2D-Barcode for Mobile Devices

Total Page:16

File Type:pdf, Size:1020Kb

2D-Barcode for Mobile Devices Edith Cowan University Research Online Theses : Honours Theses 2005 2D-barcode for mobile devices Hiroko Kato Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Software Engineering Commons Recommended Citation Kato, H. (2005). 2D-barcode for mobile devices. https://ro.ecu.edu.au/theses_hons/1388 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/1388 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. 2D-barcode for Mobile Devices by Hirol<o Kato A thesis submitted in partial fulfillment of the degree of Bachelor of Science Honours (Computer Science) at Faculty of Communications, Health and Science School of Computer and Information Science, Edith Cowan University, Perth, Western Australia Supervisor: Dr. Alfred Tan Associate-supervisor: Dr. Douglas ·chai Hiroko Kato Student Number: 2015893 November 2005 Abstract 2D-barcodes were designed to carry significantly more data than its lD counterpart. These codes are often used in industrial information tagging applications where high data capacity, mobility, and data robustness are required. Wireless mobile devices such as camera phones and Portable Digital Assistants (PDAs) have evolved from just a mobile voice communication device to what is now a mobile multimedia computing platform. Recent integration of these two mobile technologies has sparked some interesting applications where 2D-barcodes work as visual tags and/or information source and camera phones performs image processing tasks on the device itself. One of such applications is hyperlink establishment. The 2D symbol captured by a camera phone is decoded by the software installed in the phone. Then the web site indicated by the data encoded in a symbol is automatically accessed and shown in the display of the camera phone. Nonetheless, this new mobile applications area is still at its infancy. Each proposed mobile 2D-barcode application has its own choice of code, but no standard exists nor is there any study done on what are the criteria for setting a standard 2D-barcode for mobile phones. This study intends to address this void. The first phase of the study is qualitative examination. In order to select a best standard 2D-barcode, firstly, features desirable for a standard 2D-barcode that is optimized for the mobile phone platform are identified. The second step is to establish the criteria based on the features identified. These . ll. features are based on the operating limitations and attributes of camera phones in general use today. All published and accessible 2D-barcodes are thoroughly examined in terms of criteria set for the selection of a best 2D-barcode for camera phone applications. In the second phase, the 2D-barcodes that have higher potential to be chosen as a standard code are experimentally examined against the three criteria: light condition, distance, whether or not a 2D-barcode supports VGA resolution. Each sample 2D-barcode is captured by a camera phone with VGA resolution and the outcome is tested using an image analysis tool written in the scientific language called MATLAB. The outcome of this study is the selection of the most suitable 2D-barcode for applications where mobile devices such as camera phones are utilized. Declaration I certify that this thesis does not, to the best of my knowledge and belief: (i) incorporate without acknowledgment any material previously submitted for a degree or diploma in any institution ofhigher education; (ii) contain any material previously published or written by another person except where due reference is made in the text; or (iii) contain any defamatory material Hiroko Kato Student~umber: 2015893 ~ovember 2005 . IV. Acknowledgements I take this opportunity to thank many who have contributed to the production of this thesis. Of these, following individuals are worthy of special mention. Firstly, thanks must go to my supervisor, Dr Alfred Tan, for his enthusiasm, very helpful advice, tremendous assistance and encouragements. Without him I would not have been able to be involved in the project that focuses on such cutting edge technology. My appreciation towards him will last forever. Thanks must go to my associate supervisor Dr. Douglas Chai for helping me administer the experiments twice even during the semester break. Great thanks to my friends who have been patient with me, and always ready to help me. Especially Karen, I would not have survived without your help. I can never thank enough for your kindness and understanding. Big thanks to Medhat, for always offering things. Many thanks to Bao, for helping me gain access to various research materials. Thanks to all the lectures and academic friends within a School of Computer and Information Science at Edith Cowan University Mount Lawley, their guidance and generous assistance. Finally, thanks to all my family. Hisanori, I would not have continued the study without your support. Masa and Yukino, you are always incredibly supportive as well as extremely lovely. - v- Table of contents Abstract ················································~~~··························••tt••··········································· ii Declaration ..................................................................................................................... iv Acknowledgements .... ., ......... ~~·························································································· v Table of contents ............................................................................................................ vi List of Figures .............................................................................................................. viii List of Tables ................................................................................................................... x 1 Introduction ................................................................................................................. 1 1.1 Motivation ............................................................................................................................ 1 1.2 Approach .............................................................................................................................. 3 1.3 Organization ......................................................................................................................... 3 2 Barcode Technology ..................................................................................................... 4 2.1 Introduction .......................................................................................................................... 4 2.1.1 Development of Barcode Technology .......................................................................... .4 2.1.2 Fttture ofBarcode Technology .................................................................................... lO 2.2 Barcode Systems ................................................................................................................ l2 2.2.1 One Dimensional (lD) Barcode .................................................................................. 12 2.2.2 Two Dimensional (2D) Barcode ................................................................................. 16 2.2.3 Three Dimensional (3D) Barcode ............................................................................... 20 2.3 Two Dimensional Symbologies ......................................................................................... 21 2.3.1 Stacked 2D-barcodes .................................................................. : ................................ 21 2.3.2 Matrix 2D-barcodes .................................................................................................... 27 2.3.3 Two Dimensional Barcodes and their Derivatives used for Mobile Applications ...... 35 2.4 Summary ............................................................................................................................ 35 3 1\vo Dimensional Barcodes for Mobile Phones ....................................................... 37 3.1 QR Code ............................................................................................................................ 39 3.1.1 QR Code Symbol Structure ......................................................................................... 40 3 .1.2 Symbol Description .................................................................................................... 44 3 .1.3 Advantageous Features ............................................................................................... 49 3 .1.4 Scanning and decoding ..............................................................................................
Recommended publications
  • Mobile Application of Drug Follow-Up Information System with Data Matrix Reader
    International Journal of Applied Mathematics, Advanced Technology and Science Electronics and Computers ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper Mobile Application of Drug Follow-up Information System with Data Matrix Reader Hamza Yaraş1, Kübra Uyar*2 Accepted 3rd September 2016 Abstract: The number of products that simplify people’s lives are increasing with the enormous development of the technology. Mobile devices have a great importance for the provision of communication which is one of the most significant need of human beings. Mobile devices have gone beyond to be used originally as a mobile phone purposes and they have begun to be used as a smartphone by taking in charge of computers. They are not only used for communication but also they are used like camera, photo camera, notebook, television and reminder. Google's Android platform is a widely anticipated open source operating system for mobile phones. Google’s Android Operating System (AOS) in mobile phones are still relatively new, however, AOS has been progressing quite rapidly. The increasing number of smartphone users has prepared the ground for the emergence of new ideas to make life easier. Recently, especially some applications in health sector have reflected one of the most important samples. Some of the mobile applications in this field used by humans are about hearing test, vision test, diabetes, pregnancy, and doctor appointment. This paper focuses on following of drugs, taken by patients, through mobile phones. The application running on the AOS provides the use of drugs on time with the alarm system. In addition to this, the application gives information (time, dosage, and name) about drugs by reading data matrix located on the medicine box.
    [Show full text]
  • First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications As a Ubiquitous Computing Tool
    Edith Cowan University Research Online ECU Publications Pre. 2011 2007 First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications as a Ubiquitous Computing Tool Hiroko Kato Edith Cowan University Keng T. Tan Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Engineering Commons 10.1109/TENCON.2007.4428778 This is an Author's Accepted Manuscript of: Kato, H., & Tan, K. (2007). First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. Proceedings of IEEE Tencon (IEEE Region 10 Conference). (pp. 1-4). Taipei, Taiwan. IEEE. Available here © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ecuworks/4953 First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. H. Kato and K.T. Tan School of Computer Science and Information Science Edith Cowan University 2 Bradford Street Mount Lawley, WA 6050 AUSTRALIA Abstract- This paper presents a detailed study on the first read In this paper, we present key factors that could enhance the rate (FRR) of seven 2D-barcodes currently used for camera phone robustness and usability of a 2D-barcode system2 based on our applications.
    [Show full text]
  • Generalized Fibonacci Numbers and Applications
    Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 Generalized Fibonacci Numbers and Applications Sarkis Agaian Stanford University Student Member, IEEE [email protected] Abstract— The present paper relates to the methods for data efficient, accessible, and secure. Traditionally, barcodes have encoding and the reading of coded information represented by represented data in the widths and spacings of black parallel colored (including monochrome/black, gray) symbols (bars, lines. They are now referred to as linear or 1D (1 dimensional) triangles, circles, or other symbols). It also introduces new barcodes or symbologies. Since such barcodes use two types algorithms for generating secure, reliable, and high capacity of symbol elements, however, they carry a limited amount of color barcodes by using so called weighted n-dimensional random Fibonacci number based representations of data. The information with few security features. As a result, other types representation, symbols, and colors can be used as encryption of symbologies, most notably 2-D and color barcodes, have keys that can be encoded into barcodes, thus eliminating the been developed to offer more capabilities than their linear direct dependence on cryptographic techniques. To supply an counterpart [7]. extra layer of security, one may encrypt given data using different types of encryption methods. 2D barcodes can be broadly classified as either stacked symbology or matrix code. Stacked symbology, also called Keywords—Color barcode, Weighted n-dimensional random multi-row code, is created by “stacking” a series of linear Fibonacci sequences, Fibonacci numbers, Fibonacci p-code, barcode on top of each other.
    [Show full text]
  • © in This Web Service Cambridge University Press
    Cambridge University Press 978-0-521-88839-4 - Barcodes for Mobile Devices Hiroko Kato, Keng T. Tan and Douglas Chai Index More information Index AC coefficient, 168, 169 biometric data, 66, 67, 92, 123 access control, 66 biometric encryption key, 67 Active Book, 98 bitmap (BMP), 166 Active CyberCode, 104, 105 bitwise-XOR operations, 143 Active TRIPboard, 107 blob, 70, 71, 73, 145 adaptive thresholding, 106, 172–174, 176 block code, 131 additive colour space, 124, 160, 161 blog, 31, 45, 115 Advanced Television Systems Committee Bluetooth, 76, 117–119 (ATSC), 131 Bluetooth device address (BD_ADDR), 118 Air Transport Association (ATA), 23, 60 Bose–Chaudhuri–Hochquenghem (BCH) code, 131 alignment failure, 203, 207, 210, 211, 213 bouse, 89 alignment pattern, 52–54, 147 brightness coordinate in colour space, 124 American National Standards Institute (ANSI), 61 bull’s eye, 12, 13, 36, 76, 145 American Standard Code for Information burst error, 54, 131, 137, 140, 141 Interchange (ASCII), 22–24, 33, 35, 36 business card scanner, 91 anti-aliasing, 91, 123, 147 byte compaction mode, 33 application identifier (AI), 41–43 application programming interface (API), 95 area sensor, 28 central circular finder pattern, 146, 155 arm in mCode symbol, 70 centre guard pattern, 24, 112 associative law, 132 charge coupled device (CCD), 12, 28, 31, 45, 58, 89, au (KDDI), 51 91, 97, 110, 122, 149, 158, 214, 215 augmented reality (AR), 31, 94, 97–99, 103–105, 108, 109, 121, 127 camera, 32, 37, 48, 58, 60, 69, 76, 78, 92, 100, Australian Communications and Media Authority
    [Show full text]
  • Readerware Cuecat Manual
    Readerware CueCat Manual This manual will help you install your CueCat(R) barcode reader and get you started scanning your books, music and videos. Important: If you purchased your CueCat from another source, you may have received software with it, do not install this software. You do not need any additional software when using your CueCat with Readerware, and following the demise of Digital Convergence, the CueCat software will no longer work. Table of Contents Installing a PS/2 CueCat on a desktop machine (Windows and Linux)..............................2 Installing a PS/2 CueCat on a laptop (Windows and Linux)..............................................4 Installing a USB CueCat (Windows, Mac OS X and Linux)..............................................5 How to Swipe a Barcode..................................................................................................6 Troubleshooting................................................................................................................7 Readerware CueCat Manual v1.04 Page: 1 Installing a PS/2 CueCat on a desktop machine (Windows and Linux) Note: Before you begin, shut down all programs and turn off your computer. If you are installing the CueCat reader on a laptop computer, proceed to the next section. Disconnect the keyboard cable from your computer. The CueCat reader operates through the keyboard port. Make sure you do not use the mouse port. If the keyboard port on your computer doesn©t match the male connector on the CueCat reader, you can get adapters at any computer store or Radio Shack. Readerware CueCat Manual v1.04 Page: 2 Connect the male connector on the CueCat reader into the computer©s keyboard port. Match up the "notch key" for easy insertion. (Note: the male connector is the one with the protruding pins.) Connect the keyboard cable to the female connector on the CueCat reader.
    [Show full text]
  • Tracking Codes and How They Work
    Tracking Codes and How They Work > Industrial Traceability 1 Introduction In the past few years, traceability has become a major issue for the industrial sector, since allowing for better tracking and management of products can lead to important cost/savings. Most of the time, this notion of traceability takes the form of barcodes on products. Originally, the well-known, one-dimensional (1D) barcodes were the first barcodes to be created and they have been used ever since due to their simplicity. But due to the limited quantity of information which can be stored in these initial barcodes, a database is needed to interpret the decoded information and to link it to the information of the product. Without the database, the number that is decoded does not mean anything. However, sometimes, a higher density storage of information than the one allowed by 1D codes is needed. So, two-dimensional barcodes were created to store a maximum of information without requiring an accompanying database. State of the Art Code By having the capacity to store information in two-dimensions (2D); these barcodes can store such a density of information that a product and its information can be decoded without using an external database. The code itself can contain information like: the brand, the name of the product, the year of fabrication and so forth. For a given industry, the ability to access this critical information at every step of the production process without the use of an accompanying database greatly facilitates the handling of the product. However, for these codes to be readable by all the subcontractors along the production line, standards for two-dimensional and one-dimensional barcodes needed to be created.
    [Show full text]
  • Useful Facts About Barcoding
    Useful Facts about Barcoding When Did Barcodes Begin? (Part 1) A barcode is an optical machine-readable representation of data relating to the object to which it is attached. Originally barcodes represented data by varying the widths and spacing’s of parallel lines and may be referred to as linear or one-dimensional (1D). Later they evolved into rectangles, dots, hexagons and other geometric patterns in two dimensions (2D). Although 2D systems use a variety of symbols, they are generally referred to as barcodes as well. Barcodes originally were scanned by special optical scanners called barcode readers; later, scanners and interpretive software became available on devices including desktop printers and smartphones. Barcodes are on the leading edge of extraordinary things. They have given humans the ability to enter and extract large amounts of data in relatively small images of code. With some of the latest additions like Quick Response (QR) codes and Radio-frequency identification (RFID), it’s exciting to see how these complex image codes are being used for business and even personal use. The original idea of the barcode was first introduced in 1948 by Bernard Silver and Norman Joseph Woodland after Silver overheard the President of a local food chain talking about their need for a system to automatically read product information during checkout. Silver and Woodland took their inspiration from recognizing this rising need and began development on this product so familiar to the world now. After several attempts to create something usable, Silver and Woodland finally came up with their ”Classifying Apparatus and Method” which was patented on October 07, 1952.
    [Show full text]
  • EIGP 114.2018 (Revision 20 June 2018 Vern Lorenson – ECIA 2D Barcode SME)
    ECIA Publication Labeling Specification for Product and Shipment Identification in the Electronics Industry - 2D Barcode (Including Human Readable and 1D Barcode) EIGP 114.2018 (Revision 20 June 2018 Vern Lorenson – ECIA 2D Barcode SME) June 2018 Electronic Components Industry Association Industry Specifications Rev20.06.2018 EIGP 114.2018 Page 1 of 44 NOTICE ECIA Industry Guidelines and Publications contain material that has been prepared, progressively reviewed, and approved through various ECIA-sponsored industry task forces, comprised of ECIA member distributors, manufacturers, and manufacturers’ representatives. After adoption, efforts are taken to ensure widespread dissemination of the guidelines. ECIA reviews and updates the guidelines as needed. ECIA Industry Guidelines and Publications are designed to serve the public interest, including electronic component distributors, manufacturers and manufacturers’ representatives through the promotion of uniform and consistent practices between manufacturers, distributors, and manufacturers’ representatives resulting in improved efficiency, profitability, product quality, safety, and environmentally responsible practices. Existence of such guidelines shall not in any respect preclude any member or non-member of ECIA from adopting any other practice not in conformance to such guidelines, nor shall the existence of such guidelines preclude their voluntary use by those other than ECIA members, whether the guideline is to be used either domestically or internationally. ECIA does not assume any liability or obligation whatever to parties adopting ECIA Industry Guidelines and Publications. Each company must independently assess whether adherence to some or all of the guidelines is in its own best interest. Inquiries, comments, and suggestions relative to the content of this ECIA Industry Guideline should be addressed to ECIA headquarters.
    [Show full text]
  • Imageman.Net Getting Started
    ImageMan.Net Getting Started 1 ImageMan.Net Version 3 The ImageMan.Net product includes fully managed .Net components providing an easy to use, yet rich imaging toolkit. Fully Managed Assemblies support X-Copy deployment and do not use COM Support for reading/writing many image formats including TIFF, BMP, DIB, RLE, PCX, DCX, TGA, PCX, DCX, JPG, JPEG 2000, PNG, GIF, EMF, WMF, PDF(with optional PDF Export/Import Addon Options), even plug in your own image codecs Object oriented architecture simplifies development. High level functionality allows for quick development while low level classes provide ultimate control Works with the ImageMan.Net Twain controls to easily scan from Twain compatible scanners, cameras and frame grabbers Winforms Viewer, File Open, Thumbnail Viewer, Annotation and Annotation Toolstrip controls Barcode creation and recognition support for 1-d and 2-d barcodes symbologies including QR, Datamatrix, 3 of 9, Codabar, PDF417, Code 3 of 9, Code 3 of 9 Extended, Code 93, EAN-8, EAN-13, UPC-A, UPC-E, Aztec, Interleaved 2 of 5, Codabar and more Document Edition includes royalty free OCR, Annotations and document processing commands including despeckle, border removal, border cleanup and more Supports building client side Winforms and ASP.Net server side applications 32 & 64 bit assemblies for .Net 2.0, .Net 3.x and 4.x Support for Visual Studio 2005, 2008, 2010, 2012 and 2013 Context Sensitive Online Help and Documentation Backed up by Data Techniques professional support staff 1 ImageMan.Net Getting Started ImageMan.Net Getting Started 2 What's New in Version 3 What's new in the Summer Release PDFEncoder & OCR Engine Enhanced the Searchable PDF Support by assuring that the searchable text lines up with the raster image content.
    [Show full text]
  • UID QUARTERLY: Winter 2011 Tracking Solutions
    TrackIng SolutionS UID QUARTERLY: WInter 2011 InTRoDUcTIon Welcome to the UID Quarterly Winter 2011 Edition, brought to you by A2B Tracking Solutions as an educational service. We think you will find Bar code History: Fifty years ago, May 1961 to be exact, the first bar a great deal of practical and useful information here. Read each article code scanner was installed and tested on the Boston & Maine RR. This carefully and then pass along the Quarterly to a friend or colleague who project marked the dawn of the bar code industry and forever changed could benefit from reading it. the economic landscape. Read a first-hand account by the man who What you’ll find in this issue: headed that project UID Education: Check out the upcoming IUID and Track & Trace web UID Success: Learn how the US Air Force is utilizing a seek and apply seminar dates presented by David Collins of Data Capture Institute. part marking strategy, not only to satisfy UID requirements for legacy equipment, but to cleanse the data in its equipment database. news From A2B Tracking: Read all the latest from A2B. The AF part marking effort began as UID SUccESS a pilot in 2009 when A2B was tasked Air Force IUID Part Marking with marking a single base - MacDill A2B achieves “lift off” for enterprise-wide seek and apply marking AFB. That effort ran concurrently with an AF “organic” part marking Air Force has been a frontrunner in the rollout of IUID since it was effort at five other locations. Using introduced in 2003.
    [Show full text]
  • PDF417 Encoding Guide
    ExpoTools PDF417 Encoding Guide Overview Encoding two-dimensional barcodes such as PDF417 is inherently more complex than traditional one-dimensional (or linear) barcodes. A larger number of things can be altered and adjusted, making it harder to specify how to construct the barcode. This document is intended to serve as a starting point, allowing you to understand the variables that will make a barcode that is compatible with ExpoTools equipment. The Terms A PDF417 barcode is not specified simply as a height and width with a dot-size. Typically, it is specified using 4 basic parameters: . X-element: size of the smallest barcode element (or dot) . X-to-Y ratio: how many times larger that the x-element is the y element . Number of columns: how many bands are encoded on a line . Error correction level: how much redundant information is added to the barcode to allow scratches or defects. Increasing this adds to the size of the barcode From these, the height, or number of rows, is derived. In addition, a symbol set can be specified as either text, binary or numeric. Although text mode allows more characters to fit inside the same space, it is usually best to use binary mode, since it can be difficult to ensure that the data does not contain any control characters. Capacity Although ExpoTools barcode scanners can read up to 480 characters from a badge, such a barcode would prove very difficult for the average user to scan, or at least be overly large for most badge designs. In order to make the badges as easy to scan as possible, you should try to keep the average badge at around 150 characters, with an upper limit of 250 characters.
    [Show full text]
  • Putting QR Codes to Work
    Caslon, a PODi Affiliate (Quick Response) Putting QR Codes to Work Steven England Mobile Consultant / Director of Business Development New Media Marketing Who is PODi? Who is Caslon? PODi Mission: Help members build & grow successful businesses using digital print • Printing and Marketing service providers, direct mailers & agencies • Enterprise companies • Consultants and educational organizations • Hardware and software solution providers • Regional industry vendors Caslon, a PODi Affiliate • Caslon creates cutting edge information and resources for Service Providers and Marketers • Manages and builds our community under license from PODi • Develops Case Studies, S3 sales tools, Find a Service Provider, and hosts DEX User Forums and our annual AppForum. Caslon, a PODi Affiliate What can PODi do for YOUR digital business? – Get more leads & promote your company • Connect to customers with Find a Service Provider • Self-Promo-in-a-Box lead generation campaign • Boost your reputation with a Best Practices Award, case study or PODi logo – Increase high-margin business & sell successfully • Energize sales with Digital Print Case Studies • Close more sales with proven S3 Council sales tools & NEW training modules • Learn at free monthly webinars. Plan new strategies with industry reports • NEW Caslon’s DEX S3 Forum – Boost your POD efficiency • NEW Production Central: one-stop resource center for technology support • NEW Caslon’s DEX Tech Forums: HP/Indigo, Kodak, Xerox • NEW Technology Webinars • PPML & CheckPPML_Pro – Save money on expert
    [Show full text]