las publicaciones especializadas Esta contextualización posibilita el reconoci- parecieran tener una vinculación acotada en miento “escalar” de los territorios (la casa, el exclusiva al círculo de interesados, de manera barrio, la población, la ciudad, y un sucesivo directa, respecto al tema abordado. etcétera), asumiendo la importancia que, para la cultura en general y para las personas en par- Este trabajo de la Corporación Nacional ticular, reviste el reconocerse, el reencontrarse y Forestal (CONAF), Región de Tarapacá, podría el religarse con lo propio. considerarse entre las ediciones mencionadas si no diera cuenta de un territorio determinado Entonces, Rojas y Herreros de Lartundo, con su –entendiendo como territorio el espacio destacado trabajo que nos permitimos presen- apropiado y transformado por la acción tar, nos ofrecen –en lo formal– un importante humana–, particular, específicamente singular.
    [Show full text]
  • Case Studies of Taapaca and Parinacota Volcanoes, Northern Chile
    Differentiation regimes in the Central Andean magma systems: case studies of Taapaca and Parinacota volcanoes, Northern Chile DISSERTATION zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Magdalena Banaszak aus Poznań/Polen Göttingen 2014 Betreuungsausschuss: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover Mitglieder der Prüfungskommission Referent: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Korreferent: Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Abteilung Experimentelle und Angewandte Mineralogie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. Andreas Pack Abteilung Isotopengeologie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Andreas Kronz Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Klaus Simon Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Tag der mündlichen Prüfung: 23. April 2014 II DEDICATION TO HANNAH AND NILS. III ACKNOWLEDGEMENTS This PhD thesis would not have been possible without the never-ending support and patience of my Doctor Father Gerhard Wörner.
    [Show full text]
  • The Lago Chungará Case
    J Paleolimnol (2008) 40:195–215 DOI 10.1007/s10933-007-9151-9 ORIGINAL PAPER A statistical approach to disentangle environmental forcings in a lacustrine record: the Lago Chungara´ case (Chilean Altiplano) Santiago Giralt Æ Ana Moreno Æ Roberto Bao Æ Alberto Sa´ez Æ Ricardo Prego Æ Blas L. Valero-Garce´s Æ Juan Jose´ Pueyo Æ Pene´lope Gonza´lez-Sampe´riz Æ Conxita Taberner Received: 31 May 2007 / Accepted: 28 August 2007 / Published online: 2 October 2007 Ó Springer Science+Business Media B.V. 2007 Abstract A high resolution multiproxy study (mag- to identify and isolate the main underlying environ- netic susceptibility, X-ray diffraction, XRF scanner, mental gradients that characterize the sedimentary gray-colour values, Total Organic Carbon, Total infill of Lago Chungara´. The first eigenvector of the Inorganic Carbon, Total Carbon and Total Biogenic PCA could be interpreted as an indicator of changes Silica) of the sedimentary infill of Lago Chungara´ in the input of volcaniclastic material, whereas the (northern Chilean Altiplano) was undertaken to second one would indicate changes in water avail- unravel the environmental forcings controlling its ability. The chronological model of this sedimentary evolution using a number of different multivariate sequence was constructed using 17 AMS 14C and statistical techniques. Redundancy analyses enabled 1 238U/230Th dates in order to characterize the us to identify the main provenance of the studied volcaniclastic input and the changes in water avail- proxies whereas stratigraphically unconstrained clus- ability in the last 12,300 cal years BP. ter analyses allowed us to distinguish the ‘‘outsiders’’ Comparison of the reconstructed volcaniclastic as result of anomalous XRF scanner acquisitions.
    [Show full text]
  • Abbott, M.B., Edwards, M.E., and Finney, B.P., 2010, a 40,000-Yr Record of Environmental Change from Burial Lake in Northwest Alaska: Quaternary Research, V
    Abbott, M.B., Edwards, M.E., and Finney, B.P., 2010, A 40,000-yr record of environmental change from Burial Lake in Northwest Alaska: Quaternary Research, v. 74, no. 1, p. 156– 165, doi: 10.1016/j.yqres.2010.03.007. Abels, H.A., Clyde, W.C., Gingerich, P.D., Hilgen, F.J., Fricke, H.C., Bowen, G.J., and Lourens, L.J., 2012, Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals: Nature Geoscience, v. 5, no. 5, p. 326–329, doi: 10.1038/ngeo1427. Adam, D.P., Sims, J.D., and Throckmorton, C.K., 1981, 130,000-yr continuous pollen record from Clear Lake, Lake County, California: Geology, v. 9, no. 8, p. 373, doi: 10.1130/0091- 7613(1981)9<373:YCPRFC>2.0.CO;2. Ahlberg, K., Almgren, E., Wright Jr, H.E., and Ito, E., 2001, Holocene stable-isotope stratigraphy at Lough Gur, County Limerick, Western Ireland: The Holocene, v. 11, no. 3, p. 367–372, doi: 10.1191/095968301674434407. AHLBERG, K., ALMGREN, E., WRIGHT, H.E., ITO, E., and HOBBIE, S., 2008, Oxygen- isotope record of Late-Glacial climatic change in western Ireland: Boreas, v. 25, no. 4, p. 257–267, doi: 10.1111/j.1502-3885.1996.tb00641.x. Alin, S.R., and Johnson, T.C., 2007, Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates: Global Biogeochemical Cycles, v. 21, no. 3, p. n/a-n/a, doi: 10.1029/2006GB002881. Almendinger, J.E., Murphy, M.S., and Ulrich, J.S., 2014, Use of the soil and water assessment tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions.: Journal of environmental quality, v.
    [Show full text]
  • Carbonate and Organic Matter Sedimentation and Isotopic Signatures in Lake Chungará, Chilean Altiplano, During the Last 12.3 Kyr
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 339–355 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungará, Chilean Altiplano, during the last 12.3 kyr Juan José Pueyo a,⁎, Alberto Sáez a, Santiago Giralt b, Blas L. Valero-Garcés c, Ana Moreno c, Roberto Bao d, Antje Schwalb e, Christian Herrera f, Bogumila Klosowska b, Conxita Taberner g a Universitat de Barcelona, Facultat de Geología, c/Martí Franquès, s/n, 08028 Barcelona, Spain b Institut de Ciencies de la Terra ‘Jaume Almera’, CSIC, c/Solé Sabarís, s/n, 08028 Barcelona, Spain c Instituto Pirenaico de Ecología, CSIC, Avda. Montañana, 1000, 50192 Zaragoza, Spain d Universidade de A Coruña, Facultade de Ciencias, Campus da Zapateira s/n, 15071 A Coruña, Spain e Technische Universität Braunschweig, Institut fur Umweltgeologie, Langer Kamp 19c, 38106 Braunschweig, Germany f Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile g Shell International Exploration and Production B.V., 2288 GS Rijswijk (ZH), Netherland article info abstract Article history: Sediments in lakes in the Andean volcanic setting are often made up of diatomaceous ooze together with Received 22 July 2010 volcaniclastics and small amounts of carbonates. Despite their scarcity, carbonates along with organic matter Received in revised form 15 May 2011 provide significant paleoenvironmental information about lake systems. This study focuses on the carbonates Accepted 22 May 2011 in Lake Chungará, their morphologies, distribution and origin deduced from the isotopic markers. These Available online 30 May 2011 markers reflected changes in the water and the biomass between the onset of the Holocene and around 9.6 cal kyr BP.
    [Show full text]
  • Relación De Aguas Superficiales Y Subterráneas En El Área Del Lago Chungará Y Lagunas De Cotacotani, Norte De Chile: Un Estudio Isotópico
    Relación de aguas superficiales y subterráneas en el área del lago Chungará y lagunas de Cotacotani, norte de Chile: un estudio isotópico Christian Herrera Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile [email protected] Juan José Pueyo Departamento de Geoquímica, Petrología y Prospección Geológica, Facultad de Geología, Universidad de Barcelona, E-08028 Barcelona, España [email protected] Alberto Sáez Departamento Estratigrafía, Paleontología y Geociencias Marina, Grupo de Geodinámica y Análisis de Cuenca, Universidad de Barcelona, E-08028 Barcelona, España [email protected] Blas L. Valero-Garcés Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Zaragoza, España [email protected] RESUMEN El lago Chungará y las lagunas de Cotacotani corresponden a cuerpos de aguas superficiales localizados al noroeste de la Cuenca del Lauca, en el Altiplano del norte de Chile. Todas las aguas superficiales y subterráneas tienen una salinidad baja a moderada con conductividades eléctricas variables entre 48,7 y 3090 µS/cm. Los lagos están conectados a acuíferos situados en los flancos de los edificios volcánicos próximos, así como en los depósitos de brechas de avalancha del volcán Parinacota. Las composiciones isotópicas de δ18O y δD y su relación con las concentraciones de cloruro de las aguas del lago Chungará, lagunas de Cotacotani, manantiales afluentes y del río Chungará, demuestran que: a. las aguas del lago Chungará presentan una composición química e isotópica homogénea tanto en la horizontal como en la vertical, lo que indica una buena mezcla de las aguas en el lago; b. una parte importante de la recarga hídrica que alimenta las lagunas de Cotacotani procede de aguas del lago Chungará, canalizada a través de un flujo lateral subterráneo y c.
    [Show full text]
  • Hydro-Transitions: an Environmental History of Chilean Electrification
    HYDRO-TRANSITIONS: AN ENVIRONMENTAL HISTORY OF CHILEAN ELECTRIFICATION by Peter B. de Montmollin B.A., Syracuse University, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in The Faculty of Graduate and Postdoctoral Studies (Geography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2021 © Peter B. de Montmollin, 2021 ii The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled: Hydro-Transitions: An Environmental History of Chilean Electrification submitted by Peter B. de Montmollin in partial fulfillment of the requirements for the degree of Master of Arts in Geography Examining Committee: Matthew Evenden, Geography Department, UBC Supervisor Juanita Sundberg, Geography Department, UBC Supervisory Committee Member iii Abstract This thesis examines the history of electrification and hydropower in Chile during the 20th century. Drawing from environmental history, technology history, and science and technology studies, it asks three central questions: How did technology, nature and society interact and shape the hydro-electrification of Chile? What were the economic, environmental and political consequences of damming Chilean rivers for power? And, more broadly, how did rivers, hydroelectric stations and power lines influence territorial and developmental imaginaries and policies over this period? The empirical foundations of the research are primary documents consulted at various archives and libraries in Santiago, Chile, as well as some online repositories. The thesis is structured loosely around the 1943 national electrification plan, which set the terms for constructing a large technological system to exploit Chile’s rivers for power. It explores the origins and creation of the plan, the execution of a key project on the Laja River in south-central Chile, and the failure of another project in Aysén in southern Patagonia.
    [Show full text]