Three New Species of Kaempferia (Zingiberaceae) from Thailand and Laos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Inflammatory and Analgesic Activity of Ethanolic Extract of Kaempferia Rotunda Rhizome in Rats
ANTI-INFLAMMATORY AND ANALGESIC ACTIVITY OF ETHANOLIC EXTRACT OF KAEMPFERIA ROTUNDA RHIZOME IN RATS 1. INRODUCTION The inflammatory process is the response to an injurious stimulus. It can be evoked by a wide variety of noxious agents (e.g., infections, antibodies, or physical injuries)[1]. Although it is adefense mechanism that helps body toprotect itself against infection, burns,toxic chemicals, allergens or other noxiousstimuli, the complex events and mediatorsinvolved in the inflammatory reaction caninduce, maintain or aggravate many diseases [2]. Pain is a subjective experience, hard to define exactly, even though we all know what we mean by it. it is a direct response to an untoward event associated with tissue damage, such as injury, inflammation or cancer, but severe pain can arise independently of any obvious predisposing cause (e.g. trigeminal neuralgia) or persist long after the precipitating injury has healed (e.g. phantom limb pain). It can also occur as a consequence of brain or nerve injury (e.g. following a stroke or herpes infection [1]. The non-steroidal anti-inflammatory drugs (NSAID) are widely used to treat several inflammatory conditions, however the probability to cause many and severe adverse effects limit their use. In this regard, the traditional medicine continues to use medicinal plants as a substituent to allopathic medicines [3]. The traditional Indian system of medicine has avery long term history of usage in a number of diseases or disorders, but lacks safety and efficacy data for development of standardized safe and effective herbal formulations with proven scientific evidence provide an economical alternative in several diseases areas [7]. -
C-23 Phytochemical of Kaempferia Plant And
Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014 C-23 PHYTOCHEMICAL OF KAEMPFERIA PLANT AND BIOPROSPECTING FOR CANCER TREATMENT Sri Atun Chemistry education Faculty of Mathematical and Natural Science, Yogyakarta State University, Jl. Colombo No. 1 Yogyakarta, Indonesia, 55281 e-mail : [email protected] ABSTRACT Kaempferia genus is perennial member of the Zingiberaceae family and is cultivated in Indonesia and other parts of Southeast Asia. Number of studies has been conducted, providing information related to Kaempferia as antioxidant; antimutagenic; and chemopreventive agent. This paper reports some isolated compounds from this plant, biological activity, and bioprospecting for cancer treatment. Keyword: Cancer treatment; Kaempferia; Zingiberaceae INTRODUCTION Kaempferia is a genus, belong to family of Zingiberaceae. This plant grows in Southeast Asia, India, Sri Lanka, Indonesia, and Southem China. Kaempferia genus sinonim with Boesenbergia genus by Baker. This plant has 8 different botanical names which are Boesenbergia cochinchinensis (Gagnep.) Loes., Boesenbergia pandurata (Roxb.) Schltr., Curcuma rotunda L., Gastrochilus panduratus (Roxb.) Ridl., Gastrochilus rotundus (L.) Alston, Kaempferia cochinchinensis Gagnep., Kaempferia ovate Roscoe, Kaempferia galanga, Kaempferia rotunda, and Kaempferia pandurata Roxb nonetheless it is currently known as Boesenbergia rotunda (L.)Mansf (Tan Eng-Chong, et. al, 2012). The plants grown naturally in damp, shaded parts of the lowland or on hill slopes, as scattered plants or thickets. Economically important species among the plant families, the Zingiberaceae, which are perennial rhizomatous herbs, contain volatile oil and other important compounds of enormous medicinal values (Singh C.B., 2013). Phytochemical and biologycal activities of some species of Kaempferia Phytochemical and biologycal some species of plants of the genus Kaempferia reported by many researchers, among others: 1. -
Traditional Phytotherapy of Some Medicinal Plants Used by Tharu and Magar Communities of Western Nepal, Against Dermatological D
TRADITIONAL PHYTOTHERAPY OF SOME MEDICINAL PLANTS USED BY THARU AND MAGAR COMMUNITIES OF WESTERN NEPAL, AGAINST DERMATOLOGICAL DISORDERS Anant Gopal Singh* and Jaya Prakash Hamal** *'HSDUWPHQWRI%RWDQ\%XWZDO0XOWLSOH&DPSXV%XWZDO7ULEKXYDQ8QLYHUVLW\1HSDO ** 'HSDUWPHQWRI%RWDQ\$PULW6FLHQFH&DPSXV7ULEKXYDQ8QLYHUVLW\.DWKPDQGX1HSDO Abstract: (WKQRERWDQ\VXUYH\ZDVXQGHUWDNHQWRFROOHFWLQIRUPDWLRQIURPWUDGLWLRQDOKHDOHUVRQWKHXVHRIPHGLFLQDO SODQWVLQWKHWUHDWPHQWRIGLIIHUHQWVNLQGLVHDVHVVXFKDVFXWVDQGZRXQGVHF]HPDERLOVDEVFHVVHVVFDELHVGRJ DQGLQVHFWELWHULQJZRUPOHSURV\EXUQVEOLVWHUVDOOHUJ\LWFKLQJSLPSOHVOHXFRGHUPDSULFNO\KHDWZDUWVVHSWLF XOFHUVDQGRWKHUVNLQGLVHDVHVLQZHVWHUQ1HSDOGXULQJGLIIHUHQWVHDVRQRI0DUFKWR0D\7KHLQGLJHQRXV NQRZOHGJH RI ORFDO WUDGLWLRQDO KHDOHUV KDYLQJ SUDFWLFDO NQRZOHGJH RI SODQWV LQ PHGLFLQH ZHUH LQWHUYLHZHG LQ YLOODJHVRI5XSDQGHKLGLVWULFWRIZHVWHUQ1HSDODQGQDWLYHSODQWVXVHGIRUPHGLFLQDOSXUSRVHVZHUHFROOHFWHGWKURXJK TXHVWLRQQDLUHDQGSHUVRQDOLQWHUYLHZVGXULQJ¿HOGWULSV$WRWDORISODQWVSHFLHVRIIDPLOLHVDUHGRFXPHQWHGLQ WKLVVWXG\7KHPHGLFLQDOSODQWVXVHGLQWKHWUHDWPHQWRIVNLQGLVHDVHVE\WULEDO¶VDUHOLVWHGZLWKERWDQLFDOQDPH LQ ELQRPLDOIRUP IDPLO\ORFDOQDPHVKDELWDYDLODELOLW\SDUWVXVHGDQGPRGHRISUHSDUDWLRQ7KLVVWXG\VKRZHGWKDW PDQ\SHRSOHLQWKHVWXGLHGSDUWVRI5XSDQGHKLGLVWULFWFRQWLQXHWRGHSHQGRQWKHPHGLFLQDOSODQWVDWOHDVWIRUWKH WUHDWPHQWRISULPDU\KHDOWKFDUH Keywords 7KDUX DQG 0DJDU WULEHV7UDGLWLRQDO NQRZOHGJH 'HUPDWRORJLFDO GLVRUGHUV 0HGLFLQDO SODQWV:HVWHUQ 1HSDO INTRODUCTION fast disappearing due to modernization and the tendency to discard their traditional life style and gradual 7KH NQRZOHGJH -
Thai Zingiberaceae : Species Diversity and Their Uses
URL: http://www.iupac.org/symposia/proceedings/phuket97/sirirugsa.html © 1999 IUPAC Thai Zingiberaceae : Species Diversity And Their Uses Puangpen Sirirugsa Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand Abstract: Zingiberaceae is one of the largest families of the plant kingdom. It is important natural resources that provide many useful products for food, spices, medicines, dyes, perfume and aesthetics to man. Zingiber officinale, for example, has been used for many years as spices and in traditional forms of medicine to treat a variety of diseases. Recently, scientific study has sought to reveal the bioactive compounds of the rhizome. It has been found to be effective in the treatment of thrombosis, sea sickness, migraine and rheumatism. GENERAL CHARACTERISTICS OF THE FAMILY ZINGIBERACEAE Perennial rhizomatous herbs. Leaves simple, distichous. Inflorescence terminal on the leafy shoot or on the lateral shoot. Flower delicate, ephemeral and highly modified. All parts of the plant aromatic. Fruit a capsule. HABITATS Species of the Zingiberaceae are the ground plants of the tropical forests. They mostly grow in damp and humid shady places. They are also found infrequently in secondary forest. Some species can fully expose to the sun, and grow on high elevation. DISTRIBUTION Zingiberaceae are distributed mostly in tropical and subtropical areas. The center of distribution is in SE Asia. The greatest concentration of genera and species is in the Malesian region (Indonesia, Malaysia, Singapore, Brunei, the Philippines and Papua New Guinea) *Invited lecture presented at the International Conference on Biodiversity and Bioresources: Conservation and Utilization, 23–27 November 1997, Phuket, Thailand. -
Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae
plants Article Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae Dong-Mei Li *, Gen-Fa Zhu *, Ye-Chun Xu, Yuan-Jun Ye and Jin-Mei Liu Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (Y.-C.X.); [email protected] (Y.-J.Y.); [email protected] (J.-M.L.) * Correspondence: [email protected] (D.-M.L.); [email protected] (G.-F.Z.); Tel.: +86-20-875-93429 (D.-M.L.) Received: 6 February 2020; Accepted: 20 February 2020; Published: 24 February 2020 Abstract: Alpinia katsumadai (A. katsumadai), Alpinia oxyphylla (A. oxyphylla) and Alpinia pumila (A. pumila), which belong to the family Zingiberaceae, exhibit multiple medicinal properties. The chloroplast genome of a non-model plant provides valuable information for species identification and phylogenetic analysis. Here, we sequenced three complete chloroplast genomes of A. katsumadai, A. oxyphylla sampled from Guangdong and A. pumila, and analyzed the published chloroplast genomes of Alpinia zerumbet (A. zerumbet) and A. oxyphylla sampled from Hainan to retrieve useful chloroplast molecular resources for Alpinia. The five Alpinia chloroplast genomes possessed typical quadripartite structures comprising of a large single copy (LSC, 87,248–87,667 bp), a small single copy (SSC, 15,306–18,295 bp) and a pair of inverted repeats (IR, 26,917–29,707 bp). They had similar gene contents, gene orders and GC contents, but were slightly different in the numbers of small sequence repeats (SSRs) and long repeats. -
Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis
molecules Article Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis Dong-Mei Li *, Chao-Yi Zhao and Xiao-Fei Liu Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (C.-Y.Z.); [email protected] (X.-F.L.) * Correspondence: [email protected]; Tel.: +86-20-875-93429 Received: 27 December 2018; Accepted: 25 January 2019; Published: 29 January 2019 Abstract: Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. -
Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops . -
A Review on the Ethnomedicinal Uses, Phytochemistry and Pharmacology of Plant Species Belonging to Kaempferia L
Pharmaceutical Sciences Asia Pharm Sci Asia 2021; 48(1), 1-24 DOI:10.29090/psa.2021.01.19.070 Review A review on the ethnomedicinal uses, phytochemistry and pharmacology of plant species belonging to Kaempferia L. genus (Zingiberaceae) Ngoc Khanh Pham1,2,3*, Hoang Tuan Nguyen2, Quoc Binh Nguyen4 ABSTRACT 1 Institute of Natural Products Chemistry Kaempferia L. is a genus commonly distributed in Asian (INPC), Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam countries including China, India, Thailand, Myanmar, Malaysia, 2 Hanoi University of Pharmacy, Hoan Kiem, Indonesia, Laos, Cambodia and Vietnam, where these species are Hanoi, Vietnam popularly used as traditional medicines for different ailments 3 College of Pharmacy, Dongguk University, Goyang, Korea comprising infective diseases, wound infection, cough, pain and 4 Vietnam National Museum of Nature, digestion disorders on chemical composition of Kaempferia plants Vietnam Academy of Science and revealed the presence of natural compounds classified in Technology, Cau Giay, Hanoi, Vietnam monoterpenoids, diterpenoids, flavonoids, phenolic glycosides, cyclohexane oxide derivatives, diarylheptanoids and essential oil with *Corresponding author: various biological properties, which are valuable for discovery of new Ngoc Khanh Pham natural-derived therapeutic drugs and applications for the human [email protected] beings. This study is aimed to review the chemical, ethnobotanical and pharmacological properties of the plants belonging to Kaempferia genus growing in Asian countries and especially in South East Asia. 1. INTRODUCTION Kaempferia, is a medium - sized genus of about 60 plant species belonging to Zingiberaceae1 that is one of the major tropical plant families with many members commonly used as ornaments, 2 spices and as medicinal herbs . -
In-Vitro Anthelmintic Activity of Kaempferia Rotunda S
Research Article [Agrawal et al. , 2(9): Sep., 2011] ISSN: 0976-7126 INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES In-Vitro anthelmintic activity of Kaempferia rotunda S. Agrawal 1*, A. Bhawsar 2, P. Choudhary 2, S. Singh 2, N. Keskar 3and M. Chaturvedi 2 1, Technocrats Institute of Technology, Bhopal, (M.P.) - India 2, Central India Institute of Pharmacy, Indore, (M.P.) - India 3, Indore Institute of Science and Technology, Indore, (M.P.) - India Abstract Alcoholic extract from the rhizomes of Kaempferia rotunda Linn was investigated for their anthelmintic activity against Pheretima posthuma and Ascardia galli . Three concentrations (25, 50 and 100 mg/ml) of extract were studied in activity, which involved the determination of time of paralysis and time of death of worm. The alcoholic extract exhibited significant Anthelmintic activity at highest concentration of 100mg/ml Piperazine citrate in same concentration as that of extract was included as standard reference and distilled water as control. The Anthelmintic activity of alcoholic extract of Kaempferia rotunda has therefore been demonstrated for the first time. Key-Words: Anthelmintic activity, Ascardia galli, Kaempferia rotunda, Pheretima posthuma Introduction Material and Methods The plant Kaempferia rotunda Linn belongs to the Extraction of plant material family Zingiberaceae also named bhuichampaka The tuberous rhizomes of Kaempferia rotunda Linn (Sanskrit), bhuchampa (Hindi) , and blackhorm were collected during July-August from the various (English). It is a fragment aromatic herb with a regions of Sikkim Himalayan region and authenticated tuberous rhizome distributed throughout India .In some by Botanical survey of India, Gangtok, Sikkim. .The districts of Maharashtra the powder root is popular in dried, powdered rhizomes were subjected to soxhlet mumps and also said to be used in the form of poultice, extraction successively using methanol. -
16. KAEMPFERIA Linnaeus, Sp. Pl. 1: 2. 1753. 山柰属 Shan Nai Shu Rhizomes Fleshy, Tuberous; Roots Often Bearing Small Tubers
Flora of China 24: 368–370. 2000. 16. KAEMPFERIA Linnaeus, Sp. Pl. 1: 2. 1753. 山柰属 shan nai shu Rhizomes fleshy, tuberous; roots often bearing small tubers. Pseudostem short or obsolete. Leaves 1 to few; ligule usually small or absent; petiole short; leaf blade suborbicular to filiform, sometimes variegated or abaxially purple. Inflorescences terminal on pseudostems or on separate shoots arising from rhizomes (when appearing before pseudostems), capitate, spirally few to many flow- ered; bracts 1-flowered; bracteoles small, apically 2-lobed or sometimes 2-cleft to base. Calyx tubular, split on 1 side, apex unequally 2- or 3-toothed. Corolla tube equaling or much longer than calyx; lobes spreading or reflexed, lanceolate, subequal. Lateral stami- nodes petaloid. Labellum usually white or lilac, sometimes marked with different color near base, showy, apically 2-lobed to 2-cleft to base. Filament very short or absent; connective extended into crest exserted from throat of flower, entire or 2-cleft. Ovary 3-loc- uled. Capsule globose or ellipsoid; pericarp thin. Seeds subglobose to ellipsoid; aril lacerate. About 50 species: tropical Asia; six species (one endemic) in China. 1a. Inflorescences on separate shoots arising from rhizomes, appearing before pseudostems. 2a. Labellum wholly lilac, apically 2-cleft to base, lobes without yellow lines at center ............................................. 1. K. rotunda 2b. Labellum white or purple, apically 2-lobed for 1/3–1/2 its length, lobes with yellow lines at center. 3a. Labellum white, apically 2-lobed for ca. 1/3 its length; calyx ca. 2.5 cm ........................................................ 2. K. candida 3b. Labellum purple, more deeply colored at center, apically 2-lobed for ca. -
Safety Assessment of Tuberous Rhizome of Kaempferia Rotunda L
Global Journal of Pharmacology 8 (2): 128-139, 2014 ISSN 1992-0075 © IDOSI Publications, 2014 DOI: 10.5829/idosi.gjp.2014.8.2.82187 Safety Assessment of Tuberous Rhizome of Kaempferia rotunda L. By Acute and 28-days Repeated Dose Toxicity Studies 11S. Sini, P.G. Latha, 2T.V. Anilkumar, 1S.R. Suja, 3Gopan Raj, 4K.B. Rameshkumar, 1S. Shyamal, 1V.J. Shine, 1G.I. Anuja, 11P. Shikha, N.M. Krishnakumar, 1G. Sreejith and 1S. Rajasekharan 1Ethnomedicine and Ethnopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, Kerala, India 2Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India 3Department of Chemistry, Sree Narayana College, Punalur, Kollam 691305, Kerala, India 4Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute Palode, Thiruvananthapuram 695562, Kerala, India Abstract: The acute and 28-days repeated dose toxicity studies of the ethanolic extract of rhizome, tuber, rhizome fractions and the essential oil of Kaempferia rotunda L. were performed on Wistar albino rats to substantiate the tribal claims of its use as a safe wound healing and anti-ulcerogenic drug. The extracts, the essential oil and the rhizome fractions (petroleum ether, chloroform, methanol, aqueous and the acetone-chloroform) of K.rotunda were found to be non toxic or non corrosive in the acute dermal toxicity studies when tested topically on the skin of the animal and were safe for use up to 20 % (w/w) /day. The individual acute oral toxicity of the extracts and fractions were carried out at a single test dose of 2000 mg/kg p.o. -
Boigu Island (Wilson 2005; Schaffer 2010)
PROFILE FOR MANAGEMENT OF THE HABITATS AND RELATED ECOLOGICAL AND CULTURAL RESOURCE VALUES OF MER ISLAND January 2013 Prepared by 3D Environmental for Torres Strait Regional Authority Land & Sea Management Unit Cover image: 3D Environmental (2013) EXECUTIVE SUMMARY Mer (Murray) Island is located in the eastern Torres Strait. It occupies a total area of 406 ha, and is formed on a volcanic vent which rises to height of 210m. The stark vent which dominates the island landscape is known as ‘Gelam’, the creator of the dugong in Torres Strait Island mythology. The volcanic vent of Mer is unique in an Australian context, being the only known example of a volcanic vent forming a discrete island within Australian territory. The vegetation on Mer is controlled largely by variations in soil structure and fertility. The western side of the island, which is formed on extremely porous volcanic scoria or ash, is covered in grassland due to extreme soil drainage on the volcano rim. The eastern side, which supports more luxuriant rainforest vegetation and garden areas, occupies much more fertile and favourably drained basaltic soil. A total of six natural vegetation communities, within five broad vegetation groups and two regional ecosystems are recognised on the island, representing approximately 2% of regional ecosystems recorded across the broader Torres Strait Island landscape. The ecosystems recorded are however unique to the Eastern Island Group, in particular Mer and Erub, and have no representation elsewhere in Queensland. There are also a number of highly significant culturally influenced forest types on the island which provide a window into the islands past traditional agricultural practices.