United States Patent 15) 3,669,956 Borck Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 15) 3,669,956 Borck Et Al United States Patent 15) 3,669,956 Borck et al. (45) June 13, 1972 54) 4-SUBSTITUTEDAMNO 260/472, 260/516, 260/518 R, 260/518 A, 260/519, PHENYACETIC ACDS AND 260/556 AR, 260/556 B, 260/558 S, 260/558 A, DERVATIVES THEREOF 260/559 T, 260/559 A, 260/.571, 260/574, 260/.575, (72 Inventors: Joachim Borck; Johann Dahin; Volker 424/244, 424/246, 424/248, 424/250, 424/267, Koppe; Josef Kramer; Gustav Shorre; J. 424/270, 424/272, 424/273, 424/274, 424/304, W. Hermann Hovy; Ernst Schorscher, all 424/309, 424/32 i, 424/324, 424/330 of Darmstadt, Germany 51) int. Cl. ........................................................ C07d 41/04 58) Field of Search........ 260/294X,293.4, 293.47, 239 BF, 73) Assignee: E. Merck A. G., Darmstadt, Germany 260/326.3, 294.3 E (22) Filed: July 22, 1968 56) References Cited (21) Appl. No.: 746,326 UNITED STATES PATENTS (30) Foreign Application Priority Data 3,252,970 5/1966 Huebner................................ 260/239 July 22, 1967 Germany.............................. M 74881 3,385,852 5/1968 Casadio................................. 260/246 Jan. 8, 1968 Germany... ....M 76850 OTHER PUBLICATIONS Feb. 23, 1968 Germany...... ...M 77363 March 1, 1968 Germany.............................. M 77429 Norman et al., J. Chen. Soc. 1963, (Nov.), 5431-6. (52) U.S. Cl................... 260/239 BF, 260/239 A, 260/239 E, Primary Examiner-Henry R. Jiles 260/243 B, 260/246, 260/247. 1, 260/247.2 R, Assistant Examiner-G. Thomas Todd 260/247.2 A, 260/247.2 B, 260/247.5 R, 260/247.7 Attorney-Millen, Raptes & White A, 260/247.7 H, 260/268 C, 260/268 PH, 260/293.62, 260/293.64, 260/293, 67,260/293.68, 57) ABSTRACT 260/293.69, 260/293.71, 260/293.72, 260/293.73, 260/293.75, 260/293.76, 260/293.77, 260/293.79, As a group of extraordinarily active anti-inflammatory agents, 260/293.81, 260/293.82, 260/293.83, 260/293.84, 4-aminophenyl acetic acids substituted at the nitrogen and 260/306.7, 260/306.8 R, 260/307 F, 260/307 H, phenyl positions, and derivatives thereof, e.g., 3-chloro-4- 260/309.7, 260/326.3, 260/326.5 S, 260/326.5 SF, piperidino-o-methyl acetic acid, 3-methyl-4-piperidino-a- 260/326.5 E, 260/326.5 G, 260/326.5 L, 260/326.5 methyl acetic acid, and 4-piperidino-naphthyl acetic acids. N, 260/.465 D, 260/465 E, 260/470,260/471 R, 144 Claims, No Drawings 3,669,956 2 4-SUBSTITUTEDAMNO-PHENYLACETCACDS AND A, A and As represent H; an alkyl or cycloalkyl group DERVATIVESTEREOF which optionally contains one to two C-C unsaturated bonds and/or an OH group and/or an NH group andlor This invention relates to substituted 4-aminophenylacetic which is interrupted by O once to three times and/or in acids and the derivatives thereof. 5 terrupted by Y and/or which is branched, this group being According to an object of one aspect of this invention, there of respectively up to 12 carbon atoms; As-NA; phenyl are provided a novel group of chemical compounds as well as or aralkyl of a total of six to 14 carbon atoms (the processes for their manufacture. residues A, A and As being identical or different); According to an object of another aspect of this invention, A is alkylene of up to six carbon atoms, optionally inter there are provided novel pharmaceutical compositions for ef 10 rupted by O or Y; fecting anti-inflammatory, and other therapeutic activities. As is alkylene of one to six carbon atoms; Upon further study of the specification and claims, other Bois an anion, preferably Hals; objects and advantages of the present invention will become B is OH, esterified OH, OM or Hal; apparent. 15 B is alkyl of one to four carbon atoms substituted by B; To attain these compounds, there are provided compounds D is COO or CONA; of the following formula: E is = NR, e S, s NOR O FN-NRR, R R5 Hal is Cl, Br or I; R R L is a group oxidizable to a carboxyl group, such as, ad N 20 vantageously, CHO, CHOH, CH, 1-alkenyl, 1-alkynyl, R N --AR 1,2-dihydroxyalkyl or 1-oxoalkyl of preferably up to four R3 Rs 1. carbonatoms, respectively; M represents metal, especially alkali metal, preferably Li, In the above formula and in all formulas set out herein Cod-R,Zn-R or MgHal; below, the variables have the following meanings, unless 25 M, is H or metal, advantageously alkali or alkaline earth otherwise expressly indicated in individual formulas: metal, preferably Na or K; R, and R being identical or different, represent H or alkyl Q represents Hor M; of one to four carbon atoms; X represents a residue that can be split off with M as MX, R represents F, Hal, CFs, OH, NO, CN, R, OR, SH, SR, and is preferably Hal or a sulfuric or sulfonic acid residue, NR-COR, N.R.R., SONRR, SOR or SOR; and 30 X is a residue substitutable by an amino group, especially under special circumstances, Rs can represent H; Hal, OH, acyloxy, a secondary or tertiary amino group, a R. R. and Rs represent H; with the provisions that one each sulfuric acid residue, an alkylsulfuric acid residue of these residues can also represent F, Hal, R, OR or (wherein the alkyl group is of preferably one to four car SR; and the residues R and Rs together can also bonatoms), or a sulfonic acid residue; represent a tetramethylene optionally containing one to 35 X, represents Hal, OH, acyloxy or alkoxy of preferably two double bonds; the latter special case wherein R and respectively up to four carbon atoms, a sulfuric acid R represent tetramethylene optionally containing one to residue or a sulfonic acid residue; two double bonds, Rs can also be H and Rs can represent X is OH, SH, O-acyl or S-acyl of preferably up to four car H, F, Hal, CF, OH, NO, CN, R, OR, SR, NR-COR, bonatoms each, or X; NRR, SONRR, SOR or SOR; 40 X, and Xs represent each ORs, SRs, NRRe, or together R and Rs represent linear or branched alkyl of one to seven also O or E (the residues X and Xs being identical or dif carbon atoms, or together a linear or branched alkylene ferent); chain of two to 14 carbon atoms which chain can op Xs represents a residue which can be split off with Has HXa, tionally be interrupted by an oxygen or sulfur atom, the especially Hal; or OH, SH or NH optionally substituted residue RandR, being identical or different; 45 by alkyl, acyl, alkysulfonyl or alkoxysulfonyl of respec R represents alkyl of one to four carbon atoms; tively up to four carbon atoms; Ro is acyl (preferably acetyl) or a hydrocarbon residue X and X represent Hal or OH optionally substituted by al (preferably methyl or phenyl); kyl, acyl, alkylsulfonyl or alkoxysulfonyl of preferably R represents 50 respectively up to four carbon atoms (the residues X and Xs being identical or different); Y represents S, NH, N-alkyl of one to six carbon atoms op tionally substituted by OH, N-phenyl or N-phenyl-alkyl of - . seven to 10 carbon atoms; R represents alkylidene of one to seven carbon atoms; and 55 R R Rs represents alkyl of one to seven carbon atoms, wherein the residues R and/or Rs can contain one or more addi 2 is R7RN u tional C = C (double) bonds or CEC (triple) bonds, and wherein these residues can also be connected with 60 R. R. each other in the form of a ring directly or by way of an oxygen or sulfur atom; R R. R is an optionally substituted hydrocarbon residue Z is -CRR-A (preferably alkyl of one to four carbon atoms); Rs and Rs represent H or an optionally substituted 65 3 Ri hydrocarbon residue (preferably alkyl of one to four car bon atoms or phenyl; the residues Ris and Rus being R R. identical or different); 2 is RRN -CRR-e-Z-CRR R is a -(CH)-CHXXs group which can, if desired, contain an additional double bond; a -(CH)-X group 70 R R. which can, if desired, contain one or two additional dou ble bonds; or 3-butenyl, 3-butynyl, 1,3-butadienyl or 1 It has been discovered that substituted 4-aminophenylacetic buten-3-ynyl; acids and the derivatives thereof, of Formula 1, as well as the A represents COOA, CONAAs, CONA, C( = NOH)OH salts thereof with acids or bases, the quaternary ammonium or C(OR)s; 75 salts thereof and the anhydrides thereof exhibit dutstanding 0.1040 O3S 3,669,956 3 4. anti-inflammatory activities, as well as good analgesic and Kaolin edema test: anti-pyretic activities, all the compounds being also physiolog Ann. N.Y. Acad. Sci. 86,263 (1960). ically compatible. In addition, these compounds also exhibit Generally, the compounds of the present invention can be bacteriostatic, bactericidal, antiprotozoal, diuretic, blood used in all instances where it is customary to employ Ibufenac sugar-lowering, choleretic, cholesterol-level-lowering, and 5 or Indomethacin. More specifically, diseases such as in radiation-protective effects. flammatory states of the joints and the muscular system, rheu Thus, the following effect relationships resulted with matic fever, chronic rheumatic arthritis, periarthritis, and neu respect to several of the compounds of the present invention ritis, can successfully be treated with the compounds of this in as compared, for example, with the compound bufenac (p- vention.
Recommended publications
  • Chapter 21 the Chemistry of Carboxylic Acid Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second.
    [Show full text]
  • Controlled Substances in Mexico • Fraction I
    INTER-AMERICAN DRUG ABUSE CONTROL COMMISSION C I C A D SIXTY-SECOND REGULAR SESSION OEA/Ser.L/XIV.2.62 December 13 - 15 , 2017 CICAD/doc.2343/17 Washington, D.C. 12 December 2017 Original: Español NEW TRENDS AND EMERGING CHALLENGES IN THE INTERNATIONAL CONTROL OF CHEMICAL PRECURSORS, SYNTHETIC DRUGS AND NEW PSYCHOACTIVE SUBSTANCES CRIMINAL INVESTIGATION AGENCY “SCIENCE AT THE SERVICE OF JUSTICE” New trends and emerging challenges in the international control of chemical precursors, synthetic drugs and new psychoactive substances 62 Regular Session of CICAD Washington D.C. December 13-15, 2017 Background Amphetamine-type stimulants have positioned themselves as one of the main drugs of consumption in the world. To maintain the supply of consumer demand, the production and trafficking of methamphetamine has evolved, always seeking to evade the regulation implemented by the authorities to contain the proliferation of drugs. Source: United Nations Office against Drugs and Crime, World Report on Drugs 2017 Legal framework International: United Nations Convention on Convention against Psychotropic Illicit Traffic in 1961 Substances Narcotic Drugs and Psychotropic Substances Single Convention on Narcotic Drugs 1961. 1971 1988 Amended by the 1972 Protocol. Legal framework International: Precursors and chemical substances frecuently used in the illicit manufacture of narcotic drugs and psychotropic substances I II 1. N-acetylanthranilic acid 1. Acetone 2. Phenylacetic acid 2. Anthranilic acid 3. Acetic anhydride 3. Hydrochloric acid 4. Acetic anhydride 4. Sulphuric acid 5. Ephedrine 5. Ethyl ether 1988 6. Ergometrine 6. Methylethylketone 7. Ergotamine 7. Piperidine 8. Alpha-phenylacetoacetonitrile 8. Toluene 9. 1-Phenyl-2-Propanone 10. Isosafrole 11.
    [Show full text]
  • Functionalized Hybrid Silicones – Catalysis, Synthesis and Application
    Technische Universität München Fakultät für Chemie Fachgebiet Molekulare Katalyse Functionalized Hybrid Silicones – Catalysis, Synthesis and Application Sophie Luise Miriam Putzien Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. E. Kühn 2. Univ.-Prof. Dr. O.Nuyken (i.R.) Die Dissertation wurde am 16.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.03.2012 angenommen. The following dissertation was prepared between April 2009 and March 2012 at the Chair of Inorganic Chemistry, Department of Molecular Catalysis of the Technische Universität München. I would like to express my deep gratitude to my academic supervisor Prof. Dr. Fritz E. Kühn for his support and confidence and the freedom of scientific research. This work was supported by a research grant from the BASF Construction Chemicals GmbH, Trostberg, Germany. Acknowledgement I would like to express my sincere gratitude to Prof. Dr. Oskar Nuyken and Dr. Eckhart Louis for their ongoing support and their undamped enthusiasm for my research topic. They supported this work with many inspiring discussions, new ideas and critical questions. I thank the BASF Construction Chemicals GmbH, Trostberg, for giving me the opportunity to work on an industrial cooperation project. Especially, I would like to thank Dr. Simone Klapdohr and Dr. Burkhard Walther, who accompanied this project from the industrial perspectice, for their support and the nice time I had in Trostberg during the application technological tests.
    [Show full text]
  • Understanding the Thermochemical Conversion of Biomass to Overcome Biomass Recalcitrance Kwang Ho Kim Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance Kwang Ho Kim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Kim, Kwang Ho, "Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance" (2015). Graduate Theses and Dissertations. 14382. https://lib.dr.iastate.edu/etd/14382 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance by Kwang Ho Kim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Agricultural and Biosystems Engineering Program of Study Committee: Robert C. Brown, Co-Major Professor Xianglan Bai, Co-Major Professor Kurt Rosentrater Matthew Darr Brent Shanks Young Jin Lee Iowa State University Ames, Iowa 2015 Copyright © Kwang Ho Kim, 2015. All rights reserved. ii DEDICATION Dedicated to my family for their unwavering support
    [Show full text]
  • Methamphetamine Synthesis L ______I ______D ______ Most Commonly Synthesized E Controlled Substance ______3 ______8
    S ___________________________________ l Introductions and Welcome ___________________________________ i d ___________________________________ e Course coordinator’s welcome ___________________________________ Instructor introductions 1 Participant introductions ___________________________________ ___________________________________ ___________________________________ S ___________________________________ Administrative Information l ___________________________________ i ___________________________________ Breaks and start times d Restroom location ___________________________________ Eating or smoking in classroom e ___________________________________ ___________________________________ 2 ___________________________________ S ___________________________________ Course Overview & Objectives l ___________________________________ i ___________________________________ Purpose: Train first responders to… d Recognize a clandestine drug lab… ___________________________________ Recognize drug lab paraphernalia… e Implement appropriate actions. ___________________________________ ___________________________________ 3 ___________________________________ S ___________________________________ Drug Lab Definitions l ___________________________________ i ___________________________________ Lab—General Definition d Covert or secret illicit operation ___________________________________ Combination of apparatus & chemicals e Used to make controlled substances. ___________________________________ ___________________________________ 4 ___________________________________
    [Show full text]
  • Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers
    Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers • Ethers (R–O–R’): – Organic derivatives of water, having two organic groups bonded to the same oxygen atom © 2016 Cengage Learning 2 NAMES AND PROPERTIES OF ETHERS 3 Nomenclature: Common Names • Simple ethers are named by identifying two organic substituents and adding the word ether – Name the groups in alphabetical order – Symmetrical: Use dialkyl or just alkyl © 2016 Cengage Learning 4 Nomenclature: IUPAC Names • The more complex alkyl group is the parent name • The group with the oxygen becomes an alkoxy group © 2016 Cengage Learning 5 Nomenclature: Cyclic Ethers (Heterocycles) • Heterocyclic: Oxygen is part of the ring. O • Epoxides (oxiranes) H2C CH2 O • Oxetanes • Furans (Oxolanes) O O • Pyrans (Oxanes) O O O • Dioxanes O © 2013 Pearson Education, Inc. 6 Epoxide Nomenclature • Name the starting alkene and add “oxide” © 2013 Pearson Education, Inc. 7 Epoxide Nomenclature • The oxygen can be treated as a substituent (epoxy) on the compound • Use numbers to specify position • Oxygen is 1, the carbons are 2 and 3 • Substituents are named in alphabetical order © 2013 Pearson Education, Inc. 8 Properties of Ethers • Possess nearly the same geometry as water – Oxygen atom is sp3-hybridized – Bond angles of R–O–R bonds are approximately tetrahedral • Polar C—O bonds © 2013 Pearson Education, Inc. 9 Properties of Ethers: Hydrogen Bond • Hydrogen bond is a attractive interaction between an electronegative atom and a hydrogen atom bonded to another electronegative atom • Ethers cannot hydrogen bond with other ether molecules, so they have a lower boiling point than alcohols • Ether molecules can hydrogen bond with water and alcohol molecules • They are hydrogen bond acceptors © 2013 Pearson Education, Inc.
    [Show full text]
  • Pph3-Assisted Esterification of Acyl Fluorides with Ethers Via C
    Article PPh3‐Assisted Esterification of Acyl Fluorides with Ethers via C(sp3)–O Bond Cleavage Accelerated by TBAT Zhenhua Wang 1, Xiu Wang 1 and Yasushi Nishihara 2,* 1 Graduate School of Natural Science and Technology, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan; [email protected]‐u.ac.jp (Z.W.); [email protected]‐u.ac.jp (X.W.) 2 Research Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan * Correspondence: ynishiha@okayama‐u.ac.jp; Tel.: +81‐86‐251‐7855; Fax: +81‐86‐251‐7855 Received: 23 May 2019; Accepted: 26 June 2019; Published: 28 June 2019 Abstract: We describe the (triphenylphosphine (PPh3)‐assisted methoxylation of acyl fluorides with cyclopentyl methyl ether (CPME) accelerated by tetrabutylammonium difluorotriphenysilicate (TBAT) via regiospecific C–OMe bond cleavage. Easily available CPME is utilized not only as the solvent, but a methoxylating agent in this transformation. The present method is featured by C–O and C–F bond cleavage under metal‐free conditions, good functional‐group tolerance, and wide substrate scope. Mechanistic studies revealed that the radical process was not involved. Keywords: Acyl fluorides; cyclopentyl methyl ether (CPME); tetrabutylammonium difluorotriphenysilicate (TBAT); carbon‐oxygen bond cleavage; esterification 1. Introduction The C−O bond cleavage in ethers is one of the most fundamental transformations in organic synthesis and has been widely applied in the manufacturing of fine chemicals as well as the synthesis of polyfunctional molecules [1–5]. Particularly, the preparation and degradation of ethers have often been considered important synthetic strategies for the protection/deprotection of hydroxyl groups.
    [Show full text]
  • SYNTHESIS, SPECTROSCOPIC INVESTIGATION and IMMOBILIZATION of COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except Where Reference
    SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Moses G. Gichinga Certificate of approval: ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Peter Livant Susanne Striegler, Chair Associate Professor Assistant Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ David Stanbury S. Davis Worley Professor Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ George Flowers Dean Graduate School SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillments of the Requirements for the Degree of Doctor of Philosophy Auburn, AL August 10, 2009 SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions at their expense. The author reserves all publication rights. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Signature of Author ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Date of Graduation iii VITA Moses Gichinga, son of Joseph Gichinga and Hannah Wangui, was born on June 2, 1980 in Kenya. He graduated with a Bachelor of Science degree in Chemistry in May, 2004 from University of Nairobi, Kenya. In the fall of 2004, he entered the Graduate School in the Department of Chemistry and Biochemistry at Auburn University. In January of 2005, he joined the laboratory of Dr. Susanne Striegler and is currently pursuing a Ph.D. degree. iv DISSERTATION ABSTRACT SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G.
    [Show full text]
  • Final Thesis
    Chemical Analysis of Vitamin A and Analogs Honors Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Honors Research Distinction in Chemistry” in the undergraduate colleges of The Ohio State University by Davidson A. Sacolick The Ohio State University April 2013 Project Advisor: Dr. Robert W. Curley, Jr., College of Pharmacy 2 ABSTRACT Vitamin A plays an important role in growth, vision, epithelial differentiation, immune function, and reproduction. However, vitamin A metabolites like retinoic acid (RA) pose many toxic effects in the body. Certain retinoid drugs like N-(4-hydroxyphenyl)retinamide (4-HPR) have shown promise treating epithelial cancers. Further research into the nonhydrolyzable analog, 4-hydroxybenzylretinone (4-HBR), have determined that it is just as potent but without any of the residual toxicity associated with RA. A new synthetic method for this drug was created, using a para-methyl benzyl phenyl ether as protecting group for the terminal phenol. Synthetic efficiency was also increased by the development of a larger scale synthesis for the expensive starting retinoid, retinal. This new method can successfully synthesize 4-HBR at a lower cost with good yields. This is useful for future chemical and biological studies of the retinoid. 3 ACKNOWLEDGEMENTS I would first like to thank my research advisor, Dr. Robert Curley, for giving me the opportunity to research in his lab for the past two years. His knowledge and experience have helped develop not only my laboratory technique, but also my critical thinking and intellect. My research experience has been fantastic, due in large part to Dr. Curley’s patient and constant guidance.
    [Show full text]
  • Fundamentals of Biomass Pretreatment by Fractionation
    10 Fundamentals of Biomass Pretreatment by Fractionation Poulomi Sannigrahi1,2 and Arthur J. Ragauskas1,2,3 1 BioEnergy Science Center, Oak Ridge, USA 2 Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, USA 3 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, USA 10.1 Introduction With the rise in global energy demand and environmental concerns about the use of fossil fuels, the need for rapid development of alternative fuels from sustainable, non-food sources is now well acknowledged. The effective utilization of low-cost high-volume agricultural and forest biomass for the production of transporta- tion fuels and bio-based materials will play a vital role in addressing this concern [1]. The processing of lignocellulosic biomass, especially from mixed agricultural and forest sources with varying composition, is currently significantly more challenging than the bioconversion of corn starch or cane sugar to ethanol [1,2]. This is due to the inherent recalcitrance of lignocellulosic biomass to enzymatic and microbial deconstruction, imparted by the partly crystalline nature of cellulose and its close association with hemicellulose and lignin in the plant cell wall [2,3]. Pretreatments that convert raw lignocellulosic biomass to a form amenable to enzy- matic degradation are therefore an integral step in the production of bioethanol from this material [4]. Chemi- cal or thermochemical pretreatments act to reduce biomass recalcitrance in various ways. These include hemicellulose removal or degradation, lignin modification and/or delignification, reduction in crystallinity and degree of polymerization of cellulose, and increasing pore volume. Biomass pretreatments are an active focus of industrial and academic research efforts, and various strategies have been developed.
    [Show full text]
  • Regioselective Synthesis of Cellulose Esters
    Regioselective Synthesis of Cellulose Esters Xueyan Zheng Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry Kevin J. Edgar, Chair Judy S. Riffle, Co-Chair Maren Roman S. Richard Turner June 24, 2014 Blacksburg, VA Keywords: Cellulose; cellulose derivatives; regioselectivity; protection/deprotection; deacylation; mechanism; structure-property relationship Copyright © 2014 by Xueyan Zheng Regioselective Synthesis of Cellulose Esters Xueyan Zheng Abstract Cellulose is an extraordinarily abundant polymer that can be harvested and purified from trees and other renewable sources. Cellulose derivatives have been widely used as coatings, optical films, fibers, molded objects, and matrices for controlled release. The properties of cellulose derivatives are not only affected by the degree of substitution, but also by the position of substitution. In order to establish the structure-property relationships of cellulose derivatives, it is of great importance to impart regioselectivity into functionalized cellulose. However, regioselective substitution of cellulose is extremely challenging, especially in the synthesis of regioselectively functionalized cellulose esters due to the unstable ester bond under aqueous alkaline or acid conditions. In this dissertation, the main objective is to search for new tools to synthesize regioselectively substituted cellulose esters, to understand how structural changes impact properties and performance, and thus to design cellulose derivatives delivering high performance. Several strategies for regioselective preparation of cellulose esters are discussed in detail. The obtained regioselective cellulose esters were fully characterized analytically. Tetrabutylammonium fluoride (TBAF) has been recently discovered to catalyze regioselective deacylation of cellulose esters of the secondary alcohols at C-2 and C-3.
    [Show full text]
  • Phenylacetic Acid in Human Body Fluids: High Correlation Between Plasma and Cerebrospinal Fluid Concentration Values
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.45.4.366 on 1 April 1982. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1982;45:366-368 Short report Phenylacetic acid in human body fluids: high correlation between plasma and cerebrospinal fluid concentration values M SANDLER,* CRJ RUTHVEN,* BL GOODWIN,* A LEES,t GM STERNt From the Bernhard Baron Memorial Research Laboratories and Institute of Obstetrics and Gynaecology, Queen Charlotte's Hospital,* and the Department of Neurology, University College Hospital, Londont SUMMARY In a group of six Parkinsonian patients and 13 "controls" with non-Parkinsonian neurological disease, there was a high correlation between both free and conjugated phenylacetic acid concentrations in plasma and cerebrospinal fluid taken at about the same time. This compound is the major metabolite of phenylethylamine, the production of which may be disturbed in a number of neuropsychiatric illnesses. Thus plasma measurements might be employed clinically to provide an estimate ofcentral changes in phenylethylamine economy. A small but significantly higher proportion Protected by copyright. of conjugated phenylacetic acid was present in the plasma (but not cerebrospinal fluid) of Parkin- sonians compared with controls. Phenylacetic acid is the major metabolite of phenyl- been expected between plasma and cerebrospinal ethylamine, a "trace amine"'l which has become the (CSF) compartments. focus of considerable clinical attention in recent With clinical interest being predominantly centred
    [Show full text]