Flut Und Hitze: Auswirkungen Extremer Klimaereignisse Auf Die

Total Page:16

File Type:pdf, Size:1020Kb

Flut Und Hitze: Auswirkungen Extremer Klimaereignisse Auf Die Flut und Hitze: Auswirkungen extremer Klimaereignisse auf die epigäische Arthropodenfauna (Araneae – Spinnen) ufernaher Lebensräume (Auen, Polder) des Inselrheins bei Mainz Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“ am Fachbereich Biologie der Johannes-Gutenberg-Universität in Mainz Patrick Guhmann geb. in Ludwigshafen am Rhein Mainz, im Dezember 2009 Tag der mündlichen Prüfung: 11.05.2010 Überall geht ein früheres Ahnen dem späteren Wissen voraus... (Alexander Freiherr von Humboldt) Lebenslauf Persönliche Daten: Vor- und Zuname: Patrick Guhmann Geburtstag: 25.05.1978 Geburtsort: Ludwigshafen am Rhein Wohnort: Sachsenstr. 5a, 67134 Birkenheide Staatsangehörigkeit: deutsch Familienstand: ledig Schulbildung: 1984 - 1988 Albertine-Scherer-Schule Birkenheide 1988 - 1996 Carl-Bosch-Gymnasium Ludwigshafen 1996 - 1999 Max-Planck-Gymnasium Ludwigshafen Wehrdienst: 1. Juli 1999 - 30. Sept. 2000 Bundesmarine Studium: Studienbeginn am 01.10.2000 im Studienfach Biologie an der Johannes-Gutenberg Universität Mainz Erfolgreicher Abschluss des Grundstudiums mit dem Vordiplom am 19.11.2002 an der Johannes-Gutenberg Universität Mainz Erfolgreicher Studienabschluss an der Johannes-Gutenberg Universität Mainz mit dem Diplom am 09.12.2005 Beginn der Promotion am 18.09.2006 an der Johannes-Gutenberg Universität Mainz Hiermit erkläre ich, die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt zu haben. Patrick Guhmann, Mainz, im Dezember 2009 Inhaltsverzeichnis 1. Einleitung 1 2. Material und Methoden 8 2.1 Untersuchungsgebiete 8 2.1.1 Geographische Lage 8 2.1.2 Bodenstruktur und Klima 10 2.1.3 Charakterisierung der Untersuchungsflächen 12 2.1.4 Wetter und Rheinpegelstände 37 2.2 Probennahmen 41 2.2.1 Fangmethodik 41 2.2.2 Termine der Probennahmen 50 2.2.3 Aufbereitung, Determination und Lagerung des Probenmaterials 50 2.3 Ökologische Charakterisierung der Spinnenarten 51 2.4 Versuche zur Submersionstoleranz der Spinnen 55 2.5 Versuche zum Flutverhalten der Spinnen 61 2.6 Statistische Auswertung 64 2.6.1 Beschreibende Statistik 64 2.6.2 Wertende Statistik 67 3. Ergebnisse 69 3.1 Hartholzaue NSG Sandlache 73 3.1.1 Bodenfallenfänge im Auwald 74 3.1.2 Stammeklektorenfänge im Auwald 79 3.1.3 Phänologie der Arten der Hartholzaue 85 3.1.4 Bodenfallenfänge am Waldrand und in der Verlandungszone 99 3.1.5 Auswirkungen von Flut und Hitze 102 3.2 Hochwasserschutzpolder Ingelheim 108 3.2.1 Bodenfallenfänge im Polder 108 3.2.2 Fänge mit dem Vakuumsauger 114 3.2.3 Phänologien der Arten des Polders 117 3.3 Rheininseln und Uferstandorte 125 3.3.1 Rheininseln 125 3.3.2 Uferstandorte 131 3.3.3 Faunenähnlichkeit der Rheininseln und Uferstandorte 138 3.4 Submersionstoleranz und Fluchtverhalten bei künstlicher Flutung 148 4. Diskussion 156 5. Zusammenfassung 222 6. Literaturverzeichnis 226 7. Anhang Abbildungsverzeichnis Abb. 1: Das Mainzer Becken und die angrenzenden Gebiete 8 Abb. 2: Lage der Untersuchungsgebiete im Mainzer Becken (Karte 1: Gaulsheim bis Sandlache) 9 Abb. 3: Lage der Untersuchungsgebiete im Mainzer Becken (Karte 2: Sandlache bis Mombacher Ufer) 9 Abb. 4: Klimadiagramm der Wetterstation Heidenfahrt 11 Abb. 5: Lage der Hartholzaue im NSG „Sandlache“ 13 Abb. 6: Biotoptypen der Hartholzaue NSG „Sandlache“ 14 Abb. 7: Hartholzaue NSG „Sandlache“ (Zone AB7) 15 Abb. 8: Blick auf das Leitwerk und die Mündung des Entwässerungskanals in den Rhein (Zonen AE2 und LA0) 15 Abb. 9: Hochwasserschutzdamm hinter der Hartholzaue NSG „Sandlache“ (Zonen HE4b und HE5) 16 Abb. 10: Lage des Hochwasserschutzpolders Ingelheim 17 Abb. 11: Biotoptypen des Hochwasserschutzpolders Ingelheim 18 Abb. 12: Kleines Flut-Tor des Polders Ingelheim 19 Abb. 13: Ökologischer Polder Ingelheim Zone HB0 19 Abb. 14: Ökologischer Polder Ingelheim Zone HA0 20 Abb. 15: Ökologischer Polder Ingelheim Zone LA0 + HB0 20 Abb. 16: Ökologischer Polder Ingelheim Zone LA 0 im April 2007 21 Abb. 17: Luftbild der Bodenfallen-Standorte Fulderaue-West (Fu/W) und -Ost (Fu/O) 23 Abb. 18: Blick vom Rhein auf die Fulderaue 23 Abb.19: Bodenfalle am Standort Fulderaue Ost (Fu/O) 24 Abb. 20: Blick in die Hartholzaue Fu/O 24 Abb. 21: Blick in die Weichholzaue Fu/W 25 Abb. 22: Bodenfalle am Standort Fu/W 25 Abb. 23: Freifläche auf der Fulderaue 25 Abb. 24: Luftbild des Bodenfallen-Standortes Winkeleraue (Wink) 26 Abb. 25: Blick von Rhein auf die Winklkeraue (Wink) 27 Abb. 26: Bodenfalle am Standort Wink in lichtem Unterbewuchs 27 Abb. 27: Bodenfalle in dichtem Unterbewuchs am Standort Wink 27 Abb. 28: Luftbild der Position des Bodenfallen-Standortes Gaulsheim (Gaul) 28 Abb. 29: Blick auf den Wald bei Gaulsheim aus westlicher Richtung 29 Abb. 30: Blick vom Wald auf das Rheinufer bei Gaulsheim 29 Abb. 31: Südlich an den Wald angrenzendes, tief gelegenes und mit Weiden bewachsenes Schilfröhricht 30 Abb. 32: Unmittelbar neben dem Wald im Osten gelegener Teich 30 Abb. 33: Luftbild der Position des Bodenfallen-Standortes Ingelheim (Ing) 31 Abb. 34: Weichholzaue bei Ingelheim 32 Abb. 35: Obststreifen begrenzen den Standort Ingelheim in nördlicher und südlicher Richtung 32 Abb. 36: Unmittelbar hinter dem Standort Ingelheim mündet im Nordwesten die Selz in den Rhein 33 Abb. 37: Luftbild der Position des Bodenfallen-Standortes Ingelheim „Große Heide“ (Ing/GH) 34 Abb. 38: Pappel-Gehölzstreifen Ingelheim „Große Heide“ 34 Abb. 39: Luftbild des Bodenfallen-Standortes Mombacher Ufer (Momb) 35 Abb. 40: Pappelstreifen am Mombacher Ufer mit Unterbewuchs aus Brennnesseln 36 Abb. 41: Buschwerk hinter dem Pappelstreifen, im Vordergrund sind Setzlinge von 36 Hartholzgewächsen zu sehen. Abb. 42: Abweichungen des Monatsmittels der Temperatur und Niederschlagsmenge der Wetterstation Heidenfahrt vom vieljährigen Mittel von Mai 2005 bis Mai 2008 39 Abb: 43: Pegelstände des Rheins bei Östrich von Januar 1998 bis Mai 2008 40 Abb. 44: Bodenfalle aus Kunststoffrohr (Ø 10 cm), Fanggefäß aus Glas mit Trichter (Ø 10 cm) (links), Regenschutz (mitte) und Bodenfalle aus Plastikgefäß mit Trichter (Ø 10 cm) (rechts) 43 Abb. 45: Bodenfalle (BF2) im Wald 43 Abb. 46: Bodenfalle (BF12) am inneren Waldrand 43 Abb. 47: Skizze einer Schwimmfalle 44 Abb. 48: Stammeklektor im Einsatz 46 Abb. 49: Positionierung der Bodenfallen und Stammeklektoren in der Hartholzaue NSG Sandlache 47 Abb. 50: Positionierung der Bodenfallen und des Vakuumsauger-Einsatzes im Polder Ingelheim 48 Abb. 51: Der Autor beim Spinnenfang mit dem Vakuumsauger 49 Abb. 52: Bau eines Versuchs-Rohrs aus einem Zentrifugalröhrchen und Parafingaze 55 Abb. 53: Glasleiste mit nummerierten Versuchs-Rohren 56 Abb. 54: Wolfsspinnen in den Versuchs-Rohren bereit zum Tauchgang 57 Abb. 55: Wolfsspinnen während eines Tauchgangs im belüfteten Aquarium (Winterflut-Simulation) 58 Abb. 56: Bau eines Versuchs-Röhrchens 59 Abb. 57: Glasplatte mit befestigten Stopfen und Versuchs-Röhrchen 59 Abb. 58: Versuchsaquarium (120cm x 50cm x 50cm) mit Bodenplatte und Stöcken 62 Abb. 59: schematische Aufsicht des Aquariums mit eingeteilten Abschnitten 62 Abb. 60: Struktur der Webspinnengemeinschaft der Bodenregion in der Hartholzaue NSG Sandlache 74 Abb. 61: Artendominanz der Webspinnen aus den Bodenfallenfängen der Hartholzaue NSG Sandlache 75 Abb. 62: Prozentuale Verteilung der am Boden gefangenen Hauptarten auf die Waldbereiche Ufer (schwarz), Mitte (grau) und Damm (weiß) bezogen auf den Gesamtfang der jeweiligen Spezies 76 Abb. 63: Verteilung der am Boden vorgefundenen Arten nach dem Schwerpunktvorkommen in Pflanzenformationen nach PLATEN et al. (1991, 1999) und KREUELS & PLATEN (2005) 77 Abb. 64: Verteilung der am Boden gefangenen Individuen nach dem Schwerpunktvorkommen in Pflanzenformationen nach PLATEN et al. (1991, 1999) und KREUELS & PLATEN (2005) 77 Abb. 65: Struktur der Webspinnengemeinschaft der Stammregion in der Hartholzaue 79 NSG Sandlache Abb. 66: Prozentualer Anteil an juvenilen Spinnen am Gesamtfang pro Familie 80 Abb. 67: Artendominanz der Webspinnen aus den Stammeklektorenfängen der Hartholzaue NSG Sandlache 81 Abb. 68: Prozentuale Verteilung der Hauptarten auf die Eklektoren SE 1 bis SE 6 (Balken von links nach rechts) bezogen auf den Gesamtfang der jeweiligen Spezies 82 Abb. 69: Verteilung der am Stamm vorgefundenen Arten nach dem Schwerpunktvorkommen in Pflanzenformationen nach PLATEN et al. (1991, 1999) und KREUELS & PLATEN (2005) 83 Abb. 70: Verteilung der am Stamm gefangenen Individuen nach dem Schwerpunktvorkommen in Pflanzenformationen nach PLATEN et al. (1991, 1999) und KREUELS & PLATEN (2005) 84 Abb. 71: Verlauf der Individuenanzahl der Bodenfallenfänge in der Hartholzaue NSG Sandlache im Untersuchungszeitraum vom 05.05.2005 bis zum 09.05.2008 85 Abb. 72: Verlauf der Artenanzahl der Bodenfallenfänge in der Hartholzaue NSG Sandlache im Untersuchungszeitraum vom 05.05.2005 bis zum 09.05.2008 86 Abb. 73: Diversität nach SHANNON (blau) und Evenness nach PILOU (rot) der Bodenfallenfänge in der Hartholzaue NSG Sandlache im Untersuchungszeitraum vom 05.05.2005 bis zum 09.05.2008 87 Abb. 74: Phänologie der dominanten und subdominanten Arten der Bodenregion der Hartholzaue NSG Sandlache vom 5.5.2005 bis zum 9.5.2008 88 Abb. 75: Prozentuale Verteilung der Männchen (schwarz), Weibchen (grau) und Jungtiere (weiß) von O. praticola am Waldboden und in der Stammregion 90 Abb. 76: Verlauf der Individuenanzahl der Stammeklektorenfänge in der Hartholzaue NSG Sandlache im Untersuchungszeitraum vom 05.05.2005 bis zum 09.05.2008 91 Abb. 77: Verlauf der Artenanzahl der Stammeklektorenfänge in der Hartholzaue NSG Sandlache im Untersuchungszeitraum
Recommended publications
  • TFG Lucas Fernandez Miriam.Pdf
    UNIVERSIDAD DE JAÉN Facultad de Ciencias Experimentales Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Ciencias Experimentales Alumno: Miriam Lucas Fernández Facultad de Julio, 2020 UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS EXPERIMENTALES GRADO EN BIOLOGÍA Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Miriam Lucas Fernández Julio, 2020 1 RESUMEN ………………………………………………………………………………3 2 INTRODUCCIÓN ................................................................................................ 4 2.1 Distribución y diversidad de las arañas ......................................................... 4 2.2 Morfología biológica ...................................................................................... 5 2.3 Biología reproductiva del orden Araneae ...................................................... 7 3 OBJETIVOS ........................................................................................................ 8 4 MATERIALES Y MÉTODOS ............................................................................... 9 5 FAMILIA LYCOSIDAE: Perspectiva mundial e ibérica ....................................... 9 5.1 Taxonomía .................................................................................................. 10 5.2 Identificación ............................................................................................... 12 5.3 Hábitat ........................................................................................................
    [Show full text]
  • Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
    1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro.
    [Show full text]
  • 22 3 259 263 Mikhailov Alopecosa.P65
    Arthropoda Selecta 22(3): 259263 © ARTHROPODA SELECTA, 2013 Tarentula Sundevall, 1833 and Alopecosa Simon, 1885: a historical account (Aranei: Lycosidae) Tarentula Sundevall, 1833 è Alopecosa Simon, 1885: èñòîðè÷åñêèé îáçîð (Aranei: Lycosidae) K.G. Mikhailov Ê.Ã. Ìèõàéëîâ Zoological Museum MGU, Bolshaya Nikitskaya Str. 6, Moscow 125009 Russia. Çîîëîãè÷åñêèé ìóçåé ÌÃÓ, óë. Áîëüøàÿ Íèêèòñêàÿ, 6, Ìîñêâà 125009 Ðîññèÿ. KEY WORDS: Tarentula, Alopecosa, nomenclature, synonymy, spiders, Lycosidae. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Tarentula, Alopecosa, íîìåíêëàòóðà, ñèíîíèìèÿ, ïàóêè, Lycosidae. ABSTRACT. History of Tarentula Sundevall, 1833 genus Lycosa to include the following 11 species (the and Alopecosa Simon, 1885 is reviewed. Validity of current species assignments follow the catalogues by Alopecosa Simon, 1885 is supported. Reimoser [1919], Roewer [1954a], and, especially, Bonnet [1955, 1957, 1959]): ÐÅÇÞÌÅ. Äàí îáçîð èñòîðèè ðîäîâûõ íàçâà- Lycosa Fabrilis [= Alopecosa fabrilis (Clerck, 1758)], íèé Tarentula Sundevall, 1833 è Alopecosa Simon, L. trabalis [= Alopecosa inquilina (Clerck, 1758), male, 1885. Îáîñíîâàíà âàëèäíîñòü íàçâàíèÿ Alopecosa and A. trabalis (Clerck, 1758), female], Simon, 1885. L. vorax?, male [= either Alopecosa trabalis or A. trabalis and A. pulverulenta (Clerck, 1758), according Introduction to different sources], L. nivalis male [= Alopecosa aculeata (Clerck, 1758)], The nomenclatorial problems concerning the ge- L. barbipes [sp.n.] [= Alopecosa barbipes Sundevall, neric names Tarantula Fabricius, 1793, Tarentula Sun- 1833, = A. accentuata (Latreille, 1817)], devall, 1833 and Alopecosa Simon, 1885 have been L. cruciata female [sp.n.] [= Alopecosa barbipes Sun- discussed in the arachnological literature at least twice devall, 1833, = A. accentuata (Latreille, 1817)], [Charitonov, 1931; Bonnet, 1951]. However, the arach- L. pulverulenta [= Alopecosa pulverulenta], nological community seems to have overlooked or ne- L.
    [Show full text]
  • Arachnids from the Greenhouses of the Botanical Garden of the PJ Šafárik University in Košice, Slovakia (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones)
    © Arachnologische Gesellschaft e.V. Frankfurt/Main; http://arages.de/ Arachnologische Mitteilungen / Arachnology Letters 53: 19-28 Karlsruhe, April 2017 Arachnids from the greenhouses of the Botanical Garden of the PJ Šafárik University in Košice, Slovakia (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones) Anna Šestáková, Martin Suvák, Katarína Krajčovičová, Andrea Kaňuchová & Jana Christophoryová doi: 10.5431/aramit5304 Abstract. This is the first detailed contribution on the arachnid fauna from heated greenhouses in the Botanical Garden of the P.J. Šafárik University in Košice (Slovakia). Over ten years 62 spider taxa in 21 families were found. Two spiders, Mermessus trilobatus (Emerton, 1882) and Hasarius adansoni (Audouin, 1826), were recorded in Slovakia for the first time. Another interesting record was the cellar spider Hoplopholcus sp. and a new locality for the exotic spiders Coleosoma floridanum Banks, 1900 and Triaeris stenaspis Simon, 1891 was discovered. Additionally, a short survey of other arachnids (except Acari) was done. A single specimen of a provisionally identifiable palpigrade species (cf. Eukoenenia florenciae), one harvestmen species, Opilio canestrinii (Thorell, 1876), and four pseudoscorpion species were recorded. The rare pseudoscorpion species Chthonius ressli Beier, 1956 was collected for the second time in Slovakia. Keywords: alien species, artificial ecosystems, faunistics, introduced species, new record Zusammenfassung. Spinnentiere aus Warmhäusern des Botanischen Gartens der PJ Šafárik Universität in Košice, Slowakei (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones). Hiermit wird der erste umfangreiche Beitrag zur Spinnentierfauna des Botanischen Gartens der P.J. Šafárik Universität in Košice (Slowakei) präsentiert. Während zehn Jahren wurden 62 Spinnentaxa aus 21 Familien nachgewiesen. Zwei Spinnenarten, Mermessus trilobatus (Emerton, 1882) und Hasarius adansoni (Audouin, 1826), werden erst- mals für die Slowakei gemeldet.
    [Show full text]
  • Ontogenetic Changes in the Spinning Fields of Nuctenea Cornuta and Neoscona Iheish Araneae, Araneidae)
    Yu. L. and J. A. Coddington. J990. Ontogenetic changes in the spinning fields of Nuctenea cornuta and Neoscona iheisH Araneae, Araneidae). J. Arachnol., 18:331-345. ONTOGENETIC CHANGES IN THE SPINNING FIELDS OF NUCTENEA CORNUTA AND NEOSCONA THEISI (ARANEAE, ARANEIDAE) Liuming Yu Div. of Biological Sciences University of Missouri Columbia, Missouri 65211 USA and Jonathan A. Coddington Department of Entomology National Museum of Natural History Smithsonian Institution, Washington, DC 20560 USA ABSTRACT The postembryonie development of spinning organs of Nuctenea cornuta (Clerck) and Neoscona theisi (Walckenaer) (Araneae, Araneidae), was studied with SEM. emphasizing first appearance of, and increase in. spigot and fusule complements. Our results suggest that these species may renew their spinning fields by two distinct methods during their ontogeny: spigots may be merely molted in situ like any other cuticular appendage; and/or spigots in one position are lost and "replaced" by an apparently new spigot in a new position. Some or all of each class of fusule (aciniform and pyrifornf) as well as major and minor ampullate spigots are replaced as well as merely molted. Flagelliform and aggregate spigots seem to be merely molted, never replaced. Evidence for these modes of replacement are the apparently vestigial spinning structures that persist from the previous instar, termed "nubbins" in the case of spigots, and "tartipores" in the case of fusules, as well as patterns in the increase in numbers of fusules and spigots. Spinneret ontogeny confirms Theridiidae and Tetragnathidae as phylogenetically derived taxa relative to Araneidae. INTRODUCTION Previous work on spinnerets has concerned histology (see Kovoor 1987 for a review), morphology (Glatz 1967, 1972, 1973; Mikulska 1966, 1967, 1969; Wasowska 1966, 1967, 1970, 1973; Coddington 1989), and function (Peters 1983.
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Distribution of Spiders in Coastal Grey Dunes
    kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof.
    [Show full text]
  • Spindlar Och Lockespindlar I Jordgubbsodlingar I Siidra Sverige SVEN Almquisl`
    Spindlar och lockespindlar i jordgubbsodlingar i siidra Sverige SVEN ALMQUISl` Almquist, S.: Spindlar och lockespindlar ijordgubbsodlingar i sridra Sverige [Spiders and harvestmen in strawberry fields in southern Sweden.l - Ent. Tidskr. 102: 159-162. Lund, Sweden 1981. ISSN 0013-886x. The spider and harvestman fauna of both insecticide sprayed and unsprayed strawberry fields in southern Sweden was determined. Samples, only from the plants, were taken with a sweep net at eight occasions during l0 June to 30 Aug. 1980. Eleven spider families with 42 species and 4 harvestman species were represented. Enoplognatha ovata was the most dominant spider - 56.5 % of the individuals. T'1 % of the individuals belonged to the web builders. The edges of the fields had a great number of animals compared with the central parts. There was a significant drop in spider and harvestman numbers after the spraying with an organophosphate insecticide, fenitrothion. Particularly the immatures showed to be susceptible to the chemical treatment. S. Almquist, Sorlabiicksgotan 45. S-216 2() Malmii, Swetlen. Spindlar utgё r en vasentlig del av led● urSfaunan namndens vlxtskyddslaboratoriunl, Kalinar,av i uppodlade omriden, Da de liksom lockespind― Carl― Axel Gertsson,som jag ar stort tack skyl― lar ar predatorer,kan de ha ett visstinflytande pa dig. skadettursbestindet i odlingarna Det rlnns dar_ 助uren ttngades med siaghiv stalld mOt vatte for publiccrat mcr an hundra unders6kningar av planta,som fё rsiktigt bttdcS in i den och kraft― spindclpopulationerna i olika grё dor runt onl i fullt skakades(Gertsson 1980).Nagra insam_ varlden. I Finland av Raatikainen & Huhta lingar under ener omkring plantorna fё rekom (1968).
    [Show full text]
  • The Study of Hidden Habitats Sheds Light on Poorly Known Taxa: Spiders of the Mesovoid Shallow Substratum
    A peer-reviewed open-access journal ZooKeys 841: 39–59 (2019)The study of hidden habitats sheds light on poorly known taxa... 39 doi: 10.3897/zookeys.841.33271 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum Enrique Ledesma1, Alberto Jiménez-Valverde1, Alberto de Castro2, Pablo Aguado-Aranda1, Vicente M. Ortuño1 1 Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Science, Faculty of Science, University of Alcalá, Alcalá de Henares, Madrid, Spain 2 Entomology Department, Aranzadi Science Society, Donostia - San Sebastián, Gipuzkoa, Spain Corresponding author: Enrique Ledesma ([email protected]); Alberto Jiménez-Valverde ([email protected]) Academic editor: P. Michalik | Received 22 January 2019 | Accepted 5 March 2019 | Published 23 April 2019 http://zoobank.org/52EA570E-CA40-453D-A921-7785A9BD188B Citation: Ledesma E, Jiménez-Valverde A, de Castro A, Aguado-Aranda P, Ortuño VM (2019) The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. ZooKeys 841: 39–59. https:// doi.org/10.3897/zookeys.841.33271 Abstract The scarce and biased knowledge about the diversity and distribution of Araneae species in the Iberian Peninsula is accentuated in poorly known habitats such as the Mesovoid Shallow Substratum (MSS). The aim of this study was to characterize the spiders inventory of the colluvial MSS of the Sierra de Guadar- rama National Park, and to assess the importance of this habitat for the conservation of the taxon. Thirty-three localities were selected across the high peaks of the Guadarrama mountain range and they were sampled for a year using subterranean traps specially designed to capture arthropods in the MSS.
    [Show full text]
  • Proceedings of the Meeting
    IOBC / WPRS Working Group „Pesticides and Beneficial Organisms“ OILB / SROP Groupe de Travail „Pesticides et Organismes Utiles“ Proceedings of the meeting at Berlin, Germany 10th –12th October 2007 Editors: Heidrun Vogt, Jean-Pierre Jansen, Elisa Vinuela & Pilar Medina IOBC wprs Bulletin Bulletin OILB srop Vol. 35, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-209-8 http://www.iobc-wprs.org Pesticides and Beneficial Organisms IOBC/wprs Bulletin Vol. 35, 2008 Preface This Bulletin contains the contributions presented at the meeting of the WG “Pesticides and Beneficial Organisms” held in Berlin, 10 - 12 October 2007.
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]
  • Hymenoptera, Ichneumonidae, Pimplinae), with the First Host Records of P
    JHR 39: 71–82 (2014)On the spider parasitoids Polysphincta longa Kasparyan and P. boops Tschek... 71 doi: 10.3897/JHR.39.7591 RESEARCH ARTICLE http://jhr.pensoft.net/ On the spider parasitoids Polysphincta longa Kasparyan and P. boops Tschek (Hymenoptera, Ichneumonidae, Pimplinae), with the first host records of P. longa Niclas R. Fritzén1,2, Mark R. Shaw3 1 Zoological Museum, University of Turku, FI-20014 Turku, Finland 2 Klemetsögatan 7 B7, FI-65100 Vasa, Finland 3 Hon. Research Associate, National Museums of Scotland, Edinburgh EH1 1JF, U.K. Corresponding author: Niclas R. Fritzén ([email protected]) Academic editor: Gavin Broad | Received 25 March 2014 | Accepted 20 June 2014 | Published 26 September 2014 http://zoobank.org/EBE387CC-FAD2-4BDC-8F86-8C94BB0DA161 Citation: Fritzén NR, Shaw MR (2014) On the spider parasitoids Polysphincta longa Kasparyan and P. boops Tschek (Hymenoptera, Ichneumonidae, Pimplinae), with the first host records of P. longa. Journal of Hymenoptera Research 39: 71–82. doi: 10.3897/JHR.39.7591 Abstract The rarely recorded Polysphincta longa is probably widely overlooked in Europe as a result of confusion with the morphologically similar P. boops. Characters for the separation of these species are given, and host and distribution records, largely based on recent fieldwork, are presented. Araneus angulatus is shown to be the hitherto unknown host of P. longa, while all rearing records for P. boops are from Araniella species. P. longa is reported as new to the fauna of the United Kingdom and P. boops as new to Estonia. Keywords Araniella, Araneus angulatus, cocoon, Poland, Finland, rearing Introduction The description of Polysphincta longa Kasparyan, 1976 was based on 10 females from Azerbaijan (holotype), Armenia and Primorsky Krai (Kasparyan 1976).
    [Show full text]