74275 Oriented Ilmenite Basalt 1493 Grams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanosims Pb/Pb Dating of Tranquillityite in High-Ti Lunar Basalts
1 Revision 1 2 NanoSIMS Pb/Pb dating of tranquillityite in high-Ti lunar basalts: 3 Implications for the chronology of high-Ti volcanism on the Moon 4 5 Romain Tartèse1, Mahesh Anand1,2 and Thomas Delhaye3 6 7 1Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes, MK7 8 6AA, United Kingdom 9 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 10 5BD, United Kingdom 11 3Plateforme ONIS/NanoSIMS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes 12 Cedex, France 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Abstract 27 In this study, we carried out Pb/Pb dating of tranquillityite in high-Ti mare basalts 10044, 28 75055 and 74255, using a Cameca NanoSIMS 50 at a spatial resolution of ~ 3 µm. The 29 analyses yielded 207Pb/206Pb dates of 3722 ± 11 Ma for sample 10044, 3772 ± 9 Ma for 30 sample 75055 and 3739 ± 10 Ma for sample 74255, at 95% confidence level. These dates are 31 consistent with previously determined crystallization and emplacement ages of these samples 32 using different radiogenic systems. These high-precision ages allow refinement of the timing 33 of some of the high-Ti basaltic volcanism on the Moon. Crystallization ages of three different 34 high-Ti basalt units, integrating these new Pb/Pb ages with previous Rb-Sr and Sm-Nd age 35 determinations, are consistent with previous estimates but associated with uncertainties 3 to 5 36 times lower. In addition, the data obtained in this study confirm that tranquillityite contains 37 very low amounts of initial common Pb and has a high Pb ionization efficiency, making it an 38 excellent candidate for Pb/Pb dating by ion microprobe. -
Occurrence, Alteration Patterns and Compositional Variation of Perovskite in Kimberlites
975 The Canadian Mineralogist Vol. 38, pp. 975-994 (2000) OCCURRENCE, ALTERATION PATTERNS AND COMPOSITIONAL VARIATION OF PEROVSKITE IN KIMBERLITES ANTON R. CHAKHMOURADIAN§ AND ROGER H. MITCHELL Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada ABSTRACT The present work summarizes a detailed investigation of perovskite from a representative collection of kimberlites, including samples from over forty localities worldwide. The most common modes of occurrence of perovskite in archetypal kimberlites are discrete crystals set in a serpentine–calcite mesostasis, and reaction-induced rims on earlier-crystallized oxide minerals (typically ferroan geikielite or magnesian ilmenite). Perovskite precipitates later than macrocrystal spinel (aluminous magnesian chromite), and nearly simultaneously with “reaction” Fe-rich spinel (sensu stricto), and groundmass spinels belonging to the magnesian ulvöspinel – magnetite series. In most cases, perovskite crystallization ceases prior to the resorption of groundmass spinels and formation of the atoll rim. During the final evolutionary stages, perovskite commonly becomes unstable and reacts with a CO2- rich fluid. Alteration of perovskite in kimberlites involves resorption, cation leaching and replacement by late-stage minerals, typically TiO2, ilmenite, titanite and calcite. Replacement reactions are believed to take place at temperatures below 350°C, 2+ P < 2 kbar, and over a wide range of a(Mg ) values. Perovskite from kimberlites approaches the ideal formula CaTiO3, and normally contains less than 7 mol.% of other end-members, primarily lueshite (NaNbO3), loparite (Na0.5Ce0.5TiO3), and CeFeO3. Evolutionary trends exhibited by perovskite from most localities are relatively insignificant and typically involve a decrease in REE and Th contents toward the rim (normal pattern of zonation). -
Ceramic Pigments Based on Armalcolite Doped with Vanadium by Mod Methods
CASTELLÓN (ESPAÑA) CERAMIC PIGMENTS BASED ON ARMALCOLITE DOPED WITH VANADIUM BY MOD METHODS C. Gargori, S. Cerro, M. Llusar, G. Monrós Dept. of Inorganic and Organic Chemistry, Universidad Jaume I, Castellón.Spain 1. INTRODUCTION Armalcolite is the structure (orthorhombic, point group 2/m2/m2/m and space group Bbmm) of a mineral detected for the first time in rocks brought from the first lunar exploration in 1969; the name comes from the first letters of the astronauts of this first moon expedition (1): ARMstrong, Aldrin and COLlins. Its stoichiometry and oxidation state vary between the extremes (Mg0,5Fe0,5)Ti2O5 (detected in lunar rocks) and ferroarmalcoli- te (armalcolite, ferrian) (MgFe)(FeTi3)O10 with Fe(II) in the former case and Fe(III) in the latter. Synthetically, it is obtained by calcination at high temperature followed by drastic quenching. If it does not metastabilise by quenching, it breaks down into Mg-ilmenite (Mg-FeTiO3) and rutile. This study examined the possible use of armalcolite stabilised by doping with vanadium (Mg0,5Fe0,5)(VxTi2-x)5O5 as a ceramic pigment. www.qualicer.org 1 CASTELLÓN (ESPAÑA) 2. EXPERIMENTAL AND RESULTS Mg0.5Fe0.5(VxTi2-x)2O5 samples were prepared by the CE route (Ceramic from Mg2(OH)2CO3, iron oxide (III), anatase and NH4VO3), CO (ammoniacal coprecipitation of a solution with NH4VO3 dissolved in nitric acid, Mg2(OH)2CO3, Fe(NO3)3.9H2O and titanium isopropoxide stabilised with acetylacetone) and by the MOD route (metal organic decomposition with additions of a polycarboxylic acid in an oxalic/citric molar ratio: sum of cations = 0 0.25 1 1.5 and 2) (2). -
The Moon After Apollo
ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs. -
Expanded Listings for Wskg Hdtv
1 Follow the Black, homeless queer Join a team of archaeologists as and trans youth who call NY's they examine one of the most Christopher Street Pier their home. significant Viking graves ever 11:30pm Amanpour and found. Company 11pm Amanpour and Company 12:30am History with David 12am BBC World News WSKG-HD Rubenstein 12:30am Articulate with Jim Cokie Roberts Cotter August 2021 An interview with the late Cokie Finding Meaning Roberts, political commentator and Timothy Showalter uses music to expanded listings author, is showcased. survive a tumultuous world. John 3 Tuesday Jarboe wants to help change it. 1 Sunday 8pm Finding Your Roots 5 Thursday 9pm Unforgotten Season 4 On Freedom Tales 8pm W1a Masterpiece S. Epatha Merkerson and Michael 8:30pm W1a Episode 4 Strahan learn stories that challenge 9pm Downton Abbey Season 5 Cassie and Sunny discover Walsh assumptions about black history. On Masterpiece was chased by all four suspects on 9pm Jesse Owens: American Episode One the night in question. Experience A working-class prime minister is 10pm Professor T The athlete's life and his victories in elected. Robert is snubbed by the Mother Love the face of Nazi racism at the 1936 village. Edith plays with fire. Professor T is called upon to help Olympics are explored. 10:25pm Downton Abbey Season investigate the disappearance of a 10pm Fight: American 5 On Masterpiece six year-old girl. Experience Episode Two 11pm Halifax: Retribution Examine the impact of the historic Rose hits on a strategy to get a 12am Secrets of Royal Travel bout between heavyweight Joe radio in the house. -
Field Trials of a Prototype Lunar Rover Under Multi-Sensor Safeguarded Teloperation Control
In Proc Seventh- ANS- Topical Meeting on lC.,a# -* 7='- v I GA Field Trials of a Prototype Lunar Rover under Multi-Sensor Safeguarded Teleoperation Control E. Krotkov, M. Hebert, L. Henriksen, P. Levin, M. Maimone, R. Simmons, and J. Teza Robotics Institute, School of Computer Science Carnegie Mellon University, Pittsburgh, PA 152 13 Abstract - This paper presents the results of field trials of a prototype lunar rover traveling over natural terrain under safe- guarded teleoperation control. Both the rover and the safeguard- ing approach have been used in previous work. The original contributions of this paper are the development and integration of a laser sensing system, and extensive field testing of the overall system. The laser system, which complements an existing stereo vision system, is based on a line-scanning laser ranger viewing the area 1 meter in front of the rover. The laser system has demon- strated excellent performance: zero misses and few false alarms operating at 4 Hz. The overall safeguarding system guided the rover 43 km over lunar analogue terrain with 0.8 failures per kilo- meter. 1 Introduction The hazard detection system described in this paper has been developed under CMU's Lunar Rover Initiative, whose goal is to develop and demonstrate techniques enabling plane- tary rover missions. The initiative has targeted a mission to land two rovers on the surface of the Moon, where they will navigate semi-autonomously for 1,OOO km, visiting historic sites and places of geological interest (Krotkov 1994). For such a mission, a spectrum of navigation modes are applicable. -
Armalcolite in Crustal Paragneiss Xenoliths, Central Mexico Joorr L
American Mineralogist, Volume 80, pages810-822, 1995 Armalcolite in crustal paragneiss xenoliths, central Mexico Joorr L. Havor,* Enrc J. EssnNn Department of Geological Sciences,University of Michigan, Ann Arbor, Michigan 48109, U.S.A. Ansrn-c,cr Aluminous armalcolite has been found in two sillimanite-bearing xenoliths that were recently exhumed from the lower crust of central Mexico. The rangesof compositions are (Fefr.jr_ouuMgo,r_orrAlo,r_o,rV3tu_o,oFefr.fio-oouTif.t_,r.)O,and (Fefr.jo_oilMgo,r_orrAlo16_0re- Vfr.fir-oouFefi.]o-ouTit.lr-,r,)Or.The occurrenceof armalcolite is unusual in crustal para- gneissesbecause most terrestrial armalcolite occursin volcanic rocks that are derived from partial melting in the Earth's mantle. Textures suggestthat armalcolite is a late product formed by the reaction rutile + ilmenite"" : armalcolite., during rapid transport of the xenoliths to the surface. Phase equilibria in the system MgO-FeO-FerO.-TiOr, which indicate that armalcolite is stable in the crust at 900-1200 oC, are consistent with this interpretation. Thermodynamic properties are estimated for oxides in the system MgO-FeO-FerOr- TiO, to constrain activity-composition relations for armalcolite and conditions of for- mation. Activity coefrcients calculatedfor armalcolite range from 0.27 to 1.36,depending on the ilmenite model used, at temperaturesbetween 1000 and 1300 "C. Depth of for- mation of armalcolite in the crust is not well constrained.Thermodynamic calculationsat 800-1200 "C for the compositions observedindicate that the armalcolite in one xenolith would have been in equilibrium with rutile at values of /o, between the hematite + magnetite buffer (HM) and the fayalite + magnetite + quarlz (FMQ) buffer, and that armalcolite in the other xenolith would have been in equilibrium with rutile and ilmenite at values of /o, between FMQ and two log units below the FMe buffer. -
147 Haggerty
147 THE CHEMISTRY AND GENESIS OF OPAQUE MINERALS IN KIMBERLITES. Stephen E. Haggerty, Department of Geology, University of Massachusetts, Amherst, Mass. 01002 U.S.A. A detailed reflection microscopy study and over 500 electron micro¬ probe analyses of an extensive suite of kimberlites from some 30 southern and west African localities has been undertaken in an attempt to charac¬ terize the opaque mineralogy of kimberlites. The results of this study indicate that in addition to the ubiquitous occurrence of geikielite-rich ilmenite that an exotic and chemically variable suite of other opaque minerals are also commonly present. The oxides include members of the spinel mineral group, armalcolite (FeMg)Ti205, the polymorphs of Ti02, perovskite, and two new minerals, a primary Ba-Fe-Ti-Cr-vanadate, and a phase that is essentially intermediate between CaTi03 and Fe203, and of secondary origin. The sulfides identified are restricted to pyrite, pyr- rhotite, chalcopyrite and pentlandite; and the native metals, aside from graphite, are Cu and Ni-Fe alloys. Subsolidus reactions that include ox¬ idation, reduction and solid state decomposition of the primary assembla¬ ges are widespread. The effects of solid-liquid, solid-solid, solid-gas and hydrothermal alteration are also recognised. The variable intensity of these reactions coupled with non-systematic chemical trends within the reaction assemblages and superimposed or indeterminate paragenesis of minerals of identical or related composition in different samples from the same pipe preclude a uniform interpretation of the conditions that prevailed during crystallization or during subsequent crystallization e- vents. However, these effects contrast strongly with the primary miner¬ alogy which in most cases are clearly defined as liquidus phases. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Analysis of Lunar Boulder Tracks: Implications for Trafficability of Pyroclastic Deposits Journal Item How to cite: Bickel, V. T.; Honniball, C. I.; Martinez, S. N.; Rogaski, A.; Sargeant, Hannah; Bell, S. K.; Czaplinski, E. C.; Farrant, B. E.; Harrington, E. M.; Tolometti, G. D. and Kring, D. A. (2019). Analysis of Lunar Boulder Tracks: Implications for Trafficability of Pyroclastic Deposits. Journal of Geophysical Research: Planets, 124(5) pp. 1296–1314. For guidance on citations see FAQs. c 2019 American Geophysical Union https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1029/2018JE005876 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk RESEARCH ARTICLE Analysis of Lunar Boulder Tracks: Implications 10.1029/2018JE005876 for Trafficability of Pyroclastic Deposits Key Points: V. T. Bickel1,2 , C. I. Honniball3, S. N. Martinez4, A. Rogaski5, H. M. Sargeant6, S. K. Bell7, • Bearing capacity of pyroclastic, 8 7 9 9 10,11 mare, and highland regions is E. C. Czaplinski , B. E. Farrant , E. M. Harrington , G. D. Tolometti , and D. A. Kring calculated based on measurements 1 2 of boulder tracks in orbital images Department Planets & Comets, Max -
Armalcolite: a New Mineral from the Apollo 11 Samples* A. T
Proceedings of the Apollo 11 Lunar Science Conference, Vol. 1, pp. 55 to 63. Armalcolite: A new mineral from the Apollo 11 samples* A. T. ANDERSON Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 T. E. BUNCH Space Science Division, NASA, Ames Research Center, California 94035 E. N. CAMERON Department of Geotogy and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 S. E. HAGGERTY, F. R. BoYD and L. W. FINGER Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008 0. B. JAMES U.S. Geological Survey, Washington, D.C. 20242 K. KEIL and M. PRINZ Department of Geology, lnstitute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87106 and P. RAMDOHR and A. EL GORESY Max-Planck Institut fur Kernphysik, Heidelberg, Germany (Received 16 February 1970; aceepted in revised form 24 February 1970) Abstract-Armalcolite, (Fe��.Mg0_,)Ti205, is a new mineral from Tranquillity base with the pseudo brookite structure (a = 9·743 A, b = 10·024 A, c = 3·738 A, V = 365·077 A•). Theoretical density is 4·64 g/cm•. The mineral is opaque, blue-gray in reflected light, and distinctly anisotropic. Re flectivity values in air at 450 nm are R1 = 14·1 per cent, R2 = 15·2 per cent, and at 640 mn are R1 = 2 13-0 per cent, R2 = 14·1 per cent. Synthesis of the end members Fe +Ti205 and MgTi205 and armal colite has been accomplished at 1300°C. INTRODUCTION ARMALCOLITE (Fe0.5Mg0_5Ti205), a new magnesium-rich opaque oxide related to the pseudobrookite series, was discovered independently by six research groups in their examination of different samples of the lunar material collected from Mare Tranquil-· litatis. -
PDF Document Download
“We choose to go to the moon ...” President John F. Kennedy’s commitment to landing an astronaut “on the Moon and returning him back safely to the Earth” was particularly audacious considering when he fi rst voiced the challenge, only one American had been in space for a grand total of 15 minutes and 28 seconds. Here is a look back at some of the milestones NASA and its astronauts reached on their way to the Moon. Learn more by visiting the John F. Kennedy Presidential 2 Library & Museum at www.jfklibrary.org 3 Only in the Sixties The Sixties could be described in words Charles To put President Kennedy’s proclamation in pers- Sadly, Gordon Cooper’s Faith 7 mission was the last Dickens had written just over a century before the pective, it is useful to remember that he made the of NASA’s manned space fl ights to take place in decade began: “It was the best of times, it was the speech only 16 months after America’s fi rst manned President Kennedy’s lifetime. worst of times ... “ space flight and seven months after John Glenn became the fi rst American to orbit the Earth. NASA’s While John F. Kennedy would not live to see his It was a time of stark contrasts. On one hand, it was four manned fl ights had each lasted less than fi ve dream realized, his challenge stimulated the imagi- an era of enormous political and social unrest. On the hours. In fact, NASA had only been established four nations of people from every nation and motivated other, it offered unparalleled scientifi c advancement years earlier. -
Readingbeyond Flyer2 Copy
Here are 75 books chosen by the American Library Associaton & Children’s Book Council Joint Commitee to provide guidance to parents, caregivers, teachers, librarians, and others interested in discovering books for children who read at an advanced level and are seeking more challenging, but stll age-appropriate, books. The 75 Reading Beyond books are comprised of 25 in each of the three categories below: Grades K - 1 reading Grades 2-3 reading Grades 4-5 reading at 3rd Grade level at 5th Grade level at 7th Grade level • Ada Byron Lovelace and the Thinking Machine, by Laurie • Amelia Lost: The Life and • The Boy Who Harnessed the Wallmark; Illustrated by April Chu Disappearance of Amelia Earhart, Wind, by William Kamkwamba (Creston Books, 2015) by Candace Fleming (Schwartz & and Bryan Mealer (Dial Books for • Ada Twist, Scientst, by Andrea Wade / Random House, 2011) Young Readers / Random House, Beaty; Illustrated by David Roberts • A Black Hole Is Not a Hole, by 2016) (Abrams, 2016) Carolyn Cinami DeCristofano; • Candy Bomber: The Story of • Anna Hibiscus, by Atnuke; Illustrated by Michael Carroll the Berlin Airlif’s “Chocolate Illustrated by Lauren Tobia (Kane (Charlesbridge, 2012) Pilot”, by Michael O. Tunnell Miller, 2007) • Cars on Mars: Roving the Red (Charlesbridge, 2010) • The Boy Who Loved Math: The Planet, by Alexandra Siy (Charles- • Earthrise: My Adventures as Improbable Life of Paul Erdos, by bridge, 2009) an Apollo 14 Astronaut, by Deborah Heiligman; Illustrated by • Dash, by Kirby Larson (Scholas- Edgar Mitchell and Ellen LeUyen Pham (Roaring Brook Press / tc, 2014) Mahoney (Chicago Review Press, Macmillan, 2013) • The Dreamer, by Pam Muñoz 2014) • Comets, Stars, the Moon, and Ryan; Illustrated by Peter Sís • Everland, by Wendy Spinale Mars: Space Poems and Paintngs, (Scholastc, 2010) (Scholastc, 2016) by Douglas Florian (Houghton • Escape from Mr.