2021 Product Catalog Guide Metallographic Products

Total Page:16

File Type:pdf, Size:1020Kb

2021 Product Catalog Guide Metallographic Products 2021 PRODUCT CATALOG GUIDE METALLOGRAPHIC PRODUCTS Metallographic Equipment and Consumables Abrasive & Precision Cutting | Compression & Castable Mounting | Grinding & Polishing Hardness Testing | Microscopes | Image Analysis | Lab Furniture 3601 E. 34th St., Tucson, AZ 85713 Telephone: +1-520-882-6598 Fax: +1-520-882-6599 email: [email protected] TABLE OF CONTENTS TABLE of CONTENTS Customer Assistance ABRASIVE CUTTING .................................4 METALLOGRAPHIC POLISHING ..........84 For sales literature, order placement, prices, delivery 5 84 & order status, contact us: METALLOGRAPHIC ABRASIVE CUTTERS ................................. METALLOGRAPHIC POLISHING PADS ........................... ABRASIVE CUTTING CONSUMABLES.........................................9 POLYCRYSTALLINE DIAMOND ...........................................94 Phone: +1-520-882-6598 12 98 FAX: +1-520-882-6599 ABRASIVE CUTTING RECOMMENDATIONS ........................... MONOCRYSTALLINE DIAMOND ......................................... email: [email protected] DIAMOND EXTENDERS / LUBRICANTS ....................... 100 Websites: https://www.metallographic.com PRECISION SECTIONING ......................... 14 FINAL POLISHING ....................................................................102 https://www.metallographic-equipment.com METALLOGRAPHIC WAFERING SAWS .....................................15 18 109 For product information, metallographic procedures, PRECISION SECTIONING CONSUMABLES .............................. CLEANING ....................................... etchants & troubleshooting guidelines online, visit: 22 110 PACE TecHNOLOGIES HAS CONTINUED TO EXpaND ITS PRODUct LINE COMPRESSION MOUNTING..................... ETCHING .......................................... https://www.metallographic.com 23 AND MANUFactURING capaBILITIES. WE HAVE REDESIGNED OUR COMPRESSION MOUNTING PRESSES ..................................... HARDNESS TESTERS .........................114 EQUIPMENT TO BE State-OF-THE-ART, UTILIZING DYNAMIC CONStaNT For Safety Data Sheets (SDS): COMPRESSION MOUNTING CONSUMABLES ......................26 115 TORQUE SERVO MOTORS IN OUR CUtteRS AND POLISHERS AND TRUE https://www.metallographic.com/MSDS/MSDS.htm MICROHARDNESS TESTERS ............................................... PZT MOTORS FOR OUR VIBRatORY POLISHERS. IN ADDITION, we CASTABLE MOUNTING ...........................30 HARDNESS TESTING CONSUMABLES .......................... 116 For equipment quotes: HAVE SIGNIFIcaNTLY IMPROVED OUR CONTROL INteRFaceS TO OFFER 31 118 INTRODUCTION Call: +1-520-882-6598 or CASTABLE MOUNTING CHAMBER .............................................. ROCKWELL HARDNESS TESTERS ................................... THE END USER MORE FLEXIBILITY AND MORE CONTROL OVER THEIR email: [email protected] 32 124 SAMPLE PRepaRatION PROceDURES. ACRYLIC MOUNTING CONSUMABLES ..................................... BRINELL TESTERS .................................................................... EPOXY MOUNTING CONSUMABLES .........................................34 MACROVICKERS TESTERS ..................................................126 WE HAVE ALSO CONTINUED TO BecOME MORE VERTIcaLLY INteGRateD 36 OF CONTENTS TABLE IN OUR SUppLY CHAIN. INCLUDING: CONVERTING OUR OWN GRINDING POLYESTER MOUNTING CONSUMABLES .............................. METALLOGRAPHIC MICROSCOPES .... 128 papeRS, PRODUCING OUR OWN DIAMOND SUSpeNSIONS AND Terms & Conditions CASTABLE MOLDS & ACCESSORIES ....................................... 37 FORMULatING OUR OWN CUttING AND POLISHING LUBRIcaNTS. THIS 132 VERTIcaL INteGRatION ALLOWS US TO BetteR CONTROL OUR PRODUct • Prices subject to change without notice 38 IMAGE ANALYSIS SOFTWARE ............. METALLOGRAPHIC POLISHERS ............... 133 QUALITY, AS weLL AS, BetteR MANAGE OUR COST. METALLOGRAPHIC SOFTWARE ........................................ METALLOGRAPHIC HAND GRINDERS ......................................39 • Minimum order $100.00 134 AT PACE TecHNOLOGIES, OUR GOAL IS CUSTOMER SatISFactION. WELD CHECK & HARDNESS PRO SOFTWARE ......... MANUAL METALLOGRAPHIC POLISHERS .............................42 WE OFFER USER-FRIENDLY tecHNIcaL AND ORDERING INFORMatION, • Taxes added where applicable 46 136 INStaNT COMMUNIcatIONS AND TRANSpaRENT PRICING. OUR METALLOGRAPHIC POLISHER ACCESSORIES .................... LABORATORY FURNITURE ................ • Prices and Shipping FOB factory 48 EMPLOYeeS PRactIce A "CUSTOMER-FIRST" PHILOSOPHY EVERYDAY, AUTOMATED METALLOGRAPHIC POLISHERS ................... AND CUSTOMER DEDIcatION HAS MADE PACE TecHNOLOGIES • Terms Net 30-days with established credit VIBRATORY METALLOGRAPHIC POLISHERS .......................56 METALLOGRAPHIC CLASS 140 TODAY'S LeaDER IN THE SUppLY OF MetaLLOGRapHIC CONSUMABLES PROCEDURES .................................. AND EQUIPMENT. GRINDING CONSUMABLES ......................58 154 OUR 5F PROGRAM MANTRA: SILICON CARBIDE ABRASIVE PAPER .....................................59 INDEX ............................................. -FIRST TO QUOte SILICON CARBIDE FOIL SYSTEM .................................................66 -FIRST TO FOLLOW-UP DIAMOND GRINDING ..........................................................................68 IRST TO HIP -F S 76 -FULL TRAINING AND TecHNIcaL SUppORT ABRASIVE LAPPING FILMS ............................................................ 82 -FASteST SERVIce (24/7 WEB-BASED SERVIce) SPECIALTY ABRASIVE GRINDING SURFACES .................... Page 2 https://www.metallographic.com Page 3 ABRASIVE CUTTING METALLOGRAPHIC ABRASIVE CUTTERS TABLE of CONTENTS year warranty MEGA T300S 10 & 12-inch Metallographic Abrasive Cutter 2 Limited warranty NEW 10 & 12-inch MANUAL metallographic abrasive cutter Manual Cutting FEATURE MEGA-T300S DESCRIPTION MEGA-T300A DESCRIPTION Benefits: MEGA-T300S ABRASIVE CUTTER ABRASIVE MEGA-T300S Cut-off blade size 10 or 12-inch (250-305 mm) 10 or 12-inch (250-305 mm) High torque servo motor • Touch screen control Variable speed cutting Arbor size 32 mm 32 mm • Wheel and table feed controlled Maximum 2.75 x 10-inch Maximum 2.75 x 10-inch Chop and table feed cutting Cutting capacity (H X D) cutting (70 x 250 mm) (70 x 250 mm) T-slot table fixturing • Cutting capacity up to 4-inches Cutting capacity Maximum diameter 4-inch (110 mm) Maximum diameter 4-inch (110 mm) Touch screen control (110 mm) solid stock sample Wheel feed Manual Manual using 12-inch (300 mm) blade Table feed Manual Auto / Manual • Variable speed control Y pulse feed Manual Auto • High leverage handle for better Auto with feed rate: control MEGA-T300S Y constant feed Manual 0.0005 to 0.20-inch/sec. (0.01-5 mm/ sec.) • Powerful 5.5 hp (4 KW) 3-phase servo motor for constant torque Vertical movement 7.5-inch (190 mm) 7.5-inch (190 mm) (z-axis) • Twin t-slotted stainless steel Table feed movement table 8-inch (200 mm) 8-inch (200 mm) (y-axis) • Electronic braking system Table movement n.a. 2-inch (50 mm) (x-axis) for parallel cuts T-slotted table 11 x 18.25-inch 11 x 18.25-inch MEGA T300A dimensions (280 x 470 mm) (280 x 470 mm) NEW 10 & 12-inch AUTOMATED metallographic abrasive cutter T-slotted width 0.5-inch (50 mm) 0.5-inch (50 mm) Automated / Manual Cutting Operation Manual Auto / Manual High torque servo motor Cooling unit 14 gallons (53 liters) 14 gallons (53 liters) CUTTERS ABRASIVE METALLOGRAPHIC MEGA-T300A ABRASIVE CUTTER ABRASIVE MEGA-T300A Constant torque variable speed Constant torque variable speed Servo Variable speed cutting Motor power Servo Motor - 5.5 hp (4 KW/15Nm) Motor - 5.5 hp (4 KW/15Nm) Chop and table feed cutting Motor speed Variable (1500-3500 rpm) Variable (1500-3500 rpm) T-slot table fixturing 208Y / 380V 208Y / 380V Electrical specification Touch screen control 3-phase (50/60 Hz) 3-phase (50/60 Hz) Hood closed: 33.5 x 37.5 x 30-inch Hood closed: 33.5 x 37.5 x 30-inch (850 x 950 x 766 mm) (850 x 950 x 766 mm) Dimensions (WxDxH) Hood open: 33.5 x 37.5 x 35.5-inch Hood open: 33.5 x 37.5 x 35.5-inch (850 x 950 x 900 mm) (850 x 950 x 900 mm) Weight 350 lbs (160 kg) 350 lbs (160 kg) MEGA-T300A Cutter Support Bench MEGA-BENCH MEGA-BENCH (optional) Catalog Number MEGA-T300S MEGA-T300A Machinery Directive 2006/42/EC RoHS Directive 2011/65/EU Page 4 https://www.metallographic.com/Metallographic-Equipment/Metallography-Abrasive-cutter.htm Page 5 ABRASIVE CUTTING METALLOGRAPHIC ABRASIVE CUTTERS TABLE of CONTENTS year warranty 14 & 16-inch Metallographic Abrasive Cutter NEW MEGA T400S Limited warranty 14 & 16-inch MANUAL metallographic abrasive cutters 2 Manual Cutting FEATURE MEGA-T400S DESCRIPTION MEGA-T400A DESCRIPTION Benefits: MEGA-T400S ABRASIVE CUTTER ABRASIVE MEGA-T400S High torque servo motor Cut-off blade size 14 or 16-inch (350-400 mm) 14 or 16-inch (350-400 mm) • Touch screen control Variable speed cutting Arbor size 32 mm 32 mm • Wheel and table feed controlled Chop and table feed cutting Maximum 3.15 x 12-inch Maximum 3.15 x 12-inch cutting Cutting capacity (H X D) (80 x 300 mm) (80 x 300 mm) T-slot table fixturing • Cutting capacity up to 6 inches Maximum diameter 6-inch Maximum diameter 6-inch Touch screen control Cutting capacity (150 mm) solid stock sample using (150 mm) (150 mm) 16-inch (400 mm) blade Wheel feed Manual Manual • Variable speed control Table feed Manual Auto / Manual • High leverage handle for better Y pulse feed Manual Auto control Auto with feed rate: Y constant feed Manual 0.0005 to 0.20-inch/sec. (0.01-5 mm/ • Powerful 9.3 hp (7 KW) 3-phase sec.) servo motor for constant torque Vertical
Recommended publications
  • Pacing Is a Simple Means of Measuring Linear
    FOR-47 by Dr. Deborah B. HilI Department of Forestry acing is a simple means of measuring linear Pdistance by walking. It can be used outdoors or indoors, in the woods or over land. Pacing's measurement dates back to Roman times. The Roman pace, measured from the heel of the foot to the heel of the same foot in the next stretch, was about 58.1 inches. Today this is known as the geometric pace, which measures about 5 feet. Apace .­ To make pacing work for you, you need to know how much distance your pace covers. You can determine this by walking a pre-measured course a few times and then checking the pacing chart below. A pace equals two normal steps, beginning and ending on your dominant foot. A common use for pacing in forestry is to pace off 66 feet from a tree in order to get a measurement of tree height. This is why you detem1ine your pace on a 66­ foot course. 1. Begin by measuring a 66-foot course with a tape measure. You will use this distance to establish your pace accurately. 2. Pace off the course measured at Step # 1. Repeat two or three times and compare results. 3. Look lip the number of your paces on the chart below to determine how many Unear feet each of your paces covered. EX.: Ifit takes you 24 paces to cover 66feet, each ofyour paces is 2. 75 feet. 4. When you need to go from one point to another and do not know how far it is, pace the distance.
    [Show full text]
  • Metallography – a Powerful Instrument for Material Characterisation, Material Development and Failure Analysis
    771 Microsc. Microanal. 21 (Suppl 3), 2015 doi:10.1017/S1431927615004651 Paper No. 0386 © Microscopy Society of America 2015 Metallography – A Powerful Instrument for Material Characterisation, Material Development and Failure Analysis Michael Panzenböck1, Francisca Mendez-Martin1, Boryana Rashkova1, Patric Schütz1 1. Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Austria A. Widmanstätten (1754-1849) was one of the first scientists who developed techniques for studying the microstructure of meteorites by grinding and etching them with nitric acid. Also H.C. Sorby (1826- 1908) used such methods for microstructural investigations of minerals and rocks to identify their origin, as well as to examine steels and meteorites. Other famous and nowadays well known researchers such as R. Hadfield (1858—1940), A. Martens (1850-1914), E.C. Bains (1891-1971), K.H. Ledebur (1837- 1906), and H. Brearley (1871-1948) further developed these basic methods to get more information about the microstructure, especially in case of steels. Many microstructural parts or phases of the Fe- Fe3C phase diagram are called in honour of these scientists, e.g., “Widmanstätten ferrite”, “Sorbite”, “Bainite”, “Martensite”, or in case of cast iron “Ledeburite”. Without doubt, a material’s microstructure is decisive, because it is the arrangement, size and distribution of different phases which is responsible for the mechanical properties such as strength, ductility and toughness. In order to develop high-performance materials for existing and new applications it is necessary to establish a basic understanding of the material behaviour or its response under service loads. In addition to the standard methods such as light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), also high-resolution methods (transmission electron microscopy (TEM), atom probe tomography (APT)) have been developed over the last three decades.
    [Show full text]
  • Met-Manual-2B.Pdf
    1 2 METALLOGRAPHIC HANDBOOK Donald C. Zipperian, Ph.D. Chief Technical Officier PACE Technologies Tucson, Arizona USA Copyright 2011 by PACE Technologies, USA No part of this manual may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner. First printing, 2011 3 Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by PACE Technologies, PACE Technologies cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of PACE Technologies control, PACE Technologies assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OR BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY.
    [Show full text]
  • Metallographic Preparation 2009
    Inc. DRP Ventures Division METALLOGRAPHIC PREPARATION 2009 y Copyright DRP Ventures Inc. 2007 2008 Division DRP Ventures Inc. # We would like to welcome the opportunity to introduce our latest catalogue. It provides an increasing range of quality products in abrasive cutting, mounting, grinding and polishing. ANAMET Sales and Technical Services are supported by competent and motivated personnel who continue to make every effort to earn and maintain your trust. They are committed to serving their customers by providing sample preparation supplies and offering assistance in improving their metallographic procedures. Over the years, ANAMET has been meeting the requirements of many industries such as aerospace, automotive, ceramics, composites disk drives, electro-optical materials, electronics, geological services, metal converters, metal powders, foundries, mineralogy, optics, plastics, primary and secondary metals, printed circuits, pulp industry, semiconductor substrates, tolls, mold and die finishing, educational institutions and nanotechnology. We thank you for being at the heart of our commitment and look forward to a continued relationship. Our dedication for excellence begins with our commitment in providing you with only the very best. Sincerely, Diane R. Pilley , B.Sc. ANAMET Division DRP Ventures Inc. 655 Jean-Paul Vincent, Suite 9, Longueuil, Qc, Canada J4G 1R3 • Tel: 450.646.1290 • Fax: 450.646.4309 • E-mail: [email protected] • Website: www.anamet.com Î ORDERING INFORMATION ON THE NEXT PAGE Í SECTIONING Abrasive Cut-Off Wheels. 1 Small Abrasive Cut-Off Wheels. 8 Diamond Cut-Off Wheels. 9 Wafering Diamond Wheels. 10 Cubic Boron Nitride. 11 Sectioning Accessories. 12 MOUNTING Compression Mounting. 13 Ambient Mounting. 16 Castable Mounting Accessories.
    [Show full text]
  • Metallographic Sample Preparation Techniques
    Materials Characterization 1ecliniques-Principle s and Applications Eds : G. Sridliar; S. Ghosh Chowdhurv & N. G. Goswanri NML. Janislredpur-83100711999) pp. 163-176 Metallographic Sample Preparation Techniques SAMAR DAS National Metallurgical Laboratory, Jamshedpur-831007 E-mail : [email protected] ABS'T'RACT Microstructure plays an important role in controlling the properties in metals and allcrvs. Hence i nicrostructu•al study called metallographv has been extensively used for materials selection, failure investigation and materials development. The microstructure of metals are com- monly observed under optical and/or electron microscopes, though other types of microscopes have been developed for specific uses. For any microscopic observation, the preparation of proper sample, which reveals the true microstructure is of prima ti, importance. Numerous and diverse techniques have been developed not only to suit the ma- terial but also for the type of microscope to be used. The techniques also vary with the details to be observed. It is difficult to prepare a comprehensive survey of the techniques developed and practised to- day. An attempt has been made here, to briefly discuss the most corn- monly used specimen preparation techniques for optical, scanning electron and transmission electron microscopy together with their merits and demerits. Any specimen preparation method involves several steps. Proper care in each step is essential to avoid difficulty in the subse- quent steps and to reveal the true microstructure. The choice of a technique depends mainly on the materials, the detail required to be observed and the type of microscope to be used. INTRODUCTION The study of microstructural details of metals and alloys is termed as metal- lography.z The microstructure of steel was first observed by H.C.
    [Show full text]
  • Metallographic Etching
    Metallographic Etching 2nd Edition By Günter Petzow In collaboration with Veronika Carle Translated by Uta Harnisch Techniques for Metallography Ceramography Plastography Contents Preface to the German Edition . VIII Preface . IX Introduction . 1 1 Metallography . 7 1.1 Preparation of Metallographic Specimens . 7 1.2 Specimen Sectioning . 8 1.3 Mounting. 11 1.3.1 Clamping . 12 1.3.2 Embedding . 13 1.3.3 Special Mounting Techniques . 15 1.4 Identification (Marking). 18 1.5 Grinding and Polishing . 18 1.5.1 Mechanical Grinding and Polishing . 19 1.5.2 Microtome Cutting and Ultramilling . 29 1.5.3 Electrolytic Grinding and Polishing . 30 1.5.4 Chemical Polishing . 34 1.5.5 Combined Polishing Methods . 34 1.5.6 Evaluation of Polishing Methods . 36 1.6 Cleaning . 37 1.7 Metallographic Etching . 38 1.7.1 Optical Etching . 39 1.7.2 Electrochemical (Chemical) Etching . 40 1.7.3 Physical Etching . 44 1.7.4 Etching Reproducibility . 45 1.7.5 Etching Terminology . 47 1.7.6 Definitions of Etching Terms . 47 1.8 Field Metallography/Nondestructive Metallography. 50 1.9 Preparation and Etching Recipes for Metallic Materials . 51 1.9.1 Silver . 53 1.9.2 Aluminum . 57 1.9.3 Gold . 64 v 1.9.4 Beryllium. 67 1.9.5 Bismuth and Antimony . 70 1.9.6 Cadmium, Indium, and Thallium . 72 1.9.7 Cobalt . 75 1.9.8 Refractory Metals (Chromium, Molybdenum, Niobium, Rhenium, Tantalum, Vanadium, and Tungsten) . 80 1.9.9 Copper. 88 1.9.10 Iron, Steel, and Cast Iron . 94 1.9.11 Semiconductors (Germanium, Silicon, Selenium, Tellurium, AIIIBVI, and AIIBVI Compounds).
    [Show full text]
  • Nbs Metric Publications
    ] 10 11 12 13 14 15 National Bureau of Standards from the *Joz (jood WleaAure Washington, D. C. 20234 2 3 5 inches I I I I I I I I I I I I I I I 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 ; 1 1 1 1 1 1 1 f I I I I I I I I I ihhlilililili I I I I I 6. 10 11 12 13 14 15 7oz $ood VHeatuze from the National Bureau of Standa rds Washington, D. C. inches 4 I I I I I I I I I I I I I I lllllhlllllll 'lllllllll JiIiIUjI, llllh Lt-I 1 I I 1 1 1 UjJUJUJLlIj . S. DEPARTMENT OF COMMERCE ational Bureau of Standards NBS Special Publication 365 U. S. DEPARTMENT OF COMMERCE National Bureau of Standards NBS Special Publication 365 ashington. D. C. 20234 Revised May 1976 CO: METRIC CONVERSION CARD Washington, D. C. 20234 Revised May 1976 CO: METRIC CONVERSION CARD Approximate Conversions to Metric Measures Metric Measures ymbol When Yuu Know Multiply by To Find Symbo Approximate Conversions to LENGTH When You Kn To Find Symbol 1 1 \t.i;i inn inches 2.5 centimeters cm in inches 2.5 centimeters cm lit feet 30 centimeters cm ft feet 30 centimeters cm idrd yards 0.9 meters m yd yards 0.9 meters m ' ni miles 1.6 kilometers km AREA mi miles 1.6 kilometers km AREA .<n' square inches 6.5 2 CD: square centimeters cm 2 CO in square inches 6.5 square centimeters cm" k¥ square feet 0.09 square meters m" 2 J 2 ft square feet 0.09 square meters m ,d square yards 0.8 square meters m* 2 2 1' yd square yards 0.8 square meters m «ini" square miles 2.6 square kilometers km 2 mi2 square miles 2.6 square kilometers km acres 0.4 hectares ha in: acres 0.4 hectares ha lO: MASS (we Rht) MASS (weight) miz ounces 28 grams g oz ounces 28 grams lib pounds 0.45 kilograms kg lb pounds 0.45 kilograms kg short tons 0.9 metric ton t short tons 0.9 metric ton t (2000 lb) VOLUME (20001b) VOLUME ;P teaspoons 5 milliliters ml.
    [Show full text]
  • Metallographic Procedures and Analysis – a Review
    ISSN 2303-4521 PERIODICALS OF ENGINEERING AND NATURAL SCIENCES Vol. 3 No. 2 (2015) Available online at: http://pen.ius.edu.ba Metallographic Procedures and Analysis – A review Enes Akca Erwin Trgo Department of Mechanical Engineering, Faculty of Engineering and Natural Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Bosnia and Herzegovina Bosnia and Herzegovina [email protected] Abstract The purpose of this research is to give readers general insight in what metallography generally is, what are the metallographic preparation processes, and how to analyse the prepared specimens. Keywords: metallography; metallographic specimens; metallographic structure 1. Introduction depends generally on the type of material, and so you can clearly differentiate abrasive cutting (metals), thin Metallography is the study of the microstructure of sectioning with a microtome (plastics), and diamond various metals. To be more precise, it is a scientific wafer cutting (ceramics). discipline of observing chemical and atomic structure of those materials, and as such is crucial for These processes are mostly used in order to minimize determining product reliability. the damage which could alter the microstructure of the material, and the analysis itself. Not only metals, but polymeric and ceramic materials can also be prepared using metallographic techniques, 2.2. Mounting hence the terms plastography, ceramography, materialography, etc. This process protects the material’s surface, fills voids in damaged (porous) materials, and improves handling Steps for preparing metallographic specimen include a of irregularly shaped samples. There are plenty of ways variety of operations, and some of them are: to conduct this operation, and all of them depend on the documentation, sectioning and cutting, mounting, type of material that is being handled.
    [Show full text]
  • Metallography of Titanium and Its Alloys
    MICROSTRUCTURE OF TITANIUM AND ITS ALLOYS George F. Vander Voort Director, Research & Technology, Buehler Ltd., Lake Bluff, Illinois, 60044, USA ABSTRACT A three-step preparation procedure was developed for titanium and its alloys. Attack polishing is utilized in the third step for optimal results, particularly for imaging alpha-Ti with polarized light. Two-phase α-β alloy specimens and all alloys are easier to prepare than single-phase α specimens. Kroll’s reagent appears to be adequate for most alloys. A modification of Weck’s reagent was used for color metallography. INTRODUCTION Titanium and its alloys have become quite important commercially over the past fifty years due to their low density, good strength-to-weight ratio, excellent corrosion resistance and good mechanical properties. On the negative side, the alloys are expensive to produce. Titanium, like iron, is allotropic and this produces many heat treatment similarities with steels. Moreover, the influences of alloying elements are assessed in like manner regarding their ability to stabilize the low temperature phase, alpha, or the high temperature phase, beta. Like steels, Ti and its alloys are generally characterized by their stable room temperature phases - alpha alloys, alpha-beta alloys and beta alloys, but with two additional categories: near alpha and near beta. Titanium and its alloys are more difficult to prepare for metallographic examination than steels. As for all refractory metals, titanium and its alloys have much lower grinding and polishing rates than steels. Deformation twinning can be induced in alpha alloys by overly aggressive sectioning and grinding procedures. It is safest to mount relatively pure Ti specimens, especially those from service in a hydrogen-containing environment, in castable (“cold”) resins rather than using hot compression mounting due to the potential for altering the hydride content and morphology.
    [Show full text]
  • Metallographic Preparation
    Metallographic Preparation Background Materials engineers can predict the general behavior of materials by observing their microstructure. Besides the crystallographic nature of a material, imperfections inside a material have an even greater influence on the mechanical properties, i.e. tensile, fatigue, creep, fracture toughness, impact properties. Some defects such as missing planes of atoms, called dislocations, are responsible for plastic deformation of crystalline solids. Others such as grain boundaries, precipitates, twins and cracks alter stress distribution in a material and the accompanying motion of dislocations. Some defects such as missing atoms and dislocations cannot be observed optically except by their effects, i.e. strain, etch pits, slip lines. Other defects such as grain boundaries, twins, precipitates, can be observed readily in the microscope. Procedures Metallography is essentially the study of the structural characteristics or constitution of a metal or an alloy in relation to its physical and mechanical properties. The most important part of metallography deals with the microscopic examination of a prepared metal specimen. The metallographic microscope is described in Appendix D on the MSE 227L webpage. Correct preparation begins with the selection of a suitable specimen and continues to the etching stage where the structure of the specimen is revealed. The microscopic examination then defines clearly such structural characteristics as grain size, the size, shape and distribution of secondary phases and non-metallic inclusions; and segregation and other heterogeneous conditions. These characteristics profoundly influence the mechanical properties and physical behavior of the metal. Metallographic examination can provide quantitative information about specimen grain sizes, amount of interfacial area per unit volume, and the amount and distribution of phases.
    [Show full text]
  • Metalog Guide Metalog Guide TM
    Your Guide to the Perfect Materialographic Structure Metalog Guide Metalog Guide TM Leila Bjerregaard Kay Geels Birgit Ottesen Michael Rückert Metalog Guide Published by Struers A/S Valhøjs Allé 176, DK-2610 Rødovre Denmark First published 1992 by Struers. Fourth revised and updated edi- tion 2002. All rights reserved. Re- production of this book’s contents is allowed on the condition that acknowledgement is made. Metalog, Metalog Guide and Metalogram are trademarks of Struers. All efforts have been made to ensure the accuracy of the prepa- ration methods and problem solv- ing advice of this book. However, should any errors be detected, Struers would greatly appreciate being informed of them. The above notwithstanding, Struers can assume no responsi- bility for any consequences of the preparation methods and instruc- tion in the Metalog Guide. ISBN 87-987767-0-3 DKK 265,- incl. VAT Printed in Denmark by Bøhm Offset Page Preface 5 Your direct way to a 1. Metalogram 9 method Method Selection Diagram Metalogram 2. Metalog Methods 11 10 Preparation Methods Metalog Methods You want to know more 3. Preparation Philosophy 37 Cost-effective preparation Philosophy 4. Metalog Process 39 The total preparation process from cutting to the finished sample, ready for microscopy Metalog Process You want to improve the 5. Metalog Master 61 results Expert System Preparation Theory You want to go in depth Metalog Master You want to order 6. Consumables Specification 101 Consumables 7. Miscellaneous 109 Miscellaneous Preface Dear Reader, Metalog Guide has been developed to help you in your work with preparation of materialographic samples. Our main goal when preparing Metalog Guide was to give you a shortcut to efficient sample preparation.
    [Show full text]
  • METALLOGRAPHY of TITANIUM ALLOYS I I I I I I I #., I I I TITANIUM Mej)\Lttlrgical LABORATORY 'I Battelle Memorial Institute Columbus I, Ohio I I I ~ R
    '.....:._-: . TML REF ORT No. 103 /· May 29 ~958 I METALLOGRAPHY OF TITANIUM ALLOYS I I I I I I I #., I I I TITANIUM MEj)\LttlRGICAL LABORATORY 'I Battelle Memorial Institute Columbus I, Ohio I I I_~ r The Titanium Metallurgical• Laboratory was established at Battelle Memorial Institute at the request of the Assistant Secre­ 1 tary of Defense (R & D) to provide the following servi~es: 1. Under the general direction of the Steering Group on Titanium Res.earch and D~velopment, of the I Office of Assistant Secretary of-Defense (R & D), to conduct laboratory investigations directed toward solution of current metallurgical prob­ lems involved in the use of titanium. I 2. As directed by OAS/D, to assist the Government agencies and their contractors in developing data ·1 required for preparation of specifications for ti­ tanium metal and titanium mill products. 3. To provide assistance and advice to OAS/D in its appraisal of the Department of Defense research and development program on titanium and make recommendations with respect to the program .. 4. To collect and~ as directed by OAS/D, disseminate to Government contractors or subcontractors having related Government contracts or subcon-' tracts, available information on the current status of titanium research and deyelopment. 5. When directed by OAS/D, to provide technical consulting services to producers, melters and L fabricators of titanium metal and designers and I fabricators of military equipment containing ti­ tanium, on titanium utilization problems, includ­ ing appropriate consideration of alternate mate - rials. ·1 6. To provide such other research and related serv­ ices, in connection with the titanium program as may be mutually agreed upon betwe·en Battelle.
    [Show full text]