Thermodynamics of Formation of Some Compgunds with The

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics of Formation of Some Compgunds with The A merican M ineralogist, Volume60, pages249-256, 1975 Thermodynamicsof Formationof SomeCompgunds with the Pseudobrookite-Structureand of the FeTirOu-TisOrSolid SolutionSeries AtexnNone Nnvnorsrv Departmentof Chemistry,Arizona State Uniuersity, Tempe,Arizona 8528i, Abstract The enthalpyof formationof pseudobrookite,FezTiO,, from FezOaand TiO, is found by oxidemelt solutioncalorimetry to be *1.99 * 0.15kcal mol-r (*8.33 + 0.63KJ mol-'). Thermochemicaldata for other compoundswith the pseudobrookitestructure are summarized.Pseudobrookites are "entropy- stabilized"high temperaturephases with partiallydisordered cation distributions. Their decompositionat low temperaturesto assemblagesofbinary oxides(for,{rg+Ba+Ou pseudobrookites) or to assemblagesof phasesofilmenite and rutile structure(for A'+ Bzn+Oopseudobrookites) reflects the balancebetween en- dothermicenthalpies of formationfrom theseassemblages and the substantialpositive entropies of for- mation arisingfrom the substitutionaldisorder. A simplecation distribution model is appliedto the dis- tribution of iron between4c (A) and8/(A) sitesin the FeTizOu-TisO'system, from which high Ti'Oo is predictedto havethe cation distribution(Ti'+0 o6Tie+0 go)A(Ti'+o.e6Ti3+' o.)eOu. Interchange enthalpies (or freeenergies) for the reactions:Mg'+r * Tin+e= Mg'*g + Tio+A,Fe'+A + Til+B = Fe2+s* Tia+r,and Tis+A+ Ti'+a : Tio+B+ Ti'*a are +8.6, + 13,and * l0 kcalmol-r respectively(36.0, 54, and 42 KJ mol-', respectively).MgTtOc exhibitssomewhat disordered pseudobrookite structures derived from a "normal" structurestable at low temperature,while TirOoand probablyalso FezTiOu, AlrTios, and GazTiOuhave somewhatdisordered structures derived from an "inversestructure stable at low temperature.Thus Ti'+ appearsto havea strongpreference for the 8/(A) sitesin all thesecompounds ofpseudobrookite struc- ture. Introduction with 4 A82o' formula units in the unit cell, all the cationsare in octahedralcoordination. There are two Studyof lunar basaltshas resulted in considerable kinds of octahedralsites, with fourfold (4c or,4 sites) interestin mineralswith the pseudobrookitestruc- and eightfold (8/ or B sites)multiplicity. Three oc- ture. These include FezTiOs (pseudobrookite), tahedra share edgesto form units which are then FeTLOu(ferropseudobrookite), MgTirOu (karrooite), linkedtogether into doublechains as building blocks (Mg,Fe)TirOu(armalcolite), and solid solutionsin the for the structure. In monoclinic pseudobrookites FerTiOu-TirOuseries. The purposeof this paper,is such as TirOuand the titanium-richmembers of the threefold:(a) to presentnew high temperaturesolu- TirOu-FeTizOusolid solutionseries (Grey and Ward tion calorimetricdata for the enthalpyof formation (1973),the 8/ (B) site is further split into two non- of FezTiOs,(b) to reviewthe existingthermochemical equivalentsites. For armalcolite,Lind and Housley data for ternary oxides with the pseudobrookite (1972)give the following metal oxygendistances for structure, and (c) to correlatethe thermodynamic the 4c and 8/ octahedra-8f, 2.061, 1.845,l'993, and structural data and to apply a simple thermo- 2.172,1.938, and 1.938A;4c, 1.960,2.191,l'960, dynamic model to the cation distributions in 2.191.2.030.and 2.030A. Thus,both octahedraare MgTirOo, FeTizOu,and the FeTizOu-TirOusolid distorted.The averagebond lengthin 8/is 1.992+ solution series. 0.1l4(s.d.) A; thatin 4c is 2.072t 0'096A' Thusthe The PseudobrookiteStructure ,4 site is somewhatlarger and slightly lessdistorted Early structure determinationswere by Pauling than the B site. For the presentpaper' the most im- (1930) and Hamelin (1958). Recently,Lind and portant feature of the pseudobrookitestructure is Housley(1972) have performed structure refinements that the two sitesare sufficiently similar to allow con- on syntheticsingle crystalsof karrooite, MgTirOu, siderablesubstitutional disorder of the cationsoc- and armalcolite,Mgo.uFeo.6Ti2ou. In the orthorhom- cupyingthem. As in the spinels,we canrecognize two bic pseudobrookitestructure, spacegroup Bbmm, limiting distributions,the normal,(A)4"(B)BtOo and 249 250 ALEXANDRA NAVROTSKY TnsI-e l. Enthalpy of Solution of Pseudobrookite in of FezTiOu,although its molar enthalpy of solution 3NarO.4MoO, at 692"C was fortuitously very close to zero, so that the heat effects actually measured were always less than 0. 1 FerTiO, callobs I H"oa(kcal mol-}) calorie in magnitude.The resultsof five solution ex- (in mg) periments(Table 1)give a meanof -0.10 t 0.10kcal mol-1. One may then calculate,for 46.07 -0. 050 -o.26 the reaction: 86.06 -0. 020 -0. 06 FerO, (hematite)+ TiO" (rutile) : Fe"TiOs LL4.46 !0. 000 r0. 00 (pseudobrookite) (l) 43.60 -0. 015 -0. 08 49,25 -0. 0r9 -0. 09 AHo"uu= +1.99+ 0.15kcal mol-' Discussionof the Stability of FerTiOu AV = -0.10!0.10 and other Compoundswith the PseudobrookiteStructure the inverse,(B)k(AB)ErOu, and we cananticipate that, Fe"TiOu especially at high temperature,intermediate dis- tributions will be the rule rather than the exception. The calorimetric data show the enthalpy of forma- pseudobrookite CalorimetricDetermination of the tion of from hematite plus rutile to positiue. Enthalpy of Formation of be This suggests that the ternary oxide is Pseudobrookiteil 692 + 2"C stabilized at high temperatures by a positive entropy of formation and should becomeunstable relative to FerTiOu was prepared by ignition of a stoi- the binary oxides at low temepratures. Such decom- chiometricmixture of dried BakerAnalyzed Reagent position has indeed been found by Haggerty and FerO, (hematite) and TiO, (rutile) for a total of Lindsley (1970),with an equilibrium temperatureof 72 hours in platinum a cruciblein air at 1350.C, 565 + 15"C. We can calculatethe entropy of the for- with four intermediategrindings of the sample.At mation reaction since at 838 K its free energy change the end of eachfiring, the samplewas cooled relative- is zero. ly rapidly in air. The powder X-ray diffraction +=tllo pattern of the product showedit to be singlephase ASo: : +2.4 cal K-' mol-' (2) pseudobrookite. 838 The high temperatureCalvet-type twin micro- The free energy of formation of FerTiOu from calorimeter and the sample assemblyfor measur- FerO, and TiO, is then given by the equation: ing the heat of solutionof a solid oxide samplein a molten oxide solvent have been describedpre- AGo: + 1990- 2.4T (T inK) (3) viously (Navrotskyand Kleppa, 1968).Navrotsky and Kleppa(1967a,1968) have shown that a sodium Thisequation gives AG' with an estimatederror of t molybdatemelt of thecomposition 3NarO-4MoO, is 300cal in the range700-1200 K, sincethe difference a suitable solvent for the calorimetricstudy of in heat capacity between reactantsand products anatase,rutile, Tia+-containingspinels, FerOr, and shouldbe small at high temperaturesand one can ZnFerOn.A similar calorimeterand essentiallyiden- neglect any changes in cation distribution with tical conditionswere usedin the presentwork. In temperature.To our knowledge,no enthalpyor free eachsolution experiment, 50-100 mg of solutewas energy of formation data have been reported for dissolvedin l0- I 5 g of solventat 692L 2oC.Two ex- FerTiOr. Heat content and standardentropy values periments each on a-Fe2Osand TiO, (rutile) fell aretabulated by Robieand Waldbaum (1968) and by within experimentalerror of the valuesof the heatof Kelley(1960). From thesetabulations, the entropyof solution of these oxides reported previously by formation of pseudobrookitefrom hematite and Navrotsky and Kleppa (1968).Accordingly, those rutile is given in Table 2. The agreementwith our values,*2.38 kcal mol-l and -0.49 + 0.05 kcal value at 858 K is excellentbut, we believe,may be mol-'were used in the presentwork for the fortuitous. The heat capacityand heat contentdata enthalpiesof solution of rutile and hematite,respec- are to be questionedon two counts. First, the tively.rNo difficulty wasencountered in the solution calculatedentropy of formation of pseudobrookite varies rather strongly with temperature,which is somewhatsurprising. If this is a real effect,it may be I Throughoutthis paper,heat effects are given in calories,where relatedto the anomalouslysmall thermal expansion I cal = 4.184ioule. coefficientsreported for pseudobrookite-typecom- FORMATION OF PSEUDOBROOKITES AND FeTizOu-TisOuSOLID SOLUTIONS 251 pounds(Bayer, l97l), or to changesin thecation dis- Trsts 2. Lattice Entropies(Calorimetric Entropies) of FezTiO,and MgTirOufrom the Oxides tribution (seebelow). The datafor MgTirOu(Table 2) Formationof no anomaly,though the valuesof AS" show such -'-2 otgo" Ferore FerTlora MeTtrOrb scattersomewhat. In addition, the tabulatedvalues c ^o -o -o TK -T -T -T -Tco -"7 si os; do not include any contribution for the con- o figurationalentropy arising from an "inverse"or par- tially disorderedcation distributionof Fe3+and Tia+ 298 r2.o4 6.44 20.89 37.40 +4.47 30.40 -0,12 800 27.85 15.98 5r.64 81.75 +2.26 7L.65 -1.03 over nonequivalent octahedral sites. Waldbaum 1200 34.98 27.93 56.59 LO2,45 +0.78 91.33 -0.56 1600 40.24 25.53 76.52 117.60 +0.84 105.71 -O.70 (1973)has discussed this point. If the cationdistribu- tion in FerTiO,is indeedinverse as Lind and Housley a, source of date, R, A. Roble and D. R. Waldbes, U's. Geol. suney Bull. 1259 (1968); (1972) suggest,then, as Waldbaum (1973) rec- Soc. 71' 4569 b. Data f or ugTt ro< f r@ s. s. Todd, J. Aner. Ch6. ommends,one should add 2Rln2 : 2.76 cal K-r (1952) and x..-ll orr and J. P. CouthllE, J. Amer' Ch@. soc. 21' 3186 G952), mol-' to the standardentropy of pseudobrookite. cal K-I
Recommended publications
  • Kennedyite, a New Mineral of the Pseudobrookite Series
    676 Kennedyite, a new mineral of the pseudobrookite series. By O. VON KNORRING, Ph.D., and K. G. Cox, Ph.D. Research Institute of African Geology, University of Leeds. [Read 26 January 1961.] Summary. A new mineral with the approximate composition of F%MgTiaOxoand isostructural with pseudobrookite F%Ti2010has been observed in an olivine-augite- alkali-feldsparrock of the Karroo succession from the Mateke Hills area in south- eastern Southern Rhodesia. Chemical analysis and indexed X-ray powder data (a 9"77, b 9-95, c 3"73 ~.) of the mineral are given, and the name kennedyite is pro- posed. The name karrooite is proposed for the artificial product MgTi~O5. HE Mateke Hills area lies in the south-eastern part of Southern T Rhodesia and is characterized by several ring-complexes of late- Karroo age, which are emplaced in an extensive trough of Karroo vol- canics with generally thin basal sediments. The Karroo rocks rest un- conformably on the paragneisses of the Limpopo valley. The lower part of the Karroo volcanic succession consists mainly of olivine-rich rocks. These are in part extrusive and may be termed in general limburgites, and in part intrusive as sills, dykes, and plugs. The intrusive rocks are fine- to medium-grained and vary in composition from olivine-dolerites to pieritic and shonkinitic types. The specimens containing the new mineral were collected from what is believed to be an extensive sill at the base of the volcanic succession immediately overlying the Cave Sandstone. Petrographic description. Under the microscope the rock (table I, anal. 1) consists predominantly of broken and abraded olivine pheno- crysts from 1 to 5 mm.
    [Show full text]
  • Fe2tio5) Based Thick films
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serbian Academy of Science and Arts Digital Archive (DAIS) Accepted Manuscript Title: Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films Authors: Maria Vesna Nikolic, Zorka Z. Vasiljevic, Miloljub D. Lukovic, Vera P. Pavlovic, Jelena Vujancevic, Milan Radovanovic, Jugoslav B. Krstic, Branislav Vlahovic, Vladimir B. Pavlovic PII: S0925-4005(18)31683-6 DOI: https://doi.org/10.1016/j.snb.2018.09.063 Reference: SNB 25369 To appear in: Sensors and Actuators B Received date: 15-5-2018 Revised date: 23-8-2018 Accepted date: 15-9-2018 Please cite this article as: Nikolic MV, Vasiljevic ZZ, Lukovic MD, Pavlovic VP, Vujancevic J, Radovanovic M, Krstic JB, Vlahovic B, Pavlovic VB, Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films, Sensors and Actuators: B. Chemical (2018), https://doi.org/10.1016/j.snb.2018.09.063 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films Maria Vesna Nikolic1*, Zorka Z. Vasiljevic2, Miloljub D. Lukovic1, Vera P. Pavlovic3, Jelena Vujancevic2, Milan Radovanovic4, Jugoslav B. Krstic5, Branislav Vlahovic6, Vladimir B.
    [Show full text]
  • 74275 Oriented Ilmenite Basalt 1493 Grams
    74275 Oriented Ilmenite Basalt 1493 grams 74275 Figure 1: Location of basalt sample 74275 at Shorty Crater - also see 74220. (falce color) AS17-137-20990 Introduction 1981). This sample has proven useful to studies that 74275 is a fine-grained, high-Ti mare basalt with require known lunar orientation with extended significant armalcolite content (Hodges and Kushiro exposure history to the extra-lunar environment 1974; Neal and Taylor 1993). It contains vesicles, vugs (micrometeorites, cosmic rays, solar irradiation). The and unusual olivine megacrysts (Fo82) (Meyer and sample is relatively flat 17 by 12 cm and 4 cm thick. Wilshire 1974). The top (T1) surface is somewhat rounded and has many micrometeorite pits (figure 4), while the bottom 74275 was collected from the rim of Shorty Crater (B1) surface is flat and angular and without any (figure 1) and was photographed both on the lunar evidence of exposure to the micrometeorites (figure surface and in the laboratory (with similar lighting) to 5). Fink et al. (1998) have carefully considered the document the exact lunar orientation. (Wolfe et al. exact orientation (30 deg tilt), shielding (nearby Lunar Sample Compendium C Meyer 2011 boulder) and detailed exposure history (complex) of 74275 74275. Di Hd This basalt has been determined to be very old (> 3.8 b.y.). Based on trace element analysis it is a type C Apollo 17 basalt. Petrography Perhaps the best petrographic description of 74275 is En Fs given by Hodges and Kushiro (1974): “Rock 74275 is a fine-grained ilmenite basalt with microphenocrysts Fo Fa of olivine (Fo80-71), titanaugite (up to 6.8 wt.
    [Show full text]
  • Descriptive Mineralogy
    Descriptive Mineralogy Oxides and Hydroxides Classification of the Minerals • Non-Silicates • Silicates – Native Elements – Orthosilicates – Halides – Sorosilicates – Sulfides – Cyclosilicates – Oxides – Chain Silicates – Hydroxides – Layer Silicates – Carbonates – Tektosilicates – Sulfates – Phosphates Simple Oxides • Hemioxides • Sesquioxides – Cuprite (Cu O) 2 – Corundum (Al2O3) – Ice (H O) 2 – Hematite (Fe2O3) • Monoxides – Bixbyite (Mn2O3) – Periclase (MgO) • Dioxides – Wüstite (FeO) – Rutile (TiO2) – Manganosite (MnO) – Anatase (TiO2) – Lime (CaO) – Brookite (TiO2) – Zincite (ZnO) – Cassiterite(SnO2) – Bromellite (BeO) – Pyrolusite(MnO2) – Tenorite (CuO) Simple Oxides Hemi-Oxides (M2O) • Ice (H2O) Hexagonal • Cuprite (Cu2O) • Why not Na2O? – (Na radius too large) Cuprite Cu2O • Occurrence: Low Temp Hydrothermal (Supergene) • Use: Minor ore of Cu Ice H2O Crystal System Hexagonal Point Group 6/mmm Space Group P63/mmc Optical Uniaxial Color Colorless Luster Vitreous Hardness 1.5 Density 0.95 Ice H2O Ice H2O Ice H2O High Pressure Phase Diagram Monoxides (MO) • Rocksalt oxides – Periclase MgO - Wüstite FeO – Manganosite MnO – Lime CaO – Bunsenite NiO • Zincite oxides: – Zincite ZnO, – Bromellite BeO • Other monoxides: – TenoriteCuO, Montroydite HgO Rocksalt Oxides MgO-FeO-MnO-CaO Crystal System Cubic Point Group 4/m-32/m Space Group Fm3m Optical Isotropic Periclase - Wüstite MgO - FeO Lower mantle phase Mg2SiO4 = MgSiO3 + MgO Ringwoodite = Perovskite + periclase Periclase MgO Sesquioxides (M2O3) • Corundum Group – Corundum Al2O3 – Hematite
    [Show full text]
  • Occurrence, Alteration Patterns and Compositional Variation of Perovskite in Kimberlites
    975 The Canadian Mineralogist Vol. 38, pp. 975-994 (2000) OCCURRENCE, ALTERATION PATTERNS AND COMPOSITIONAL VARIATION OF PEROVSKITE IN KIMBERLITES ANTON R. CHAKHMOURADIAN§ AND ROGER H. MITCHELL Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada ABSTRACT The present work summarizes a detailed investigation of perovskite from a representative collection of kimberlites, including samples from over forty localities worldwide. The most common modes of occurrence of perovskite in archetypal kimberlites are discrete crystals set in a serpentine–calcite mesostasis, and reaction-induced rims on earlier-crystallized oxide minerals (typically ferroan geikielite or magnesian ilmenite). Perovskite precipitates later than macrocrystal spinel (aluminous magnesian chromite), and nearly simultaneously with “reaction” Fe-rich spinel (sensu stricto), and groundmass spinels belonging to the magnesian ulvöspinel – magnetite series. In most cases, perovskite crystallization ceases prior to the resorption of groundmass spinels and formation of the atoll rim. During the final evolutionary stages, perovskite commonly becomes unstable and reacts with a CO2- rich fluid. Alteration of perovskite in kimberlites involves resorption, cation leaching and replacement by late-stage minerals, typically TiO2, ilmenite, titanite and calcite. Replacement reactions are believed to take place at temperatures below 350°C, 2+ P < 2 kbar, and over a wide range of a(Mg ) values. Perovskite from kimberlites approaches the ideal formula CaTiO3, and normally contains less than 7 mol.% of other end-members, primarily lueshite (NaNbO3), loparite (Na0.5Ce0.5TiO3), and CeFeO3. Evolutionary trends exhibited by perovskite from most localities are relatively insignificant and typically involve a decrease in REE and Th contents toward the rim (normal pattern of zonation).
    [Show full text]
  • Taylor Creek Tin Distrisl
    tions such as Paramount Canyon, the veins TaylorCreek tin distrisl- may reach three to four centimeters in width and a few meters in height and length. A dis- seminated cassiterite halo has been noted stratigraphy,structure, around the veins in Squaw Creek. A recently discoveredrhyolite porphyry has andtiming of mineralizationintensely altered the surrounding country rock near NM-59 where the road crossesthe Conti- byTed L. Egglestonand David L Norman,New Mexico lnstitute of Miningand Technology, Socorro, NM nental Divide. This porphyry is locally quartz- sericite altered and contains as much as I go pyrite. Similar intrusives have been mapped Introduction The Taylor Creek tin district is located in by Woodard (1982) southeast of the Taylor Primary tin depositscommonly are found in the north-central Black Range some 80 km Creek region. granitic plutonic environments where the tin west of Truth or Consequences,New Mexico occurs as cassiterite in greisen veins and as (fig. l). Cassiteritenuggets were first found in Regional geology disseminations in altered granite (Taylor, placers (Fries, 1940a). in the district in 1909 The tin-bearing Taylor Creek Rhyolite is 1979).In southwest New Mexico, however, tin Shortly wood tin thereafter, cassiterite and located in the Mogollon-Datil volcanic field, a occurs as cassiterite in hematite-cassiterite were porphyritic found in vein depositsin rhy- mid-Tertiary volcanic field consisting of inter- veins which cut Tertiary rhyolite domes and placer (Hill, olite lavas as well as in deposits mediate to
    [Show full text]
  • Ceramic Pigments Based on Armalcolite Doped with Vanadium by Mod Methods
    CASTELLÓN (ESPAÑA) CERAMIC PIGMENTS BASED ON ARMALCOLITE DOPED WITH VANADIUM BY MOD METHODS C. Gargori, S. Cerro, M. Llusar, G. Monrós Dept. of Inorganic and Organic Chemistry, Universidad Jaume I, Castellón.Spain 1. INTRODUCTION Armalcolite is the structure (orthorhombic, point group 2/m2/m2/m and space group Bbmm) of a mineral detected for the first time in rocks brought from the first lunar exploration in 1969; the name comes from the first letters of the astronauts of this first moon expedition (1): ARMstrong, Aldrin and COLlins. Its stoichiometry and oxidation state vary between the extremes (Mg0,5Fe0,5)Ti2O5 (detected in lunar rocks) and ferroarmalcoli- te (armalcolite, ferrian) (MgFe)(FeTi3)O10 with Fe(II) in the former case and Fe(III) in the latter. Synthetically, it is obtained by calcination at high temperature followed by drastic quenching. If it does not metastabilise by quenching, it breaks down into Mg-ilmenite (Mg-FeTiO3) and rutile. This study examined the possible use of armalcolite stabilised by doping with vanadium (Mg0,5Fe0,5)(VxTi2-x)5O5 as a ceramic pigment. www.qualicer.org 1 CASTELLÓN (ESPAÑA) 2. EXPERIMENTAL AND RESULTS Mg0.5Fe0.5(VxTi2-x)2O5 samples were prepared by the CE route (Ceramic from Mg2(OH)2CO3, iron oxide (III), anatase and NH4VO3), CO (ammoniacal coprecipitation of a solution with NH4VO3 dissolved in nitric acid, Mg2(OH)2CO3, Fe(NO3)3.9H2O and titanium isopropoxide stabilised with acetylacetone) and by the MOD route (metal organic decomposition with additions of a polycarboxylic acid in an oxalic/citric molar ratio: sum of cations = 0 0.25 1 1.5 and 2) (2).
    [Show full text]
  • Armalcolite in Crustal Paragneiss Xenoliths, Central Mexico Joorr L
    American Mineralogist, Volume 80, pages810-822, 1995 Armalcolite in crustal paragneiss xenoliths, central Mexico Joorr L. Havor,* Enrc J. EssnNn Department of Geological Sciences,University of Michigan, Ann Arbor, Michigan 48109, U.S.A. Ansrn-c,cr Aluminous armalcolite has been found in two sillimanite-bearing xenoliths that were recently exhumed from the lower crust of central Mexico. The rangesof compositions are (Fefr.jr_ouuMgo,r_orrAlo,r_o,rV3tu_o,oFefr.fio-oouTif.t_,r.)O,and (Fefr.jo_oilMgo,r_orrAlo16_0re- Vfr.fir-oouFefi.]o-ouTit.lr-,r,)Or.The occurrenceof armalcolite is unusual in crustal para- gneissesbecause most terrestrial armalcolite occursin volcanic rocks that are derived from partial melting in the Earth's mantle. Textures suggestthat armalcolite is a late product formed by the reaction rutile + ilmenite"" : armalcolite., during rapid transport of the xenoliths to the surface. Phase equilibria in the system MgO-FeO-FerO.-TiOr, which indicate that armalcolite is stable in the crust at 900-1200 oC, are consistent with this interpretation. Thermodynamic properties are estimated for oxides in the system MgO-FeO-FerOr- TiO, to constrain activity-composition relations for armalcolite and conditions of for- mation. Activity coefrcients calculatedfor armalcolite range from 0.27 to 1.36,depending on the ilmenite model used, at temperaturesbetween 1000 and 1300 "C. Depth of for- mation of armalcolite in the crust is not well constrained.Thermodynamic calculationsat 800-1200 "C for the compositions observedindicate that the armalcolite in one xenolith would have been in equilibrium with rutile at values of /o, between the hematite + magnetite buffer (HM) and the fayalite + magnetite + quarlz (FMQ) buffer, and that armalcolite in the other xenolith would have been in equilibrium with rutile and ilmenite at values of /o, between FMQ and two log units below the FMe buffer.
    [Show full text]
  • 147 Haggerty
    147 THE CHEMISTRY AND GENESIS OF OPAQUE MINERALS IN KIMBERLITES. Stephen E. Haggerty, Department of Geology, University of Massachusetts, Amherst, Mass. 01002 U.S.A. A detailed reflection microscopy study and over 500 electron micro¬ probe analyses of an extensive suite of kimberlites from some 30 southern and west African localities has been undertaken in an attempt to charac¬ terize the opaque mineralogy of kimberlites. The results of this study indicate that in addition to the ubiquitous occurrence of geikielite-rich ilmenite that an exotic and chemically variable suite of other opaque minerals are also commonly present. The oxides include members of the spinel mineral group, armalcolite (FeMg)Ti205, the polymorphs of Ti02, perovskite, and two new minerals, a primary Ba-Fe-Ti-Cr-vanadate, and a phase that is essentially intermediate between CaTi03 and Fe203, and of secondary origin. The sulfides identified are restricted to pyrite, pyr- rhotite, chalcopyrite and pentlandite; and the native metals, aside from graphite, are Cu and Ni-Fe alloys. Subsolidus reactions that include ox¬ idation, reduction and solid state decomposition of the primary assembla¬ ges are widespread. The effects of solid-liquid, solid-solid, solid-gas and hydrothermal alteration are also recognised. The variable intensity of these reactions coupled with non-systematic chemical trends within the reaction assemblages and superimposed or indeterminate paragenesis of minerals of identical or related composition in different samples from the same pipe preclude a uniform interpretation of the conditions that prevailed during crystallization or during subsequent crystallization e- vents. However, these effects contrast strongly with the primary miner¬ alogy which in most cases are clearly defined as liquidus phases.
    [Show full text]
  • Armalcolite: a New Mineral from the Apollo 11 Samples* A. T
    Proceedings of the Apollo 11 Lunar Science Conference, Vol. 1, pp. 55 to 63. Armalcolite: A new mineral from the Apollo 11 samples* A. T. ANDERSON Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 T. E. BUNCH Space Science Division, NASA, Ames Research Center, California 94035 E. N. CAMERON Department of Geotogy and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 S. E. HAGGERTY, F. R. BoYD and L. W. FINGER Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008 0. B. JAMES U.S. Geological Survey, Washington, D.C. 20242 K. KEIL and M. PRINZ Department of Geology, lnstitute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87106 and P. RAMDOHR and A. EL GORESY Max-Planck Institut fur Kernphysik, Heidelberg, Germany (Received 16 February 1970; aceepted in revised form 24 February 1970) Abstract-Armalcolite, (Fe��.Mg0_,)Ti205, is a new mineral from Tranquillity base with the pseudo­ brookite structure (a = 9·743 A, b = 10·024 A, c = 3·738 A, V = 365·077 A•). Theoretical density is 4·64 g/cm•. The mineral is opaque, blue-gray in reflected light, and distinctly anisotropic. Re­ flectivity values in air at 450 nm are R1 = 14·1 per cent, R2 = 15·2 per cent, and at 640 mn are R1 = 2 13-0 per cent, R2 = 14·1 per cent. Synthesis of the end members Fe +Ti205 and MgTi205 and armal­ colite has been accomplished at 1300°C. INTRODUCTION ARMALCOLITE (Fe0.5Mg0_5Ti205), a new magnesium-rich opaque oxide related to the pseudobrookite series, was discovered independently by six research groups in their examination of different samples of the lunar material collected from Mare Tranquil-· litatis.
    [Show full text]
  • Moon Landings - Luna 9
    Age Research cards 7-11 years Moon landings - Luna 9 About Credit-Pline On the 3 February 1966, Luna 9 made history by being the first crewless space mission to make a soft landing on the surface of the Moon. It was the ninth mission in the Soviet Union’s Luna programme (the previous five missions had all experienced spacecraft failure). The Soviet Union existed from 1922 to 1991 and was the largest country in the world; it was made up of 15 states, the largest of which was the Russian Republic, now called Russia. The Space Race is a term that is used to describe the competition between the United States of America and the Soviet Union which lasted from 1955 to 1969, as both countries aimed to be the first to get humans to the Moon. Working scientifically The Luna 9 spacecraft had a mass of 98kg (about outwards to make sure the spacecraft was stable the same as a baby elephant) and it carried before it began its scientific exploration. communication equipment to send information back to Earth, a clock, a heating system, a power The camera on board took many photographs of source and a television system. The spacecraft the lunar surface including some panoramic included scientific equipment for two enquiries: images. These images were transmitted back to one to find out what the lunar surface was like; Earth using radio waves. Although the Soviet and another to find out how much dangerous Union didn’t release these photographs to the rest radiation there was on the lunar surface.
    [Show full text]
  • The Newsletter of the Barnard-Seyfert Astronomical Society
    July The ECLIPSE 2019 The Newsletter of the Barnard-Seyfert Astronomical Society From the President Next Membership Meeting: This month, let’s take a look at the Moon. As I read that July 19, 2019, 7:30 pm sentence, I am reminded that the word “month” is derived from Cumberland Valley the word “moon”. Then I chuckled because I realized that I am Girl Scout Council Building writing this on a Monday, also named after our Moon. The 4522 Granny White Pike Moon certainly has had a lot of influence on all cultures and languages. Topic: Apollo 11 and the A lot of things happen around the moon this month starting on Return to the Moon the 2nd with a total eclipse of the sun. Unfortunately, we won’t be able to witness it here in Nashville, but we do have members down in Chile to witness this spectacular event. Let’s hope they come back with some great stories and maybe some pictures. This will get us ready for the next North American total eclipse in 2024. In this Issue: On Independence Day, the Moon will swing by Mars for a Happy 50th Birthday Apollo 11 conjunction visible to us just after sunset on the 3rd. On the by Robin Byrne 3 13th, the Moon will pass by Jupiter for a great conjunction. On Jupiter Shines in June the 16th, the Moon and Saturn have a conjunction just a week By David Prosper 12 after Saturn’s opposition. Let’s hope we have some clear skies so that we can take a few moments and watch our satellite dance BSAS Board Minutes with the planets.
    [Show full text]