An Efficient Bar Code Recognition Engine for Enabling Mobile Services

Total Page:16

File Type:pdf, Size:1020Kb

An Efficient Bar Code Recognition Engine for Enabling Mobile Services Research Collection Doctoral Thesis An Efficient Bar Code Recognition Engine for Enabling Mobile Services Author(s): Adelmann, Robert Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-6665246 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH Nr. 19721 An Efficient Bar Code Recognition Engine for Enabling Mobile Services A dissertation submitted to ETH Zurich for the degree of Doctor of Sciences presented by Robert Adelmann Diplom-Informatiker, Albert-Ludwigs-University Freiburg born October 01, 1977 citizen of Germany accepted on the recommendation of Prof. Dr. Friedemann Mattern, examiner Prof. Dr. Elgar Fleisch, co-examiner Prof. Dr. Michael Rohs, co-examiner 2011 2 | Abstract Abstract | 3 Abstract In the area of pervasive computing, mobile phones have evolved into attrac- tive development platforms that show considerable potential when it comes to bridging the often-cited gap between the real and virtual world. They are ubiquitous, highly mobile, provide significant computing power, and increas- ingly also offer an abundance of built-in sensors. With the general availability of smartphones and affordable data rates, consumers are beginning to use their mobile phones to interact with physical products found in stores in or- der to access product-related information and services. To support this inter- action, consumer-oriented mobile applications require a fast and convenient way to identify products. Even though Near Field Communication (NFC) and Radio-Frequency Identification (RFID) technology is very promising for that purpose, the widespread use of RFID tags on retail products remains unlikely for the next years. In contrast, bar codes are ubiquitous on virtually all pack- aged consumer goods world-wide. Recognizing bar codes with mobile phones induces many challenges, how- ever. Blurry images from cameras without autofocus, but also shadows and glare, low video-image resolutions and limited computing power on many mass-market phones are just some of the inherent difficulties. Furthermore, developing applications for mobile phones still requires considerable exper- tise, despite the fact that mobile phones have evolved into attractive devel- opment platforms over the past years. This thesis addresses these issues with two main contributions: First, it pre- sents the design and implementation of a bar code recognition method for mobile phones that addresses the aforementioned challenges and, in particu- lar, is capable of recognizing bar codes in blurry images. It provides a com- parison with existing mobile bar code recognition engines on mobile phones and shows that the method presented outperforms other solutions in terms of scan speed and accuracy. The second contribution consists of a rapid proto- typing environment for mobile phones that enables even non-experts to de- velop novel mobile services that leverage the bar code recognition in a fast and easy way. 4 | Abstract Kurzfassung Im Bereich des Pervasive Computing haben sich Mobiltelefone mittlerweile zu attraktiven Entwicklungsplattformen entwickelt, die das Potential besitzen, den oft zitierten „Graben zwischen der realen und der virtuellen Welt“ zu überbrücken: Sie sind allgegenwärtig, portabel, verfügen über erhebliche Re- chenleistung und zunehmend auch über eine Vielzahl integrierter Sensoren. Durch die Verbreitung von Smartphones und die Verfügbarkeit von günstigen Datentarifen nutzen Konsumenten die Geräte zunehmend, um mit Produkten zu "interagieren" und Informationen sowie Dienste zu diesen abzurufen. Für solch eine Form der mobilen Interaktion ist eine Methode zur einfachen und schnellen Identifikation von Produkten unerlässlich. Obwohl sich hier Techno- logien wie Near Field Communication und RFID aufgrund ihrer zahlreichen Vorteile anbieten, ist ein grossflächiger Einsatz von RFID-Tags auf Produkten in den nächsten Jahren nicht zu erwarten. Im Gegensatz dazu sind Strichcodes heute auf nahezu allen Handelsgütern weltweit verbreitet. Die automatische Erkennung von Strichcodes mit Mobiltelefonen beinhaltet allerdings zahlreiche Herausforderungen: Unscharfe Bilder aufgrund von Ka- meras ohne Autofokus, aber auch Schatten und Glanzpunkte, geringe Bild- auflösungen oder beschränkte Ressourcen auf vielen Geräten stellen nur eini- ge der Schwierigkeiten dar. Obwohl sich Mobiltelefone in den letzten Jahren zu attraktiven Entwicklungsplattformen entwickelt haben, erfordert auch die Anwendungsentwicklung immer noch viel Zeit und Erfahrung. Die vorliegende Dissertation liefert zwei Beiträge, um diesen Herausforde- rungen zu begegnen: Der erste Beitrag besteht in der Entwicklung und Im- plementierung eines Verfahrens für die Erkennung von Strichcodes auf Mobil- telefonen, welches die genannten Schwierigkeiten adressiert und insbesonde- re in der Lage ist, Strichcodes auch in sehr unscharfen Bildern zu erkennen. Das vorgestellte Verfahren wird im Rahmen einer Nutzerstudie und einer de- taillierten Analyse mit bestehenden mobilen Lösungen zur Erkennung von Strichcodes verglichen. Es zeigt sich, dass die in dieser Arbeit präsentierte Erkennungstechnologie flexibler, schneller und genauer als alternative Lösun- gen ist. Der zweite Beitrag besteht aus einer Software-Entwicklungs- umgebung, welche es selbst mit der Mobiltelefonprogrammierung nicht ver- trauten Personen ermöglicht, schnell und unkompliziert neue, auf der Strich- codeerkennung basierende Dienste zu entwickeln. Abstract | 5 Contents Abstract 3 1 Introduction 9 1.1 Motivation ................................................................................................................... 9 1.2 General Challenges................................................................................................ 11 1.2.1 The Mobile Bar Code Recognition Process ...................................... 11 1.2.2 The Mobile Application Development Process ............................... 13 1.3 Contributions .......................................................................................................... 13 1.3.1 Bar Code Recognition Method .............................................................. 13 1.3.2 SPARK: A Rapid Prototyping Environment for Mobile Services13 1.4 Thesis Outline ......................................................................................................... 14 2 Background 15 2.1 Recognition Challenges ....................................................................................... 15 2.1.1 Blurry Images .............................................................................................. 15 2.1.2 Large Variety of Bar Codes Printed on Products ........................... 18 2.1.3 Lighting Conditions ................................................................................... 19 2.1.4 Large Variety of Mobile Phone Models ............................................. 20 2.1.5 User Behavior .............................................................................................. 21 2.2 Bar Code Basics ...................................................................................................... 22 2.2.1 Details of EAN13 Bar Codes .................................................................. 24 3 Recognition Algorithm 27 3.1 General Architecture ............................................................................................ 28 3.1.1 Code Presence and Orientation Detection........................................ 31 3.1.2 Scan Line Extraction and Adaptation ................................................. 37 3.1.3 Result Combination ................................................................................... 40 3.2 Sharp Decoder ........................................................................................................ 43 3.2.1 Waveform Binarization ............................................................................ 45 3.2.2 Symbology Module: Code Detection and Decoding ...................... 47 6 | Abstract 3.3 Blurry Decoder ....................................................................................................... 51 3.3.1 Our Approach.............................................................................................. 52 3.3.2 Recognition Tables and Table Selection ........................................... 55 3.3.3 Code Position and Symbology Detection .......................................... 59 3.3.4 Lighting Compensation ........................................................................... 65 3.3.5 Code Distortion Compensation ............................................................ 65 3.3.6 Pattern Comparison .................................................................................. 70 3.3.7 Result Combination ................................................................................... 77 3.3.8 Final False-Positive Check ...................................................................... 80 3.4 Related Work on Bar Code Recognition ....................................................... 82 3.4.1 Specialized Recognition Systems ......................................................... 83 3.4.2 Academic Work .......................................................................................... 83 3.4.3 Commercial Solutions .............................................................................. 87 3.5 Summary .................................................................................................................
Recommended publications
  • Mobile Application of Drug Follow-Up Information System with Data Matrix Reader
    International Journal of Applied Mathematics, Advanced Technology and Science Electronics and Computers ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper Mobile Application of Drug Follow-up Information System with Data Matrix Reader Hamza Yaraş1, Kübra Uyar*2 Accepted 3rd September 2016 Abstract: The number of products that simplify people’s lives are increasing with the enormous development of the technology. Mobile devices have a great importance for the provision of communication which is one of the most significant need of human beings. Mobile devices have gone beyond to be used originally as a mobile phone purposes and they have begun to be used as a smartphone by taking in charge of computers. They are not only used for communication but also they are used like camera, photo camera, notebook, television and reminder. Google's Android platform is a widely anticipated open source operating system for mobile phones. Google’s Android Operating System (AOS) in mobile phones are still relatively new, however, AOS has been progressing quite rapidly. The increasing number of smartphone users has prepared the ground for the emergence of new ideas to make life easier. Recently, especially some applications in health sector have reflected one of the most important samples. Some of the mobile applications in this field used by humans are about hearing test, vision test, diabetes, pregnancy, and doctor appointment. This paper focuses on following of drugs, taken by patients, through mobile phones. The application running on the AOS provides the use of drugs on time with the alarm system. In addition to this, the application gives information (time, dosage, and name) about drugs by reading data matrix located on the medicine box.
    [Show full text]
  • First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications As a Ubiquitous Computing Tool
    Edith Cowan University Research Online ECU Publications Pre. 2011 2007 First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications as a Ubiquitous Computing Tool Hiroko Kato Edith Cowan University Keng T. Tan Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Engineering Commons 10.1109/TENCON.2007.4428778 This is an Author's Accepted Manuscript of: Kato, H., & Tan, K. (2007). First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. Proceedings of IEEE Tencon (IEEE Region 10 Conference). (pp. 1-4). Taipei, Taiwan. IEEE. Available here © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ecuworks/4953 First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. H. Kato and K.T. Tan School of Computer Science and Information Science Edith Cowan University 2 Bradford Street Mount Lawley, WA 6050 AUSTRALIA Abstract- This paper presents a detailed study on the first read In this paper, we present key factors that could enhance the rate (FRR) of seven 2D-barcodes currently used for camera phone robustness and usability of a 2D-barcode system2 based on our applications.
    [Show full text]
  • © in This Web Service Cambridge University Press
    Cambridge University Press 978-0-521-88839-4 - Barcodes for Mobile Devices Hiroko Kato, Keng T. Tan and Douglas Chai Index More information Index AC coefficient, 168, 169 biometric data, 66, 67, 92, 123 access control, 66 biometric encryption key, 67 Active Book, 98 bitmap (BMP), 166 Active CyberCode, 104, 105 bitwise-XOR operations, 143 Active TRIPboard, 107 blob, 70, 71, 73, 145 adaptive thresholding, 106, 172–174, 176 block code, 131 additive colour space, 124, 160, 161 blog, 31, 45, 115 Advanced Television Systems Committee Bluetooth, 76, 117–119 (ATSC), 131 Bluetooth device address (BD_ADDR), 118 Air Transport Association (ATA), 23, 60 Bose–Chaudhuri–Hochquenghem (BCH) code, 131 alignment failure, 203, 207, 210, 211, 213 bouse, 89 alignment pattern, 52–54, 147 brightness coordinate in colour space, 124 American National Standards Institute (ANSI), 61 bull’s eye, 12, 13, 36, 76, 145 American Standard Code for Information burst error, 54, 131, 137, 140, 141 Interchange (ASCII), 22–24, 33, 35, 36 business card scanner, 91 anti-aliasing, 91, 123, 147 byte compaction mode, 33 application identifier (AI), 41–43 application programming interface (API), 95 area sensor, 28 central circular finder pattern, 146, 155 arm in mCode symbol, 70 centre guard pattern, 24, 112 associative law, 132 charge coupled device (CCD), 12, 28, 31, 45, 58, 89, au (KDDI), 51 91, 97, 110, 122, 149, 158, 214, 215 augmented reality (AR), 31, 94, 97–99, 103–105, 108, 109, 121, 127 camera, 32, 37, 48, 58, 60, 69, 76, 78, 92, 100, Australian Communications and Media Authority
    [Show full text]
  • Putting QR Codes to Work
    Caslon, a PODi Affiliate (Quick Response) Putting QR Codes to Work Steven England Mobile Consultant / Director of Business Development New Media Marketing Who is PODi? Who is Caslon? PODi Mission: Help members build & grow successful businesses using digital print • Printing and Marketing service providers, direct mailers & agencies • Enterprise companies • Consultants and educational organizations • Hardware and software solution providers • Regional industry vendors Caslon, a PODi Affiliate • Caslon creates cutting edge information and resources for Service Providers and Marketers • Manages and builds our community under license from PODi • Develops Case Studies, S3 sales tools, Find a Service Provider, and hosts DEX User Forums and our annual AppForum. Caslon, a PODi Affiliate What can PODi do for YOUR digital business? – Get more leads & promote your company • Connect to customers with Find a Service Provider • Self-Promo-in-a-Box lead generation campaign • Boost your reputation with a Best Practices Award, case study or PODi logo – Increase high-margin business & sell successfully • Energize sales with Digital Print Case Studies • Close more sales with proven S3 Council sales tools & NEW training modules • Learn at free monthly webinars. Plan new strategies with industry reports • NEW Caslon’s DEX S3 Forum – Boost your POD efficiency • NEW Production Central: one-stop resource center for technology support • NEW Caslon’s DEX Tech Forums: HP/Indigo, Kodak, Xerox • NEW Technology Webinars • PPML & CheckPPML_Pro – Save money on expert
    [Show full text]
  • Experience and Sociocultural Aspects of Using QR Code in Green Areas
    U. Cocchi, V. Vaitkutė Eidimtienė / Miestų želdynų formavimas 2017 1(14) 14–22 Experience and Sociocultural Aspects of Using QR code in Green Areas Umberto Cocchi1, Vaida Vaitkutė Eidimtienė*2 1Umberto Cocchi Consulting, Piazza Unità d‘Italia 20 – I-35023 Bagnoli di Sopra (Padua), Italy. E-mail [email protected] 2Architecture, Art and Design Department, Klaipėda University K. Donelaičio sq. 5, LT-92144, Klaipeda, Lithuania 2Kaunas Forestry and Environmental Engineering University of Applied Sciences Liepų str. 1, LT-53101 Girionys, Lithuania. E-mail [email protected] (Received in January, 2017; Accepted in April, 2017; Available Online from 8th of May, 2017) Abstract QR code or quick response code, or matrix code, is the information storage system, used for different purposes since 1994. The code contains information (text, digits, internet links, any other information), which is read by using QR scanners or mobile phones. Changing needs of the society and developing technologies determined the emergence of QR codes formats. However, for the day being the code under discussion is dominating by the popularity of its use (identification of goods, information provided on notice boards, leaflets, business cards, advertising brochures, information stands). One of a more interesting ways is encountered in green areas of cities, which can be of different kind: educational, recreational, artistic. The article deals with the ways of using QR (quick response code) in green areas and introduces the research data. Key words:QR code, green areas, socio-culture, education, recreation. Anotacija QR kodas, kitaip „greitojo atsako“ arba reagavimo matricos kodas – informacijos laikmena, naudojama įvairiais tikslais nuo 1994 metų.
    [Show full text]
  • 2D-Code Fibel 2017.Indd
    2D-Code Fibel Die vorliegende Broschüre wurde mit größter Sorgfalt zusam- mengestellt. Trotzdem können Fehler nie vollständig ausge- schlossen werden. Die Autoren und die Firma können für fehler- hafte Angaben und deren Folgen keine Haftung übernehmen. Änderungen behalten wir uns vor. Vervielfältigungen, auch auszugsweise, nur mit Genehmigung durch BARCODAT GmbH. Erste Auflage, März 1998 Zweite Auflage, September 2000 Dritte Auflage, April 2003 Vierte Auflage, Juni 2004 Fünfte Auflage, Januar 2007 Sechste Auflage, Januar 2011 Siebte Auflage, Oktober 2013 BARCODAT GmbH Robert-Bosch-Straße 13 72280 Dornstetten Tel. +49 74 43 / 96 01 - 0 [email protected] www.barcodat.com 2 2D-Code Fibel 3 Vorwort zur 7. Auflage Daten automatisch erfassen und in vielfältige Konzepte umset- zen gewinnt immer mehr an Bedeutung. Gefordert wird, mög- lichst große Datenmengen auf möglichst kleinen Flächen un- terzubringen. Diese sollen dann auch noch sicher gelesen und weiterverarbeitet werden können. In den späten 80ern begann man im Bereich Barcode, neue Wege zu gehen. Die ersten gestapelten (stacked) Barcodes wurden entwickelt, in den 90ern kamen die 2D- oder auch Matrix-Codes dazu. Inzwischen tummeln sich nach vorsichtigen Schätzungen über 50 Symbologien auf dem Markt. Durchge- setzt haben sich fast ausschließlich lediglich Data Matrix ECC 200 und PDF 417, die von der Industrie als Standard anerkannt werden. Diese Codes finden vielfältige Verwendung, z. B. in der Automobilzulieferindustrie (Odette-Label), im Gesundheits- wesen und anderen Bereichen. Die Entwicklung in Richtung größere Datenkapazitäten geht auch weiter. Hierzu werden zunehmend farbige Codes genutzt (HCCB, farbiger QR Code, farbiger Trillcode). Neu ist die Verwendung von 2D-Codes zur Verwendung mit Smartphones oder Webcam.
    [Show full text]
  • Pervasive 2D Barcodes for Camera Phone Applications
    Edith Cowan University Research Online ECU Publications Pre. 2011 2007 Pervasive 2D Barcodes for Camera Phone Applications Hiroko Kato Edith Cowan University Keng T. Tan Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Computer Sciences Commons 10.1109/MPRV.2007.80 This is an Author's Accepted Manuscript of: Kato, H., & Tan, K. (2007). Pervasive 2D Barcodes for Camera Phone Applications. IEEE Pervasive Computing: Mobile and Ubiquitous Systems, 6(4), 76-85. Available here © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworks/1507 MOBILE COMPUTING Pervasive 2D Barcodes for Camera Phone Applications As 2D barcodes gain popularity, do we need to determine a global standard for camera phone applications? If so, which barcode is best? wo inventions have contributed to So, in a previous study, we evaluated six 2D bar- the commercial viability of perva- codes using eight criteria for standardization sive 2D barcodes: CyberCode1 and potential: omnidirectional symbol reading, sup- J-SH09. In 2000, Sony introduced port for low-resolution cameras, reading robust- CyberCode—one of the earliest uses ness under different lighting conditions, barcode Tof a 2D barcode for developing a visual tagging reading distance, error correction capability, secu- system.
    [Show full text]
  • Barcodes for Mobile Devices Hiroko Kato, Keng T
    Cambridge University Press 978-0-521-88839-4 - Barcodes for Mobile Devices Hiroko Kato, Keng T. Tan and Douglas Chai Frontmatter More information Barcodes for Mobile Devices From inventory management in stores to automotive part tracking in assembly plants, barcodes are one of the most prevalent automatic identification and data capture technologies. This book provides a complete introduction to barcodes for mobile devices where data captured in the device’s camera can be interpreted by signal processing algorithms. The most relevant and up-to-date information, previously unavailable elsewhere or difficult to obtain, is presented. The focus throughout is on recent developments and two-dimensional (2D) barcodes, including the research and development steps towards colour barcodes for mobile devices, helping readers to develop their own barcodes. The authors also provide design details for their own novel colour 2D barcode, the Mobile Multi-Colour Composite (MMCC™) barcode, plus a coverage of RFID technology and one-dimensional barcodes. This book is ideal for professional developers of barcodes for mobile devices who need the latest technical details and information on how to develop barcodes. It is also a useful reference for graduate students researching the field of barcode technology and mobile computing. Hiroko Kato recently completed her Ph.D. in the School of Computer and Information Science at Edith Cowan University, Australia, where her research involved developing a novel 2D barcode. Her current research interests are computer vision and human computer interaction. Keng T. Tan is the founder of GO-CDMA Limited, a private R&D company in Hong Kong. He is a technical expert in mobile computing and wireless communications.
    [Show full text]
  • Utilizing Automatic Identification Tracking Systems to Compile Operational Field and Structure Data
    MD-14-SP209B4G Martin O’Malley, Governor James T. Smith, Jr., Secretary Anthony G. Brown, Lt. Governor Melinda B. Peters, Administrator STATE HIGHWAY ADMINISTRATION RESEARCH REPORT UTILIZING AUTOMATIC IDENTIFICATION TRACKING SYSTEMS TO COMPILE OPERATIONAL FIELD AND STRUCTURE DATA UNIVERSITY OF MARYLAND Final Report May 2014 The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Maryland State Highway Administration. This report does not constitute a standard, specification, or regulation. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. MD‐14‐SP209B4G 4. Title and Subtitle 5. Report Date May 2014 Utilizing Automatic Identification Tracking Systems to Compile Operational 6. Performing Organization Code Field and Structure Data 7. Author/s 8. Performing Organization Report No. A.M. Amde, T. Saad, F. Majekodunmi, J. Villatoro 9. Performing Organization Name and Address 10. Work Unit No. University of Maryland 11. Contract or Grant No. Department of Civil and Environmental Engineering SP209B4G College Park MD 20740 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Maryland State Highway Administration Office of Materials Technology 14. Sponsoring Agency Code 7450 Traffic Drive Hanover MD 21076 15. Supplementary Notes 16. Abstract The Maryland State Highway Administration’s (SHA) Office of Materials Technology (OMT) ensures that the quality of materials used on Maryland’s roadway system are properly designed, produced, and built to the approved codes and standards.
    [Show full text]
  • Evolution of Barcode
    INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (Online) www.ijdcst.com ISSN-2321-0257(Print) EVOLUTION OF BARCODE Janaswamy Phaniteja#1, P Derin J Tom#2 #1 - Janaswamy Phaniteja, B Tech.-III Year, Dept. of Information Technology, Aurora’s Engineering College, Bhongir, Nalgonda Dist., 9246580683 #2 - P Derin J Tom, B Tech.-III Year, Dept. of Information Technology, Aurora’s Engineering College, Bhongir, Nalgonda Dist., 8801072944, Abstract: A barcode is an optical machine-readable first working system used ultraviolet ink, but this representation of data, which shows data about the proved too easy to fade and was fairly expensive. object to which it attaches. These days’ barcodes have become very common for Unique Identification Convinced that the system was workable with further (UID) of almost everything from groceries to development, Woodland left Drexel, moved into his expensive goods. father's apartment in Florida, and continued working The mapping between messages and on the system. His next inspiration came from Morse barcodes is called a symbology. The specification of code, and he formed his first barcode from sand on a symbology includes the encoding of the single the beach. "I just extended the dots and dashes digits/characters of the message as well as the start downwards and made narrow lines and wide lines and stop markers into bars and space, the size of the out of them." To read them, he adapted technology quiet zone required to be before and after the from optical soundtracks in movies, using a 500-watt barcode as well as the computation of a checksum.
    [Show full text]
  • 1D En/Of 2D Barcodes
    • Barcodes in praktijk • Soorten barcodes • Opbouw reader • OEM scan engines / verschillen / toepassingen • Innovaties • Kansen in de markt • Over Newland Barcodes zijn inmiddels gemeengoed in ons dagelijksleven. Barcode is in 1952 gepatenteerd, maar het duurde tot 1974 voordat de eerste scan werd gedaan in een supermarket in Ohio: het was een pakje Wringley’s kauwgum. Inmiddels zijn er 5 miljard scans per dag. RFID heeft deels barcodes vervangen, maar een tag is duurder en minder eenvoudig zelf te produceren dan een barcode. Ook in kritische toepassingen zoals medische wereld wordt de matche “patient-medicijn” gemaakt met barcodes. En in de electronica worden barcodes veelvuldig gebruikt bijvoorbeeld voor track & trace van componenten, piggy backs en PCB’s. Al dan niet met een sticker of gelaserd in een PCB of zelf in metaal. Soorten barcodes 2D barcode 1D barcode Aztec Code Barcodes zijn in tientallen verschillende EAN-13 QR code formaten: EAN-8 DataMatrix van een rij eenvoudige lijnen die een 1-D UPC-A PDF147 UPC-E BEEtag Aztec Code (eendimensionale) barcode worden Code 128 EAN-13 Code16K genoemd AIM 128 Cronto Cybercode tot stippen en vierkanten die een 2-D UCC/EAN 128 ISBT 128 ShotCode (tweedimensionale) code vormen; Code 39 SnapCode Code 93 SPARQcode Code 11 JAB-Code Met de meer geavanceerde 2D-code kunnen MaxiCode QR Code Interleaved 2 of 5 UPC-A gebruikers aanzienlijk meer gegevens Matrix 2 of 5 VOICEYE Qcode opslaan en ophalen dan met een 1-D-code. IATA 2 of 5 Industrial 2 of 5 Nintendo e-Reader Dit komt omdat 1-D-codes alleen gegevens Standard 2 of 5 MMCC in de horizontale richting bevatten, terwijl NEC 2 of 5 RM C NexCode EAN-2 Addon ShotCode 2D-codes zowel verticale als horizontale EAN-5 Addon SNapCode Data Matrix informatie bevatten.
    [Show full text]
  • Cell Phone-Based Wayfinding for the Visually Impaired
    Cell Phone-based Wayfinding for the Visually Impaired James Coughlan1, Roberto Manduchi2, and Huiying Shen1 1 Smith-Kettlewell Eye Research Institute 2318 Fillmore Street San Francisco, CA 94115 {coughlan,hshen}@ski.org 2 University of California, Santa Cruz 1156 High Street Santa Cruz, CA 95064 [email protected] Abstract. A major challenge faced by the blind and visually impaired population is that of wayfinding – the ability of a person to find his or her way to a given destination. We propose a new wayfinding aid based on a camera cell phone, which is held by the user to find and read aloud specially designed machine-readable signs in the environment (labeling locations such as offices and restrooms). Our main technical innovation is that we have designed these machine-readable signs to be detected and located in fractions of a second on the cell phone CPU, even at a distance of several meters. A linear barcode printed on the sign is read using novel decoding algorithms that are robust to noisy images. The information read from the barcode is then read aloud using pre-recorded or synthetic speech. We have implemented a prototype system on the Nokia 7610 cell phone, and preliminary experiments with blind subjects demonstrate the feasibility of using the system as a real-time wayfinding aid. 2 1 Introduction There are nearly 1 million legally blind persons in the United States, and up to 10 million with significant visual impairments. A major challenge faced by this population is that of wayfinding – the ability of a person to find his or her way to a given destination.
    [Show full text]