Chapter Three the Technology Behind the Visual Tagging Paradigm

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Three the Technology Behind the Visual Tagging Paradigm The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University A CROSS-PLATFORM USABILITY EVALUATION OF 2D VISUAL TAGGING SYSTEMS ;It DL<;S£~TATIOS Sl:BMITfED TO THE DEPARTMENT Of COMPljTEI{ SCIENCE, FACULTY OF SCIENCE AT THE UNiV'EflSIT'f OF CAPE TOWN IN' PARTIAL FljLflLMEJH Of THE REQUll~£..I;!E.i"TS fOl( THE DEfil(EE OF Town MASTER OF SCIENCE " INI<\)RMA TJON TECHNOLOGYCape of By SAMUEL OLUGBENGA KING UniversityMarCh,2007 SUPEQVIsED BY DR . AUDEE\' J.vI. MBOGHQ UNIVERSITY OF CAPE TOWN © COP1(RIGHT 2007 Town Cape SAMUELof O. KING University ABSTRACT By encoding 2D bar codes that store URL links, SMS or plain text, 2D visual tags link infonnation about objects in the physical world to online or offline content. The existence of physical world hyperlinks in the fonn of 2D visual tags that are placed in the natural environment therefore makes new social and cultural interaction modes possible. Although 2D visual tagging systems have much potential to positively influence the way people, and Africans in particular, interact with the physical world, there has been no in­ depth evaluation or cross-platfonn usability assessment of available 2D visual tagging systems. Research in the field has primarily focused on the description and evaluation of prototype visual tagging applications. The deployment and use of 2D visual tagging systems have also not been comprehensively tested in Africa. Town To evaluate the 2D visual tagging paradigm, five 2D visual tagging systems were selected for this study. These 2D visual tagging systems were selected because of their robustness and high visibility in the field of physicalCape world hyperlinks; and also because a Nokia 6280 handset (which was the cameraof phone that was used for this study) can be used to interact with any of these systems. A hybrid methodology that consisted of three discrete sets of questionnaires, observations, interviews and the application of the Real Access criteria as well as the actual scenario-based usability testing sessions was adopted. This hybrid approach was adopted because it is a guaranteed and viable pathway for the provision of comprehensive illumination and feedback on the key usability issues that were investigated duringUniversity this study. The evaluation results showed that participants were generally satisfied with the perfonnance of the 2D visual tagging systems with low decoding latency, intuitive interface and feedback mechanism. Most participants also indicated a willingness to use visual tagging systems on a regular basis, in spite of perceived limitations. Furthennore, test results showed that the single most important attribute of a visual tagging system, from a user perspective, is its decoding latency. Similarly, it was found that the most important factor that could influence the adoption of the 2D visual tagging paradigm is 11 mobile Web browsing costs. An evaluation of the 2D visual tagging paradigm against the Real Access criteria framework indicates that 2D visual tagging systems surpass the minimal criteria threshold for effective and efficient deployment within an African context. The study concludes with a list of twenty recommendations that 2D visual tagging system providers may adopt to make their systems and by extension, the 2D visual tagging paradigm, more efficient, attractive and accessible to users. Town Cape of University 111 DEDICATION Town This research project is dedicated to the Almighty God, the Creator of our vast and magnificent planet who is yet to initiate a project He could not bring to completion, for enabling me to start and complete the MIT programCape as well as this dissertation. of University IV ACKNOWLEDGEMENTS First, I am deeply grateful for the attention, guidance and input I received from my supervisor, Dr. Audrey Mbogho. This is to say a big thank you to Francoise Gaarlandt­ Kist of Pluspunt Individu, Netherlands for sponsoring the second half of my MIT studies. I also appreciate the contributions of Drs. Kuttel, Hussein, Marsden, Gain and Gamba to my professional and academic life during my time on the MIT program. I am grateful to CS Departmental staff, notably Eve, Freda and Bernie as well as Nuroo Ismail of UCT Knowledge Commons for input on typesetting. I thank my colleagues (particularly Victor, Mpho, Lauren, Hubert, Mogomotsi and Bojelo) in the MIT Lab for their friendship and support. And thanks to all the friends, acquaintances and associates I have been fortunate to meet both physically and virtually in South TownAfrica, the US, UK and elsewhere around the world. My life has been tremendously enriched by you all. Last, I want to thank my family - my Mom, Florence, Brother, Danne (as well as his wife, Bunmi) , Sister, Deremi and Dad for their moral, financialCape and spiritual support. You are one of the main reasons I am who I am today. of University v TABLE OF CONTENTS ABSTRACT .................................................................................................................................................. 11 DEDICATION ............................................................................................................................................ IV ACKNOWLEDGEMENTS ......................................................................................................................... V CHAPTER 1 .................................................................................................................................................. 1 INTRODUCTION ......................................................................................................................................... 1 1.1 INTRODUCTION ...................................................................................................................................... 1 1.2 RESEARCH QUESTIONS .......................................................................................................................... 3 1.3 SIGNIFICANCE OF RESEARCH ................................................................................................................ .4 1.4 RESEARCH PREMISE AND MOTIVATION ................................................................................................. 6 1.5 EXISTING RESEARCH .............................................................................................................................Town 7 1.6METHODOLOGY ..................................................................................................................................... 8 1.7 USABILITY Focus ................................................................................................................................. 8 1.8 ANTICIPATED OUTCOMES ...................................................................................................................... 9 1.9 DISSERTATION OUTLINE ........................................................................................................................Cape 9 of CHAPTER TWO ........................................................................................................................................ 11 LITERATURE REVIEW ........................................................................................................................... 11 2.1 INTRODUCTION .................................................................................................................................... 11 2.2 EARLIEST WORK ................................................................................................................................. 12 2.3 INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DEVELOPMENT.. ...................................... 15 2.4 RELATED WORK ..................................................................................................................................University 16 2.5 MOST RELEVANT WORK ..................................................................................................................... 20 CHAPTER THREE .................................................................................................................................... 26 THE TECHNOLOGY BEHIND THE VISUAL TAGGING PARADIGM ........................................... 26 3.1 INTRODUCTION .................................................................................................................................... 26 3.2 TWO-DIMENSIONAL (2D) SYMBOLOGIES ............................................................................................ 27 3.2.1 DataMatrix ................................................................................................................................. 28 3.2.2 QR Code ..................................................................................................................................... 29 VI 3.3 CAMERA PHONES ................................................................................................................................ 30 3.3.1 Basic Phones ............................................................................................................................... 31 3.3.2 Smart Phones .............................................................................................................................
Recommended publications
  • Mobile Application of Drug Follow-Up Information System with Data Matrix Reader
    International Journal of Applied Mathematics, Advanced Technology and Science Electronics and Computers ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper Mobile Application of Drug Follow-up Information System with Data Matrix Reader Hamza Yaraş1, Kübra Uyar*2 Accepted 3rd September 2016 Abstract: The number of products that simplify people’s lives are increasing with the enormous development of the technology. Mobile devices have a great importance for the provision of communication which is one of the most significant need of human beings. Mobile devices have gone beyond to be used originally as a mobile phone purposes and they have begun to be used as a smartphone by taking in charge of computers. They are not only used for communication but also they are used like camera, photo camera, notebook, television and reminder. Google's Android platform is a widely anticipated open source operating system for mobile phones. Google’s Android Operating System (AOS) in mobile phones are still relatively new, however, AOS has been progressing quite rapidly. The increasing number of smartphone users has prepared the ground for the emergence of new ideas to make life easier. Recently, especially some applications in health sector have reflected one of the most important samples. Some of the mobile applications in this field used by humans are about hearing test, vision test, diabetes, pregnancy, and doctor appointment. This paper focuses on following of drugs, taken by patients, through mobile phones. The application running on the AOS provides the use of drugs on time with the alarm system. In addition to this, the application gives information (time, dosage, and name) about drugs by reading data matrix located on the medicine box.
    [Show full text]
  • First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications As a Ubiquitous Computing Tool
    Edith Cowan University Research Online ECU Publications Pre. 2011 2007 First Read Rate Analysis of 2D-Barcodes for Camera Phone Applications as a Ubiquitous Computing Tool Hiroko Kato Edith Cowan University Keng T. Tan Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Engineering Commons 10.1109/TENCON.2007.4428778 This is an Author's Accepted Manuscript of: Kato, H., & Tan, K. (2007). First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. Proceedings of IEEE Tencon (IEEE Region 10 Conference). (pp. 1-4). Taipei, Taiwan. IEEE. Available here © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ecuworks/4953 First read rate analysis of 2D-barcodes for camera phone applications as a ubiquitous computing tool. H. Kato and K.T. Tan School of Computer Science and Information Science Edith Cowan University 2 Bradford Street Mount Lawley, WA 6050 AUSTRALIA Abstract- This paper presents a detailed study on the first read In this paper, we present key factors that could enhance the rate (FRR) of seven 2D-barcodes currently used for camera phone robustness and usability of a 2D-barcode system2 based on our applications.
    [Show full text]
  • Generalized Fibonacci Numbers and Applications
    Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 Generalized Fibonacci Numbers and Applications Sarkis Agaian Stanford University Student Member, IEEE [email protected] Abstract— The present paper relates to the methods for data efficient, accessible, and secure. Traditionally, barcodes have encoding and the reading of coded information represented by represented data in the widths and spacings of black parallel colored (including monochrome/black, gray) symbols (bars, lines. They are now referred to as linear or 1D (1 dimensional) triangles, circles, or other symbols). It also introduces new barcodes or symbologies. Since such barcodes use two types algorithms for generating secure, reliable, and high capacity of symbol elements, however, they carry a limited amount of color barcodes by using so called weighted n-dimensional random Fibonacci number based representations of data. The information with few security features. As a result, other types representation, symbols, and colors can be used as encryption of symbologies, most notably 2-D and color barcodes, have keys that can be encoded into barcodes, thus eliminating the been developed to offer more capabilities than their linear direct dependence on cryptographic techniques. To supply an counterpart [7]. extra layer of security, one may encrypt given data using different types of encryption methods. 2D barcodes can be broadly classified as either stacked symbology or matrix code. Stacked symbology, also called Keywords—Color barcode, Weighted n-dimensional random multi-row code, is created by “stacking” a series of linear Fibonacci sequences, Fibonacci numbers, Fibonacci p-code, barcode on top of each other.
    [Show full text]
  • © in This Web Service Cambridge University Press
    Cambridge University Press 978-0-521-88839-4 - Barcodes for Mobile Devices Hiroko Kato, Keng T. Tan and Douglas Chai Index More information Index AC coefficient, 168, 169 biometric data, 66, 67, 92, 123 access control, 66 biometric encryption key, 67 Active Book, 98 bitmap (BMP), 166 Active CyberCode, 104, 105 bitwise-XOR operations, 143 Active TRIPboard, 107 blob, 70, 71, 73, 145 adaptive thresholding, 106, 172–174, 176 block code, 131 additive colour space, 124, 160, 161 blog, 31, 45, 115 Advanced Television Systems Committee Bluetooth, 76, 117–119 (ATSC), 131 Bluetooth device address (BD_ADDR), 118 Air Transport Association (ATA), 23, 60 Bose–Chaudhuri–Hochquenghem (BCH) code, 131 alignment failure, 203, 207, 210, 211, 213 bouse, 89 alignment pattern, 52–54, 147 brightness coordinate in colour space, 124 American National Standards Institute (ANSI), 61 bull’s eye, 12, 13, 36, 76, 145 American Standard Code for Information burst error, 54, 131, 137, 140, 141 Interchange (ASCII), 22–24, 33, 35, 36 business card scanner, 91 anti-aliasing, 91, 123, 147 byte compaction mode, 33 application identifier (AI), 41–43 application programming interface (API), 95 area sensor, 28 central circular finder pattern, 146, 155 arm in mCode symbol, 70 centre guard pattern, 24, 112 associative law, 132 charge coupled device (CCD), 12, 28, 31, 45, 58, 89, au (KDDI), 51 91, 97, 110, 122, 149, 158, 214, 215 augmented reality (AR), 31, 94, 97–99, 103–105, 108, 109, 121, 127 camera, 32, 37, 48, 58, 60, 69, 76, 78, 92, 100, Australian Communications and Media Authority
    [Show full text]
  • Imageman.Net Getting Started
    ImageMan.Net Getting Started 1 ImageMan.Net Version 3 The ImageMan.Net product includes fully managed .Net components providing an easy to use, yet rich imaging toolkit. Fully Managed Assemblies support X-Copy deployment and do not use COM Support for reading/writing many image formats including TIFF, BMP, DIB, RLE, PCX, DCX, TGA, PCX, DCX, JPG, JPEG 2000, PNG, GIF, EMF, WMF, PDF(with optional PDF Export/Import Addon Options), even plug in your own image codecs Object oriented architecture simplifies development. High level functionality allows for quick development while low level classes provide ultimate control Works with the ImageMan.Net Twain controls to easily scan from Twain compatible scanners, cameras and frame grabbers Winforms Viewer, File Open, Thumbnail Viewer, Annotation and Annotation Toolstrip controls Barcode creation and recognition support for 1-d and 2-d barcodes symbologies including QR, Datamatrix, 3 of 9, Codabar, PDF417, Code 3 of 9, Code 3 of 9 Extended, Code 93, EAN-8, EAN-13, UPC-A, UPC-E, Aztec, Interleaved 2 of 5, Codabar and more Document Edition includes royalty free OCR, Annotations and document processing commands including despeckle, border removal, border cleanup and more Supports building client side Winforms and ASP.Net server side applications 32 & 64 bit assemblies for .Net 2.0, .Net 3.x and 4.x Support for Visual Studio 2005, 2008, 2010, 2012 and 2013 Context Sensitive Online Help and Documentation Backed up by Data Techniques professional support staff 1 ImageMan.Net Getting Started ImageMan.Net Getting Started 2 What's New in Version 3 What's new in the Summer Release PDFEncoder & OCR Engine Enhanced the Searchable PDF Support by assuring that the searchable text lines up with the raster image content.
    [Show full text]
  • Putting QR Codes to Work
    Caslon, a PODi Affiliate (Quick Response) Putting QR Codes to Work Steven England Mobile Consultant / Director of Business Development New Media Marketing Who is PODi? Who is Caslon? PODi Mission: Help members build & grow successful businesses using digital print • Printing and Marketing service providers, direct mailers & agencies • Enterprise companies • Consultants and educational organizations • Hardware and software solution providers • Regional industry vendors Caslon, a PODi Affiliate • Caslon creates cutting edge information and resources for Service Providers and Marketers • Manages and builds our community under license from PODi • Develops Case Studies, S3 sales tools, Find a Service Provider, and hosts DEX User Forums and our annual AppForum. Caslon, a PODi Affiliate What can PODi do for YOUR digital business? – Get more leads & promote your company • Connect to customers with Find a Service Provider • Self-Promo-in-a-Box lead generation campaign • Boost your reputation with a Best Practices Award, case study or PODi logo – Increase high-margin business & sell successfully • Energize sales with Digital Print Case Studies • Close more sales with proven S3 Council sales tools & NEW training modules • Learn at free monthly webinars. Plan new strategies with industry reports • NEW Caslon’s DEX S3 Forum – Boost your POD efficiency • NEW Production Central: one-stop resource center for technology support • NEW Caslon’s DEX Tech Forums: HP/Indigo, Kodak, Xerox • NEW Technology Webinars • PPML & CheckPPML_Pro – Save money on expert
    [Show full text]
  • 3. Using Zint Barcode Studio Below Is a Brief Guide to Zint Barcode Studio Which Is the Graphical User Interface for the Zint Package
    Zint Barcode Generator and Zint Barcode Studio User Manual This document is a backup of the user manual information which was formerly held at the website http://www.zint.org.uk. You are free to distribute this document, copy it or any part of it and reproduce it by any means or in any medium as you see fit as long as you also acknowledge the fact that it is covered by the following copyright: © Robin Stuart 2006 – 2011 (In other words I'm happy for you to treat it as a public domain document as long as you don't take credit for it!) This version of the manual relates to Zint version 2.4.2. 1. Introduction The Zint project aims to provide a complete cross-platform open source barcode generating solution. The package currently consists of a Qt based GUI, a command line executable and a library with an API to allow developers access to the capabilities of Zint. It is hoped that Zint provides a solution which is flexible enough for professional users while at the same time takes care of as much of the processing as possible to allow easy translation from input data to barcode image. The library which forms the main component of the Zint project is currently able to encode data in over 50 barcode symbologies (types of barcode), for each of which it is possible to translate that data from either Unicode (UTF-8) or a raw 8-bit data stream. The image can be rendered as either a Portable Network Graphic (PNG) image, as Encapsulated Post Script (EPS) or as a Scalable Vector Graphic (SVG).
    [Show full text]
  • Bagging Equipment Thermal Ribbon Printers
    Bagging Equipment Thermal Ribbon Printers For printing various data + Barcodes, code, ingredients, product names etc onto film prior to bagging The high performance, low cost thermal transfer printers are versatile enough for printing fixed and variable text, data and graphics. It is ideal for reproducing bar codes, real time, sell-by dates, batch numbers, prices, source codes and much more. Two component models of brackets (Intermittent & Continuous) can be easily integrated to the machines such as vertical and horizontal form-fill-seal systems, primary labellers, thermo formers and overwrapping equipment. The units are suitable for all intermittent and continuous applications within the food, pharmaceutical cosmetics and automobile spare parts industries has the capability to code all kinds of 1D barcodes and 2D data matrix codes. Features Intermediate and continuous models available Patented long life mechanical design needs no maintenance 107mm – 75mm models for Intermittent print area 600 m. Ribbon Capacity 300 dpi (12 dot/inch) Print Quality Up to 400mm per/second print speed Large memory for all label formats to be stored locally The USB can be used to transfer messages between printers and through computer too Loynds International Ltd Units 2-8 Arkwright Court | Blackpool and Fylde Industrial Estate | Blackpool, England, FY4 5DR T: +44 (0)1253882961 | E: [email protected] | W: www.loynds.co.uk Model 32 C 32-50 I 53-50 I 32 C 32-70 I 53 C 53-70 I 53-125 I 107 C 107-75 I 107-125 I 107mm x 125mm 32mm x 125mm 53mm x 125mm (Standard) (Standard) (Standard) 107mm x 32mm x 250mm 53mm x 250mm 250mm 107mm x Print Area 32mm x 125mm 32mm x 50mm 53mm x 50mm (Optional) 32mm x 70mm (Optional) 53mm x 70mm 53mm x 125mm (Optional) 107mm x 75mm 125mm Max.
    [Show full text]
  • Experience and Sociocultural Aspects of Using QR Code in Green Areas
    U. Cocchi, V. Vaitkutė Eidimtienė / Miestų želdynų formavimas 2017 1(14) 14–22 Experience and Sociocultural Aspects of Using QR code in Green Areas Umberto Cocchi1, Vaida Vaitkutė Eidimtienė*2 1Umberto Cocchi Consulting, Piazza Unità d‘Italia 20 – I-35023 Bagnoli di Sopra (Padua), Italy. E-mail [email protected] 2Architecture, Art and Design Department, Klaipėda University K. Donelaičio sq. 5, LT-92144, Klaipeda, Lithuania 2Kaunas Forestry and Environmental Engineering University of Applied Sciences Liepų str. 1, LT-53101 Girionys, Lithuania. E-mail [email protected] (Received in January, 2017; Accepted in April, 2017; Available Online from 8th of May, 2017) Abstract QR code or quick response code, or matrix code, is the information storage system, used for different purposes since 1994. The code contains information (text, digits, internet links, any other information), which is read by using QR scanners or mobile phones. Changing needs of the society and developing technologies determined the emergence of QR codes formats. However, for the day being the code under discussion is dominating by the popularity of its use (identification of goods, information provided on notice boards, leaflets, business cards, advertising brochures, information stands). One of a more interesting ways is encountered in green areas of cities, which can be of different kind: educational, recreational, artistic. The article deals with the ways of using QR (quick response code) in green areas and introduces the research data. Key words:QR code, green areas, socio-culture, education, recreation. Anotacija QR kodas, kitaip „greitojo atsako“ arba reagavimo matricos kodas – informacijos laikmena, naudojama įvairiais tikslais nuo 1994 metų.
    [Show full text]
  • 2D-Code Fibel 2017.Indd
    2D-Code Fibel Die vorliegende Broschüre wurde mit größter Sorgfalt zusam- mengestellt. Trotzdem können Fehler nie vollständig ausge- schlossen werden. Die Autoren und die Firma können für fehler- hafte Angaben und deren Folgen keine Haftung übernehmen. Änderungen behalten wir uns vor. Vervielfältigungen, auch auszugsweise, nur mit Genehmigung durch BARCODAT GmbH. Erste Auflage, März 1998 Zweite Auflage, September 2000 Dritte Auflage, April 2003 Vierte Auflage, Juni 2004 Fünfte Auflage, Januar 2007 Sechste Auflage, Januar 2011 Siebte Auflage, Oktober 2013 BARCODAT GmbH Robert-Bosch-Straße 13 72280 Dornstetten Tel. +49 74 43 / 96 01 - 0 [email protected] www.barcodat.com 2 2D-Code Fibel 3 Vorwort zur 7. Auflage Daten automatisch erfassen und in vielfältige Konzepte umset- zen gewinnt immer mehr an Bedeutung. Gefordert wird, mög- lichst große Datenmengen auf möglichst kleinen Flächen un- terzubringen. Diese sollen dann auch noch sicher gelesen und weiterverarbeitet werden können. In den späten 80ern begann man im Bereich Barcode, neue Wege zu gehen. Die ersten gestapelten (stacked) Barcodes wurden entwickelt, in den 90ern kamen die 2D- oder auch Matrix-Codes dazu. Inzwischen tummeln sich nach vorsichtigen Schätzungen über 50 Symbologien auf dem Markt. Durchge- setzt haben sich fast ausschließlich lediglich Data Matrix ECC 200 und PDF 417, die von der Industrie als Standard anerkannt werden. Diese Codes finden vielfältige Verwendung, z. B. in der Automobilzulieferindustrie (Odette-Label), im Gesundheits- wesen und anderen Bereichen. Die Entwicklung in Richtung größere Datenkapazitäten geht auch weiter. Hierzu werden zunehmend farbige Codes genutzt (HCCB, farbiger QR Code, farbiger Trillcode). Neu ist die Verwendung von 2D-Codes zur Verwendung mit Smartphones oder Webcam.
    [Show full text]
  • An Efficient Bar Code Recognition Engine for Enabling Mobile Services
    Research Collection Doctoral Thesis An Efficient Bar Code Recognition Engine for Enabling Mobile Services Author(s): Adelmann, Robert Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-6665246 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH Nr. 19721 An Efficient Bar Code Recognition Engine for Enabling Mobile Services A dissertation submitted to ETH Zurich for the degree of Doctor of Sciences presented by Robert Adelmann Diplom-Informatiker, Albert-Ludwigs-University Freiburg born October 01, 1977 citizen of Germany accepted on the recommendation of Prof. Dr. Friedemann Mattern, examiner Prof. Dr. Elgar Fleisch, co-examiner Prof. Dr. Michael Rohs, co-examiner 2011 2 | Abstract Abstract | 3 Abstract In the area of pervasive computing, mobile phones have evolved into attrac- tive development platforms that show considerable potential when it comes to bridging the often-cited gap between the real and virtual world. They are ubiquitous, highly mobile, provide significant computing power, and increas- ingly also offer an abundance of built-in sensors. With the general availability of smartphones and affordable data rates, consumers are beginning to use their mobile phones to interact with physical products found in stores in or- der to access product-related information and services. To support this inter- action, consumer-oriented mobile applications require a fast and convenient way to identify products. Even though Near Field Communication (NFC) and Radio-Frequency Identification (RFID) technology is very promising for that purpose, the widespread use of RFID tags on retail products remains unlikely for the next years.
    [Show full text]
  • Pervasive 2D Barcodes for Camera Phone Applications
    Edith Cowan University Research Online ECU Publications Pre. 2011 2007 Pervasive 2D Barcodes for Camera Phone Applications Hiroko Kato Edith Cowan University Keng T. Tan Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Computer Sciences Commons 10.1109/MPRV.2007.80 This is an Author's Accepted Manuscript of: Kato, H., & Tan, K. (2007). Pervasive 2D Barcodes for Camera Phone Applications. IEEE Pervasive Computing: Mobile and Ubiquitous Systems, 6(4), 76-85. Available here © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworks/1507 MOBILE COMPUTING Pervasive 2D Barcodes for Camera Phone Applications As 2D barcodes gain popularity, do we need to determine a global standard for camera phone applications? If so, which barcode is best? wo inventions have contributed to So, in a previous study, we evaluated six 2D bar- the commercial viability of perva- codes using eight criteria for standardization sive 2D barcodes: CyberCode1 and potential: omnidirectional symbol reading, sup- J-SH09. In 2000, Sony introduced port for low-resolution cameras, reading robust- CyberCode—one of the earliest uses ness under different lighting conditions, barcode Tof a 2D barcode for developing a visual tagging reading distance, error correction capability, secu- system.
    [Show full text]