Of Primaquine with Chloroquine in American Negroes

Total Page:16

File Type:pdf, Size:1020Kb

Of Primaquine with Chloroquine in American Negroes Bull. Org. mond. Sante 1967, 36, 303-308 Bull. Wld Hlth Org. The Haemolytic Effect of Various Regimens of Primaquine with Chloroquine in American Negroes with G6PD Deficiency and the Lack of an Effect of Various Antimalarial Suppressive Agents on Erythrocyte Metabolism* G. J. BREWER 1 & C. J. D. ZARAFONETIS 2 In view of the fact that increased resistance to drugs by malaria parasites in some parts ofthe world may lead to increasing use ofa combination ofprimaquine with chloro- quine for chemotherapy, studies were made on the severity of the haemolytic anaemia induced by 45 mg primaquine in American Negroes with glucose-6-phosphate dehydro- genase deficiency. It was found that twice-weekly administration ofprimaquine induced more haemolysis than once-weekly administration, and that administration once weekly for 4 weeks and twice weekly thereafter resulted in a degree of anaemia falling between those produced by the other regimens. Anaemia was not-induced in controls with no G6PD deficiency. One volunteer developed an intercurrent infection that was treated with salicylates; his haemolysis was markedly intensified, but whether by the infection, the salicylates or both could not be determined. In a conjoint study, the administration of six malaria-suppressive drugs had no detectable effect on the activities of several erythrocyte enzymes or on the levels of adenosine monophosphate, diphosphate or triphosphate. I. THE HAEMOLYTIC EFFECT OF VARIOUS REGIMENS OF PRIMAQUINE WITH CHLOROQUINE IN AMERICAN NEGROES WITH G6PD DEFICIENCY This study was conducted to obtain information primaquine combined with chloroquine.3 Con- on the severity of the haemolytic anaemia induced in siderable information has accumulated on dosage Negro male subjects deficient in glucose-6-phosphate response in terms of haemolytic anaemia after daily dehydrogenase (G6PD) by various regimens of primaquine administration (Kellermeyer et al., 1961) but little information is available concerning * The work reported in this paper was supported in major the haemolytic effects from once-weekly (Cahn & part by the Research and Development Command, Office Levy, 1962; Alving et al., 1960) or twice-weekly of the Surgeon General, Department of the Army, under contract DA-49-193-MD-2876 with the Department of primaquine administration. One of the presently Medicine, University of Michigan, and in part by USPHS recommended antimalaria regimens (Alving et al., Grant AM09381 and USPHS Career Development Award 1-K3-AM 7959 (Dr Brewer). Contribution No. 150 from the 1960) calls for administration of once-weekly doses Army Research Program on Malaria. of 45 mg of primaquine 4 combined with 300 mg 1 Assistant Professor, Department of Medicine (Simpson Memorial Institute), and Research Associate, Department of Human Genetics, University of Michigan Medical School, 3Haemolysis from primaquine+chloroquine combi- Ann Arbor, Mich., USA. nations in Negroes deficient in G6PD is thought to result ' Professor, Department of Medicine, and Director, solely from the primaquine. Simpson Memorial Institute, University of Michigan ' All dosages in this paper are given in terms of mg Medical School, Ann Arbor, Mich., USA. of base. 1951 303 304 G. J. BREWER & C. J. D. ZARAFONETIS chloroquine. It is possible that increased resistance drug administration. All G6PD-deficient volunteers of malaria parasites in some areas of the world may were of the Negro race. Controls were from[both result in an increased frequency of administration of the Negro and the Caucasian races. this drug combination (Young & Moore, 1961; Powell et al., 1963, 1964a, 1964b). It is important to have information on the degree of increased haemo- RESULTS lysis in G6PD-deficient individuals resulting from Drug administration to non-deficient subjects did the increased dose of drug. Accordingly, comparative not result in haemolysis. The results of the studies evaluation of the haemolytic effects of various drug of the haemolytic effect of the three regimens of regimens has been carried out. primaquine+ chloroquine in G6PD-deficient subjects are summarized in Table 1. In this table, the baseline METHODS, SUBJECTS, AND EXPERIMENTAL DESIGN averages for haemoglobin and haematocrit values are given, followed by the nadir values. The nadir Deficiency of G6PD was detected by use of the has been arbitrarily designated as the lowest value methaemoglobin reduction test (Brewer et al., 1960). and and the value preceding and the value following the Haematocrit and haemoglobin determinations, lowest value. This is followed in the table by the reticulocyte counts, were performed by standard methods. The for these average of the three nadir values. The figures in haematological subjects the next column, the decrease in haemoglobin and studies were all volunteer inmates of the Southern haematocrit values, were determined by subtracting Michigan Prison, Jackson, Mich., USA. Approxim- nadir 500 inmates were screened for G6PD the average from the baseline average. The ately Negro day of the nadir is also shown, counting day zero as deficiency in order to detect deficient subjects for the primaquine+chloroquine study. The available en- the first day of drug administration. In Group II1, one deficient subject (Case No. 39) had an unusually zyme-deficient subjects, along with an equal number an inter- were divided into three severe reaction, apparently provoked by of non-deficient controls, current which was sali- groups of 8 subjects each, and were given drug febrile illness, treated by according to the following plan: cylates. Group I (administration of drug once weekly). Group I: administration of 45 mg primaquine Most subjects had a relatively minimal, asympto- and 300 mg chloroquine once weekly. matic haemolytic episode. One subject, No. 4, com- Group II: administration of 45 mg primaquine plained of an upset stomach, nervousness and loss and 300 mg chloroquine twice weekly. of sleep early during haemolysis. Haematological Group III: administration of 45 mg primaquine recovery was complete in 8 weeks in all volunteers. and 300 mg chloroquine once weekly for 4 weeks, Group II (administration of drug twice weekly). then twice weekly. In general, the haemolytic episodes were slightly The subjects were given their medication on Mon- more acute in onset and slightly more marked than day mornings for once-a-week programmes, and in Group I. Symptoms, however, were minimal. on Monday and Thursday mornings for twice-a- One subject, No. 19, developed symptoms of an week programmes. The medication was a combined upper respiratory infection with no apparent 45-mg primaquine and 300-mg chloroquine tablet as exacerbation of haemolysis. Haematological reco- supplied by the US Army Medical Research and very was complete in 8 weeks, except in one case Development Command. Blood samples (5 ml in in whom recovery took 10 weeks. ethylene-diamine-tetracetic acid) were taken thrice Group III (administration of drug once weekly weekly for haematocrit and haemoglobin determina- for 4 weeks followed by twice weekly). The purpose tions. Normal individuals were maintained on their of this group was to find out whether the somewhat programme for a total of 8 weeks. G6PD-deficient more acute haemolytic anaemia associated with the individuals were maintained on their programmes twice-weekly drug dose of Group II could be avoided a sufficient period of time to permit return of their by the preliminary administration of once-weekly haemoglobin and haematocrit levels to pre-drug, doses for 4 weeks in order gradually to destroy a baseline values; this occurred by 8 weeks in most portion of the susceptible red cells (the older red men and by 10 weeks in all volunteers. Three baseline cells). In general, this objective was achieved. The values were obtained for each volunteer prior to volunteers tolerated the subsequent regimen of HAEMOLYTIC EFFECT OF PRIMAQUINE/CHLOROQUINE IN G6PD-DEFICIENT SUBJECTS 305 TABLE I RESULTS IN NEGRO MALES WITH G6PD DEFICIENCY RECEIVING 45 mg PRIMAQUINE AND 300 mg CHLOROQUINE IN DIFFERENT REGIMENS Decrease ParameterParamete Average Nadir after drug Average verage(bslnavrgbsln CaseCsNoNo. measured ofA3 Vbaseline (lowestoinpoint and valuesvas IA esS minus9Caaverage Day of nadirwk vbaselInestvalues on eandeeach side) values ~~of 3 lowest v~alues) Group I: Administration once weekly 4 Hb 14.4 11.8 11.8 12.3 11.9 2.5 9 Hct 45 39 37 40 39 6 11 6 Hb 13.1 12.8 12.3 12.6 12.6 0.5 7 Hct 41 41 40 41 41 0 9 8 Hb 16.0 14.1 13.8 14.4 14.1 1.9 7 Hct 46 43 42 44 43 3 16 10 Hb 14.7 13.8 12.8 13.3 13.3 1.4 7 Hct 46 42 40 41 41 5 9 11 Hb 14.3 12.6 11.1 12.6 12.1 2.2 11 Hct 45 40 38 42 40 5 11 12 Hb 15.2 14.3 13.3 13.3 13.6 1.6 32 Hct 45 43 42 43 43 2 18 13 Hb 14.1 12.2 12.0 12.6 12.3 1.8 11 Hct 46 40 37 38 38 8 7 16 Hb 15.0 15.4 13.3 14.3 14.3 0.7 9 Hct 48 47 44 46 44 4 16 Group II: Administration twice weekly 17 Hb 14.5 12.8 12.6 12.8 12.7 1.8 11 Hct 45 40 39 39 39 6 7 18 Hb 16.3 13.1 12.3 13.1 12.8 3.5 11 Hct 50 43 42 42 42 8 9 19 Hb 14.7 12.3 10.8 11.5 11.5 3.2 14 Hct 45 40 35 35 37 8 14 26 Hb 14.9 12.5 12.2 13.1 12.6 2.3 9 Hct 45 39 38 39 39 6 7 29 Hb 15.3 14.9 13.6 15.1 14.5 0.8 7 Hct 50 45 45 49 46 4 18 30 Hb 15.1 11.6 11.3 11.8 11.6 3.5 11 Hct 47 37 36 36 36 11 9 31 Hb 14.7 12.8 11.2 11.3 11.8 2.9 9 Hct 44 40 39 42 40 4 it 32 Hb 13.6 13.1 11.5 12.0 12.2 1.4 14 Hct 43 37 35 36 36 7 9 Group Ill: Administration once weekly for 4 weeks, then twice weekly 35 Hb 15.9 14.6 12.8 13.8 13.7 2.2 9 Hct 49 45 41 43 43 6 9 36 Hb 13.6 12.9 12.6 13.1 12.9 0.7 11 Hct 44 41 39 41 40 4 9 37 Hb 14.7 14.6 12.5 13.1 13.4 1.3 4 Hct 43 39 38 40 39 4 7 38 Hb 15.8 14.9 11.8 12.6 13.1 2.7 9 Hct 47 44 34 40 39 8 9 39 Hb 13.2 10.8 9.2 9.5 9.8 3.4 32 Hct 43 30 29 30 30 13 35 44 Hb 13.6 11.5 11.0 12.0 11.5 2.1 14 Hct 45 39 37 40 39 6 42 45 Hb 15.7 14.6 13.3 15.1 14.3 1.4 37 Hct 46 45 39 45 43 3 9 46 Hb 12.5 10.5 10.2 11.0 10.6 1.9 14 Hct 39 37 34 36 36 3 9 a3 Haemoglobin (Hb) in g/100 ml and haematocrit (Hct) in vol.
Recommended publications
  • Dihydropteroate Synthase Gene Mutations in Pneumocystis
    Dihydropteroate Synthase Gene Mutations in Pneumocystis and Sulfa Resistance Laurence Huang,* Kristina Crothers,* Chiara Atzori,† Thomas Benfield,‡ Robert Miller,§ Meja Rabodonirina,¶ and Jannik Helweg-Larsen# Pneumocystis pneumonia (PCP) remains a major Patients who are not receiving regular medical care, as cause of illness and death in HIV-infected persons. Sulfa well as those who are not receiving or responding to anti- drugs, trimethoprim-sulfamethoxazole (TMP-SMX), and retroviral therapy or prophylaxis, are also at increased risk dapsone are mainstays of PCP treatment and prophylaxis. for PCP (2). PCP may also develop in other immunosup- While prophylaxis has reduced the incidence of PCP, its pressed populations, such as cancer patients and transplant use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, recipients. Furthermore, PCP remains a leading cause of Pneumocystis jirovecii, in a standardized culture system death among critically ill patients, despite advances in prevents routine susceptibility testing and detection of drug treatment and management (3). resistance. In other microorganisms, sulfa drug resistance The first-line treatment and prophylaxis regimen for has resulted from specific point mutations in the dihy- PCP is trimethoprim-sulfamethoxazole (TMP-SMX) (4). dropteroate synthase (DHPS) gene. Similar mutations While prophylaxis has been shown to reduce the incidence have been observed in P. jirovecii. Studies have consistent- of PCP, the widespread and long-term use of TMP-SMX in ly demonstrated a significant association between the use HIV patients has raised concerns regarding the develop- of sulfa drugs for PCP prophylaxis and DHPS gene muta- ment of resistant organisms. Even short-term exposure to tions.
    [Show full text]
  • The Safety and Effectiveness of Single Dose Primaquine As a P
    Malaria Policy Advisory Committee Meeting 11-13 September 2012, WHO HQ Session 5 WHO Evidence Review Group: The Safety and Effectiveness of Single Dose Primaquine as a P. falciparum gametocytocide Pullman Hotel, Bangkok, Thailand, 13-15 August 2012 Meeting Report Background Deployed since the early 1950s primaquine is the most Glossary: widely used 8-aminoquinoline antimalarial drug. It has been used extensively in the radical treatment of P. vivax G6PD: Glucose-6-phosphate dehydrogenase and P. ovale malaria, and as a single dose G6PDd: G6PD deficient gametocytocide in falciparum malaria. The main limitation to its use has been haemolytic toxicity. The 8- AHA: Acute haemolytic anaemia aminoquinoline antimalarials produce dose dependent acute haemolytic anaemia (AHA) in individuals who have ACT: Artemisinin combination treatment G6PD deficiency, an inherited X-linked abnormality. The MDA: Mass drug administration prevalence of the underlying allelic genes for G6PD deficiency varies typically between 5 and 32.5 % in POC: Point of care malaria endemic areas of Asia and Africa. Use of primaquine as a gametocytocide has great potential to reduce the transmission of falciparum malaria in low transmission settings, and in particular to help contain the spread of artemisinin resistant falciparum malaria in SouthEast Asia. The World Health Organisation currently recommends addition of primaquine 0.75 mg base/kg (adult dose 45 mg) to treatment regimens for P. falciparum malaria in areas of low transmission, particularly in areas where artemisinin resistant falciparum malaria is a threat, “when the risk for G6PD deficiency is considered low or testing for deficiency is available”. Unfortunately there is often uncertainty about the prevalence and severity of G6PD deficiency, and testing for it is usually not available in these areas.
    [Show full text]
  • A Suitable RNA Preparation Methodology for Whole Transcriptome Shotgun Sequencing Harvested from Plasmodium Vivax‑Infected Patients Catarina Bourgard1, Stefanie C
    www.nature.com/scientificreports OPEN A suitable RNA preparation methodology for whole transcriptome shotgun sequencing harvested from Plasmodium vivax‑infected patients Catarina Bourgard1, Stefanie C. P. Lopes2,3, Marcus V. G. Lacerda2,3, Letusa Albrecht1,4* & Fabio T. M. Costa1* Plasmodium vivax is a world‑threatening human malaria parasite, whose biology remains elusive. The unavailability of in vitro culture, and the difculties in getting a high number of pure parasites makes RNA isolation in quantity and quality a challenge. Here, a methodological outline for RNA‑ seq from P. vivax isolates with low parasitemia is presented, combining parasite maturation and enrichment with efcient RNA extraction, yielding ~ 100 pg.µL−1 of RNA, suitable for SMART‑Seq Ultra‑Low Input RNA library and Illumina sequencing. Unbiased coding transcriptome of ~ 4 M reads was achieved for four patient isolates with ~ 51% of transcripts mapped to the P. vivax P01 reference genome, presenting heterogeneous profles of expression among individual isolates. Amongst the most transcribed genes in all isolates, a parasite‑staged mixed repertoire of conserved parasite metabolic, membrane and exported proteins was observed. Still, a quarter of transcribed genes remain functionally uncharacterized. In parallel, a P. falciparum Brazilian isolate was also analyzed and 57% of its transcripts mapped against IT genome. Comparison of transcriptomes of the two species revealed a common trophozoite‑staged expression profle, with several homologous genes being expressed. Collectively, these results will positively impact vivax research improving knowledge of P. vivax biology. Plasmodium vivax is the most prevalent malaria parasite outside Sub-Saharan Africa, causing the most geographi- cally widespread type of malaria, placing millions of people at risk of infection 1.
    [Show full text]
  • Review of Mass Drug Administration and Primaquine
    Contents Acknowledgements ...................................................................................................................................... 2 Acronyms ...................................................................................................................................................... 3 Introduction .................................................................................................................................................. 4 Methods ....................................................................................................................................................... 4 Findings ......................................................................................................................................................... 6 Study objectives and design ............................................................................................................ 9 Contextual parameters - endemicity, seasonality, target population .......................................... 10 Outcome measures ....................................................................................................................... 13 Drug regimens ............................................................................................................................... 13 Co-Interventions ............................................................................................................................ 15 Delivery methods and community engagement ..........................................................................
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Mefloquine Poisoning and VA Service Connection
    Mefloquine Poisoning and VA Service Connection Presentation to the State Bar of Texas Military and Veterans Law Section March 29, 2019 Salado, Texas Remington Nevin, MD, MPH, DrPH Executive Director Photo credit: Dr. Remington Nevin Photo credits: Dr. Remington Nevin Background • Mefloquine was developed by the U.S. military as an antimalarial drug – Origins in the late 1960s during a Vietnam War-era program • Widespread use in the U.S. military beginning in the early 1990s (e.g. Somalia, SOCOM, OIF/OEF, AFRICOM) – Tens (hundreds?) of thousands of veterans have been exposed • Recently deprioritized for use by DoD – Followed U.S. and international “black box” warnings and recognition of chronic psychiatric and neurologic effects 2013 “Drug of Last Resort” Policy Memorandum “Mefloquine is the drug of last resort for malaria chemoprophylaxis and should only be used in persons with contraindications to chloroquine, doxycycline and atovaquone- proguanil.” Declining Use of Mefloquine within DoD Woodson J. Memorandum. Subject: Notification for Healthcare Providers of Mefloquine Box Warning. August 12, 2013. Emphasis added. “[Mefloquine] may cause long lasting serious mental problems… Some people who have taken [mefloquine] developed serious neuropsychiatric reactions…” Roche UK. Lariam product documentation, June 2018. Emphasis added. “Psychiatric symptoms such as insomnia, abnormal dreams/nightmares, acute anxiety, depression, restlessness or confusion have to be regarded as prodromal for a more serious event.” Roche UK. Lariam product documentation, June 2018. Emphasis added. “In a small number of patients, it has been reported that neuropsychiatric reactions (e.g. depression, dizziness, or vertigo and loss of balance) may persist for months or longer, even after discontinuation of the drug.” Roche UK.
    [Show full text]
  • TREATMENT GUIDELINE • Drug Schedule for Treatment of Malaria Under NVBDCP
    TREATMENT GUIDELINE • Drug Schedule for treatment of Malaria under NVBDCP. • Treatment of P.vivax cases: • Chloroquine: 25mg/kg body weight divided over three days i.e. 10mg/kg on day 1, 10mg/kg on day 2nd and 5mg/kg on day 3rd. • Primaquine: 0.25mg/kg body weight daily for 14 days. Age-wise dosage schedule for treatment of P. vivax cases Age Tab. Chloroquine Tab. Primaquine* (2.5 mg base) (in years) Day-1 Day-2 Day-3 Day – 1 to Day - 14 < 1 ½ 1/2 ¼ 0 1 - 4 1 1 ½ 1 5 - 8 2 2 1 2 9 - 14 3 3 11/2 4 15 & above 4 4 2 6 Primaquine is contraindicated in infants. Pregnant women and individuals with G&PD deficiency. 14 day regimen of Primaquine should be given under supervision Treatment of uncomplicated P. falciparum cases: • Artemisinin based Combination therapy (ACT)* • Artesunate 4 mg/kg body weight daily for 3 days Plus • Sulphadoxine (25 mg/kg body weight) – Pyrimethamine (1.25 mg/kg body weight) on first day. And • Primaquine 0.75 mg/Kg body weight on day 2 Caution:- • Act is not tobe given in 1st trimester of pregnancy. • SP is not to be given to child of age under 5 month and s/he should be treated with Alternate ACT. The Programme has introduced five different age-group specific Combi Blister packs foe SP-ACT. The age group wise dose schedule for the same and the colour of each combipack is given as follows: Age-wise dosage schedule for treatment of P. falciparum cases: Age Group 1st day 2nd day 3rd day (Years) AS SP AS SP AS 0-1 Pink Blister 1 (25 mg) 1 (250 1 (25 mg) NIL 1 (25 mg) mg+12.5mg) 1-4 Yellow 1 (50 mg) 1 (500+25 mg 1 (50 mg) 1 (7.5 mg) 1 (50 mg) Blister each) 5-8 Green 1 (100 mg) 1 (750+37.5 1 (100 mg) 2 (7.5 mg base 1 (100 mg) Blister mg each) each) 9-14 Red 1 (150 mg) 2 (500 mg+ 25 1 (150 mg) 4 (7.5 mg base 1 (150 mg) Blister mg each) each) 15 & above 1 (200 mg) 2 (750+37.5 1 (200 mg) 6 (7.5 mg base 1 (150 mg) white Blister mg each) each • Caution: • ACT is not to be given in pregnancy.
    [Show full text]
  • Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives
    Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 2): 1251-1271 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170830 www.scielo.br/aabc | www.fb.com/aabcjournal Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives LUIZ C.S. PINHEIRO1, LÍVIA M. FEITOSA1,2, FLÁVIA F. DA SILVEIRA1,2 and NUBIA BOECHAT1 1Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos Farmanguinhos, Fiocruz, Departamento de Síntese de Fármacos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil 2Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brazil Manuscript received on October 17, 2017; accepted for publication on December 18, 2017 ABSTRACT According to the World Health Organization, malaria remains one of the biggest public health problems in the world. The development of resistance is a current concern, mainly because the number of safe drugs for this disease is limited. Artemisinin-based combination therapy is recommended by the World Health Organization to prevent or delay the onset of resistance. Thus, the need to obtain new drugs makes artemisinin the most widely used scaffold to obtain synthetic compounds. This review describes the drugs based on artemisinin and its derivatives, including hybrid derivatives and dimers, trimers and tetramers that contain an endoperoxide bridge. This class of compounds is of extreme importance for the discovery of new drugs to treat malaria. Key words: malaria, Plasmodium falciparum, artemisinin, hybrid.
    [Show full text]
  • Primaquine Phosphate)
    Primaquine may be taken with or the form of hemoglobin that cannot PRIMAQUINE without food. You may take primaquine carry oxygen). These effects are related PHOSPHATE with food to avoid an upset stomach. to the amount of primaquine taken and to persons who may already be Other NAMES: Primaquine What should you do if you FORGET a experiencing low red blood cell levels. dose? WHY is this drug prescribed? Rarely, primaquine may cause If you miss a dose of primaquine, take it leukopenia (a decrease in your white Primaquine is an antibiotic used to treat as soon as possible. However, if it is blood cells which are necessary to help different types of infections. time for your next dose, do not double fight bacterial infections). the dose, just carry on with your regular It can be given in combination with schedule. To ensure that you do not develop these clindamycin (Dalacin C) for the adverse effects, it is important that you treatment of Pneumocystis carinii Why should you not forget to take come to your regular blood tests. pneumonia (PCP). This combination is this drug? Please notify your doctor if you develop usually used for people who have the following symptoms: fatigue, experienced adverse effects to sulfa If you miss doses of primaquine, your weakness, shortness of breath, rapid drugs such as trimethoprim- infection may continue or worsen. In heartbeat, dark– coloured urine, fever sulfamethoxazole (TMP/SMX, such a situation, you may need to take or chills . Bactrim , Septra ) or dapsone. This other drugs. Therefore, it is extremely combination is a safe and effective important that you take primaquine for It is important that you keep your alternative.
    [Show full text]
  • Repatriation Medical Authority Investigation Into Chemically
    Attachment 4 Repatriation Medical Authority Investigation into Chemically acquired brain injury caused by mefloquine, tafenoquine or primaquine For the Repatriation Medical Authority For the August 2017 RMA Meeting © Repatriation Medical Authority, 2017. All rights reserved. August meeting 2017 Chemically acquired brain injury 1 of 78 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................ 2 LIST OF TABLES ..................................................................................................................................... 3 GLOSSARY/ABBREVIATIONS................................................................................................................ 3 CURRENT STATEMENTS OF PRINCIPLES ........................................................................................... 4 BACKGROUND ........................................................................................................................................ 4 SUBMISSIONS/CORRESPONDENCE .................................................................................................... 4 LITERATURE SEARCH .......................................................................................................................... 10 DEFINITION ............................................................................................................................................ 10 INTRODUCTION ....................................................................................................................................
    [Show full text]
  • Population Pharmacokinetics of Primaquine in the Korean Population
    pharmaceutics Article Population Pharmacokinetics of Primaquine in the Korean Population Woo-Yul Lee 1,2 , Dong-Woo Chae 1, Choon-Ok Kim 3,* , Sang-Eun Lee 4, Yee-Gyung Kwak 5, Joon-Sup Yeom 6 and Kyung-Soo Park 1,* 1 Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (W.-Y.L.); [email protected] (D.-W.C.) 2 Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Korea 3 Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Korea 4 Korea Centers for Disease Control and Prevention, Cheongju 28159, Korea; [email protected] 5 Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang 10380, Korea; [email protected] 6 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] * Correspondence: [email protected] (C.-O.K.); [email protected] (K.-S.P.); Tel.: +82-2-2258-7357 (C.-O.K.); +82-2-2228-1735 (K.-S.P.) Abstract: While primaquine has long been used for malaria treatment, treatment failure is common. This study aims to develop a population pharmacokinetic model of primaquine and its metabolite, carboxyprimaquine, and examine factors influencing pharmacokinetic variability. The data was obtained from a clinical study in 24 Korean subjects randomly assigned to normal and obese groups. The participants received primaquine 15 mg daily for 4 days and blood samples were collected at day 4. Pharmacokinetic modeling was performed with NONMEM and using simulations; the Citation: Lee, W.-Y.; Chae, D.-W.; influences of doses and covariates on drug exposure were examined.
    [Show full text]
  • Guidelines for Treatment of Malaria in the United States 1 (Based on Drugs Currently Available for Use in the United States — October 1, 2019)
    Guidelines for Treatment of Malaria in the United States 1 (Based on drugs currently available for use in the United States — October 1, 2019) CDC Malaria Hotline: (770) 488-7788 or (855) 856-4713 (toll free) Monday–Friday, 9 am to 5 pm EST; (770) 488-7100 after hours, weekends, and holidays Clinical Diagnosis/ Drug Susceptibility (Based on Recommended Regimen and Adult Dose1 Recommended Regimen and Pediatric Dose1 Plasmodium Species Region Infection Was Acquired) Pediatric dose should NEVER exceed adult dose Uncomplicated malaria/ Chloroquine resistance or unknown A. Artemether-lumefantrine (Coartem™)3,4 P. falciparum, or resistance2 Tablet=20mg artemether/ 120 mg lumefantrine species not identified All malarious regions except those specified A 3-day treatment schedule with a total of 6 oral doses is recommended for both adult and pediatric patients based on as chloroquine sensitive listed in the box weight. The patient should receive the initial dose, followed by the second dose 8 hours later, then 1 dose bid for the If “species not identified” below following 2 days. Dosing as follows: is later diagnosed as P. 5–<15 kg: 1 tablet per dose vivax or P. ovale, please 15–<25 kg: 2 tablets per dose see P. vivax and P. ovale 25–<35 kg: 3 tablets per dose (below) re: treatment with ≥35 kg: 4 tablets per dose primaquine or tafenoquine B. Atovaquone-proguanil (Malarone™)4,5 B. Atovaquone-proguanil (Malarone™)4,5 Adult tablet= 250 mg atovaquone/ 100 mg proguanil Adult tab=250 mg atovaquone/ 100 mg proguanil 4 adult tabs po qd x 3 days Peds tab=62.5 mg atovaquone/ 25 mg proguanil 5–<8 kg: 2 peds tabs po qd x 3 days 8–<10 kg: 3 peds tabs po qd x 3 days 10–<20 kg: 1 adult tab po qd x 3 days 20–<30 kg: 2 adult tabs po qd x 3 days 30–<40 kg: 3 adult tabs po qd x 3 days ≥40 kg: 4 adult tabs po qd x 3 days C.
    [Show full text]