1 Chapter 17 Ethers, Epoxides, Sulfides Ethers Are Much Less
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 21 the Chemistry of Carboxylic Acid Derivatives
Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second. -
United States Patent 15) 3,669,956 Borck Et Al
United States Patent 15) 3,669,956 Borck et al. (45) June 13, 1972 54) 4-SUBSTITUTEDAMNO 260/472, 260/516, 260/518 R, 260/518 A, 260/519, PHENYACETIC ACDS AND 260/556 AR, 260/556 B, 260/558 S, 260/558 A, DERVATIVES THEREOF 260/559 T, 260/559 A, 260/.571, 260/574, 260/.575, (72 Inventors: Joachim Borck; Johann Dahin; Volker 424/244, 424/246, 424/248, 424/250, 424/267, Koppe; Josef Kramer; Gustav Shorre; J. 424/270, 424/272, 424/273, 424/274, 424/304, W. Hermann Hovy; Ernst Schorscher, all 424/309, 424/32 i, 424/324, 424/330 of Darmstadt, Germany 51) int. Cl. ........................................................ C07d 41/04 58) Field of Search........ 260/294X,293.4, 293.47, 239 BF, 73) Assignee: E. Merck A. G., Darmstadt, Germany 260/326.3, 294.3 E (22) Filed: July 22, 1968 56) References Cited (21) Appl. No.: 746,326 UNITED STATES PATENTS (30) Foreign Application Priority Data 3,252,970 5/1966 Huebner................................ 260/239 July 22, 1967 Germany.............................. M 74881 3,385,852 5/1968 Casadio................................. 260/246 Jan. 8, 1968 Germany... ....M 76850 OTHER PUBLICATIONS Feb. 23, 1968 Germany...... ...M 77363 March 1, 1968 Germany.............................. M 77429 Norman et al., J. Chen. Soc. 1963, (Nov.), 5431-6. (52) U.S. Cl................... 260/239 BF, 260/239 A, 260/239 E, Primary Examiner-Henry R. Jiles 260/243 B, 260/246, 260/247. 1, 260/247.2 R, Assistant Examiner-G. Thomas Todd 260/247.2 A, 260/247.2 B, 260/247.5 R, 260/247.7 Attorney-Millen, Raptes & White A, 260/247.7 H, -
Functionalized Hybrid Silicones – Catalysis, Synthesis and Application
Technische Universität München Fakultät für Chemie Fachgebiet Molekulare Katalyse Functionalized Hybrid Silicones – Catalysis, Synthesis and Application Sophie Luise Miriam Putzien Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. E. Kühn 2. Univ.-Prof. Dr. O.Nuyken (i.R.) Die Dissertation wurde am 16.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.03.2012 angenommen. The following dissertation was prepared between April 2009 and March 2012 at the Chair of Inorganic Chemistry, Department of Molecular Catalysis of the Technische Universität München. I would like to express my deep gratitude to my academic supervisor Prof. Dr. Fritz E. Kühn for his support and confidence and the freedom of scientific research. This work was supported by a research grant from the BASF Construction Chemicals GmbH, Trostberg, Germany. Acknowledgement I would like to express my sincere gratitude to Prof. Dr. Oskar Nuyken and Dr. Eckhart Louis for their ongoing support and their undamped enthusiasm for my research topic. They supported this work with many inspiring discussions, new ideas and critical questions. I thank the BASF Construction Chemicals GmbH, Trostberg, for giving me the opportunity to work on an industrial cooperation project. Especially, I would like to thank Dr. Simone Klapdohr and Dr. Burkhard Walther, who accompanied this project from the industrial perspectice, for their support and the nice time I had in Trostberg during the application technological tests. -
Understanding the Thermochemical Conversion of Biomass to Overcome Biomass Recalcitrance Kwang Ho Kim Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance Kwang Ho Kim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Kim, Kwang Ho, "Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance" (2015). Graduate Theses and Dissertations. 14382. https://lib.dr.iastate.edu/etd/14382 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance by Kwang Ho Kim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Agricultural and Biosystems Engineering Program of Study Committee: Robert C. Brown, Co-Major Professor Xianglan Bai, Co-Major Professor Kurt Rosentrater Matthew Darr Brent Shanks Young Jin Lee Iowa State University Ames, Iowa 2015 Copyright © Kwang Ho Kim, 2015. All rights reserved. ii DEDICATION Dedicated to my family for their unwavering support -
Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers
Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers • Ethers (R–O–R’): – Organic derivatives of water, having two organic groups bonded to the same oxygen atom © 2016 Cengage Learning 2 NAMES AND PROPERTIES OF ETHERS 3 Nomenclature: Common Names • Simple ethers are named by identifying two organic substituents and adding the word ether – Name the groups in alphabetical order – Symmetrical: Use dialkyl or just alkyl © 2016 Cengage Learning 4 Nomenclature: IUPAC Names • The more complex alkyl group is the parent name • The group with the oxygen becomes an alkoxy group © 2016 Cengage Learning 5 Nomenclature: Cyclic Ethers (Heterocycles) • Heterocyclic: Oxygen is part of the ring. O • Epoxides (oxiranes) H2C CH2 O • Oxetanes • Furans (Oxolanes) O O • Pyrans (Oxanes) O O O • Dioxanes O © 2013 Pearson Education, Inc. 6 Epoxide Nomenclature • Name the starting alkene and add “oxide” © 2013 Pearson Education, Inc. 7 Epoxide Nomenclature • The oxygen can be treated as a substituent (epoxy) on the compound • Use numbers to specify position • Oxygen is 1, the carbons are 2 and 3 • Substituents are named in alphabetical order © 2013 Pearson Education, Inc. 8 Properties of Ethers • Possess nearly the same geometry as water – Oxygen atom is sp3-hybridized – Bond angles of R–O–R bonds are approximately tetrahedral • Polar C—O bonds © 2013 Pearson Education, Inc. 9 Properties of Ethers: Hydrogen Bond • Hydrogen bond is a attractive interaction between an electronegative atom and a hydrogen atom bonded to another electronegative atom • Ethers cannot hydrogen bond with other ether molecules, so they have a lower boiling point than alcohols • Ether molecules can hydrogen bond with water and alcohol molecules • They are hydrogen bond acceptors © 2013 Pearson Education, Inc. -
Pph3-Assisted Esterification of Acyl Fluorides with Ethers Via C
Article PPh3‐Assisted Esterification of Acyl Fluorides with Ethers via C(sp3)–O Bond Cleavage Accelerated by TBAT Zhenhua Wang 1, Xiu Wang 1 and Yasushi Nishihara 2,* 1 Graduate School of Natural Science and Technology, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan; [email protected]‐u.ac.jp (Z.W.); [email protected]‐u.ac.jp (X.W.) 2 Research Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan * Correspondence: ynishiha@okayama‐u.ac.jp; Tel.: +81‐86‐251‐7855; Fax: +81‐86‐251‐7855 Received: 23 May 2019; Accepted: 26 June 2019; Published: 28 June 2019 Abstract: We describe the (triphenylphosphine (PPh3)‐assisted methoxylation of acyl fluorides with cyclopentyl methyl ether (CPME) accelerated by tetrabutylammonium difluorotriphenysilicate (TBAT) via regiospecific C–OMe bond cleavage. Easily available CPME is utilized not only as the solvent, but a methoxylating agent in this transformation. The present method is featured by C–O and C–F bond cleavage under metal‐free conditions, good functional‐group tolerance, and wide substrate scope. Mechanistic studies revealed that the radical process was not involved. Keywords: Acyl fluorides; cyclopentyl methyl ether (CPME); tetrabutylammonium difluorotriphenysilicate (TBAT); carbon‐oxygen bond cleavage; esterification 1. Introduction The C−O bond cleavage in ethers is one of the most fundamental transformations in organic synthesis and has been widely applied in the manufacturing of fine chemicals as well as the synthesis of polyfunctional molecules [1–5]. Particularly, the preparation and degradation of ethers have often been considered important synthetic strategies for the protection/deprotection of hydroxyl groups. -
Changxia Yuan Baran Group Meeting 4/5/2014 Commercial Available
Baran Group Meeting Changxia Yuan 4/5/2014 Commercial available peroxides* Inorganic peroxides Na2O2 CaO2 Li2O2 BaO2 Ni2O3 NiO2 xH2O H2O2(30%) ZnO2 NaBO3 4H2O MgO2 TbO2 SrO2 Na2CO3 1.5H2O sodium calcium lithium barium nickel nickel(II) hydrogen zinc sodium magnesium terbium Stronium sodium peroxide peroxide peroxide peroxide peroxide peroxide peroxide peroxide perborate peroxide peroxide peroxide percarbonate $ 109/100g $ 27/100g $ 32 /50g $ 146/500g $ 106/5g hydrate $ 350/4L $ 75/1kg tetrahydrate complex $ 30/1g $ 38/100g $ 91/ 2.5kg $ 40/ 1g $94/1kg $ 40/250g + (NH4)2S2O8 Na2S2O8 K2S2O8 2K2SO5 KHSO4 K2SO4 5[Bu4N ] SO5] HSO4] SO4] ammonium sodium potassium Oxone® OXONE® persulfate persulfate persulfate monopersulfate tetrabutylammonium salt $ 39/ 100g $ 87/ 2.5kg $ 70/ 500g compound $ 156/ 25g $ 60/ 1kg Organic peroxides-1 O CO3H O HOO tBu O O OO O CH2(CH2)9CH3 O H3C(H2C)9H2C O O tBu tBuOOH urea H2O2 BzOOBz OOH O Cl O tert-Butyl Urea Benzoyl mCPBA Cyclobutane 2-Butanone tert-Butyl Lauoyl hydroperoxide hydrogen peroxide $ 81/100g maloyl peroxide peroxide peroxide solution (5-6 M) peroxide $ 92/500g peroxide $ 129/500mL $ 134/1L $ 81/100g $ 47/25mL $ 88/ 250g $ 100/1g Cl O O Cl O Me Me O Me Me Me Me O O O O Ph O O O O OO O Me O Me O Ph O O tBu Cl Ph Me Me Me O Me 2,4-Dichlorobenzoyl Cl tert-Butyl tert-Butyl peracetate solution, Dicumyl tert-Butylperoxy 1,1-Bis(tert-amylperoxy)cyclohexane peroxide, 50% in DBP peroxybenzoate 50% in mineral spirits peroxide 2-ethylhexyl solution, 80% in mineral spirits $ 59/100g $ 86/500mL $ 77/500mL $ 123/500g -
SYNTHESIS, SPECTROSCOPIC INVESTIGATION and IMMOBILIZATION of COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except Where Reference
SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Moses G. Gichinga Certificate of approval: ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Peter Livant Susanne Striegler, Chair Associate Professor Assistant Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ David Stanbury S. Davis Worley Professor Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ George Flowers Dean Graduate School SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillments of the Requirements for the Degree of Doctor of Philosophy Auburn, AL August 10, 2009 SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions at their expense. The author reserves all publication rights. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Signature of Author ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Date of Graduation iii VITA Moses Gichinga, son of Joseph Gichinga and Hannah Wangui, was born on June 2, 1980 in Kenya. He graduated with a Bachelor of Science degree in Chemistry in May, 2004 from University of Nairobi, Kenya. In the fall of 2004, he entered the Graduate School in the Department of Chemistry and Biochemistry at Auburn University. In January of 2005, he joined the laboratory of Dr. Susanne Striegler and is currently pursuing a Ph.D. degree. iv DISSERTATION ABSTRACT SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. -
Final Thesis
Chemical Analysis of Vitamin A and Analogs Honors Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Honors Research Distinction in Chemistry” in the undergraduate colleges of The Ohio State University by Davidson A. Sacolick The Ohio State University April 2013 Project Advisor: Dr. Robert W. Curley, Jr., College of Pharmacy 2 ABSTRACT Vitamin A plays an important role in growth, vision, epithelial differentiation, immune function, and reproduction. However, vitamin A metabolites like retinoic acid (RA) pose many toxic effects in the body. Certain retinoid drugs like N-(4-hydroxyphenyl)retinamide (4-HPR) have shown promise treating epithelial cancers. Further research into the nonhydrolyzable analog, 4-hydroxybenzylretinone (4-HBR), have determined that it is just as potent but without any of the residual toxicity associated with RA. A new synthetic method for this drug was created, using a para-methyl benzyl phenyl ether as protecting group for the terminal phenol. Synthetic efficiency was also increased by the development of a larger scale synthesis for the expensive starting retinoid, retinal. This new method can successfully synthesize 4-HBR at a lower cost with good yields. This is useful for future chemical and biological studies of the retinoid. 3 ACKNOWLEDGEMENTS I would first like to thank my research advisor, Dr. Robert Curley, for giving me the opportunity to research in his lab for the past two years. His knowledge and experience have helped develop not only my laboratory technique, but also my critical thinking and intellect. My research experience has been fantastic, due in large part to Dr. Curley’s patient and constant guidance. -
Towards the Synthesis of the Emestrin Family of Natural Products
Towards the Synthesis of the Emestrin Family of Natural Products Brendan James Fisher ORCID: 0000-0003-0090-8951 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2018 School of Chemistry Bio21 Institute The University of Melbourne Abstract A Cope rearrangement of a vinyl pyrrole epoxide (397) was utilised to form the dihydrooxepino[4,3-b]pyrrole core (398) of the emestrin family of natural products which involved the first examples of the dearomatisation of pyrrole in this type of rearrangement. It was found that an electron withdrawing ester substituent on the C2 position of the epoxide was essential for the [3,3]-rearrangement to occur. The vinyl pyrrole epoxides were synthesised in an efficient manner by a vinylogous Darzens reaction. Density functional calculations showed lower transition state energies for Cope rearrangements of epoxides with C2 esters when compared to the unsubstituted substrates which agreed with the observed experimental results. Silyl substituted vinyl bromide esters also participated in the Darzens reactions to give the desired vinyl pyrrole epoxides in good to excellent yields. Only the triethoxysilyl vinyl epoxide 313c underwent Cope rearrangement to provide the fully substituted emestrin core dihydrooxepine. The anion derived from an aryl bromosulfone did not give the Darzens product but underwent a previously unobserved stereoselective trimerization to afford the cyclohexene 343 as a single diastereoisomer. A mechanistic rationale involving SN2’ additions, [3,3]-Cope rearrangements and a stereoselective intramolecular conjugate addition was proposed and this was supported by density functional theory (DFT) calculations. A four-step total synthesis of biaryl ether natural product violaceic acid (11) is described. -
The Role of Acid Catalysis in the Baeyer−Villiger Reaction. a Theoretical Study Robert D
Article pubs.acs.org/joc The Role of Acid Catalysis in the Baeyer−Villiger Reaction. A Theoretical Study Robert D. Bach* Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States *S Supporting Information ABSTRACT: Quantum mechanical calculations at the B3LYP/6- 311+G(d,p) level have examined the overall mechanism of the Baeyer−Villiger (BV) reaction with peroxyacetic acid. A series of reactions that include both the addition step and the subsequent alkyl group migration step included ketones, acetone, t-butyl methyl ketone, acetophenone, cyclohexyl methyl ketone, and cyclohexyl phenyl ketone. The combined data suggested that the first step for addition of the peroxyacetic acid oxidation catalyst to the ketone carbonyl to produce the Criegee or tetrahedral intermediate is rate- limiting and has activation barriers that range from 38 to 41 kcal/ mol without the aid of a catalyst. The rate of addition is markedly reduced by the catalytic action of a COOH functionality acting as a donor−acceptor group affecting both its proton transfer to the ketone CO oxygen in concert with transfer of the OOH proton to the carboxylic acid carbonyl. The second or alkyl group migration step has a much reduced activation barrier, and its rate is not markedly influenced by acid catalysis. The rate of both steps in the BV reaction is greatly influenced by the catalytic action of very strong acids. ■ INTRODUCTION mechanism for addition to the carbonyl group and how the hemiperacetal hydrogen migrates to the carboxylate to produce The Baeyer−Villiger (BV) reaction remains an important the final products, an ester functionality and a carboxylic acid. -
Reactions of Alkenes
Reactions of Alkenes Alkenes generally react in an addition mechanism (addition – two new species add to a molecule and none leave) R X Y X Y H R R R H Have already observed using a H+ electrophile (HBr or H+/H2O) that a carbocation intermediate is generated which directs the regiochemistry Whenever a free carbocation intermediate is generated there will not be a stereopreference due to the nucleophile being able to react on either lobe of the carbocation (already observed this with SN1 and E1 reactions) Br Br H+ H H3C Br CH2CH3 Obtain racemic mixture of this regioisomer Reactions of Alkenes There are three questions to ask for any addition reaction R X Y X Y H R R R H 1) What is being added? (what is the electrophile?) 2) What is the regiochemistry? (do the reagents add with the X group to the left or right?) 3) What is the stereochemistry? (do both the X and Y groups add to the same side of the double bond or opposite sides?) All of these questions can be answered if the intermediate structure is known Reactions of Alkenes Dihalogen compounds can also react as electrophiles in reactions with alkenes Possible partial bond structures + !+ Br Br ! Br Br Br !+ or Br !+ More stable partial positive charge Experimentally it is known, however, that rearrangements do nor occur with Br2 addition -therefore free carbocations must not be present The large size and polarizability of the halogen can stabilize the unstable carbocation With an unsymmetrical alkene, however, both bonds to the bromine need not be equivalent Called a “Bromonium” ion