Pollination Biology and Simple Sequence Repeat (Ssr) Genetic Identification of Chestnut Cultivars and Their Progeny

Total Page:16

File Type:pdf, Size:1020Kb

Pollination Biology and Simple Sequence Repeat (Ssr) Genetic Identification of Chestnut Cultivars and Their Progeny POLLINATION BIOLOGY AND SIMPLE SEQUENCE REPEAT (SSR) GENETIC IDENTIFICATION OF CHESTNUT CULTIVARS AND THEIR PROGENY By Carmen Medina-Mora A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Plant Pathology-Doctor of Philosophy 2015 ABSTRACT POLLINATION BIOLOGY AND SIMPLE SEQUENCE REPEAT (SSR) GENETIC IDENTIFICATION OF CHESTNUT CULTIVARS AND THEIR PROGENY By Carmen Medina-Mora After chestnut blight, caused by the accidental introduction of the pathogenic fungus Cryphonectria parasitica, ravaged American chestnut (Castanea dentata) populations, other chestnut species attracted more interest because blight resistance was of primary concern. Therefore, the Michigan chestnut population consists of American, Chinese (C. mollissima), Japanese (C. crenata) and European (C. sativa) trees and their hybrids. For orchards, selection of grafted cultivars is crucial for long-term commercial success. Due to the mixture of non-grafted seedling trees, hybrid trees, and grafted cultivars in Michigan orchards and the variability of nut production within orchards the two objectives of my study were to 1) genetically identify commercially important chestnut cultivars currently growing in Michigan using simple sequence repeat (SSR) markers, and 2) improve our understanding of chestnut pollination including reproductive phenology, and nut-set using genetic analysis of parents and offspring. To genetically identify chestnut cultivars growing in Michigan, a total of 110 samples representing 9 European hybrid cultivars and 2 Chinese cultivars were genotyped. The efficacy of 5 previously determined SSR markers to describe the genetic diversity among 8 chestnut cultivars was evaluated using IDENTITY, POPGENE and CERVUS software. The number of alleles per locus ranged from 10 to 19 alleles with intermediate to high levels of heterozygosity (0.457-0.923). Polymorphic information content (0.693-0.797) and power of discrimination (0.707-0.819) were determined. High levels of genetic diversity were observed in the chestnut population included in this study, where 56 genotypes were defined. The overall SSR profile of each cultivar consisted of alleles useful for the identification of each cultivar included in this study. Unique alleles were obtained with each SSR locus and useful for the identification of 5 out of the 11 chestnut cultivars (‘Colossal’, ‘Benton Harbor’, ‘Everfresh’, ‘Nevada’, and ‘Okei’). Out of the 5 SSR primer sets used, a combination of two primer sets were always sufficient to identify each cultivar, however, the selection of useful primers requires prior knowledge of the cultivars being differentiated. These SSR primer sets were able to identify the parents of F1 progeny when two cultivars, (‘Benton Harbor’ and ‘Okei’) pollinized a third cultivar (‘Colossal’). The SSR-based identification of individual nuts could only be performed if the SSR alleles of the parental trees involved in the cross were known and partially unique to each chestnut cultivar. The SSR profile resulting from the primer sets (EMCs15 and CsCAT1) was sufficient to identify the paternal parent of each nut recovered from the pollination event. To better understand chestnut pollination, experimental crosses were conducted during the 2008-2010 growing seasons. In controlled, natural pollination experiments, the interaction between pollen and flowers was monitored. For one cultivar ('Colossal'), female flowers were receptive to pollen as early as 19-June, and as late as 3-August. In controlled pollination experiments performed in mid-Michigan, pollen was made available to flowers at pre-anthesis, anthesis, and post-anthesis. The highest level of nut production occurred when pollen was available at anthesis on 11-July, 6-July, and 3-July for the 2008, 2009, and 2010 growing seasons, respectively. Pollen application at anthesis was important to obtain a high number of nuts, however, anthesis shifted from year to year. Studies of genetic characterization and pollination biology should provide opportunities that will help Michigan growers establish and maintain high quality commercial chestnut plantings by improving cultivar identification as well as issues related to pollen timing and nut-set. Copyright by CARMEN MEDINA-MORA 2015 To my daughters, Hannah and Kristina, for their endless love. To my parents, Carmen and Victor, for teaching me the necessary tools and values to succeed in life. To my late grandmother, Abuela Marina, for being my guardian angel. To my mentor and friend, Dr. Dennis W. Fulbright, for not giving up on me. To my friends, especially Nancy Holwerda, for their words of encouragement. To The Lord, for providing me with strength during many times of weakness. v ACKNOWLEDGMENTS The author of this dissertation would like to acknowledge the knowledge and guidance provided by her major professor, Dr. Dennis W. Fulbright, and by her committee members, Dr. Andrew M. Jarosz, Dr. James F. Hancock, and Dr. Kyung-Hwan Han. The author would also like to thank Sara Stadt, Mario Mandujano, Irwin Dones-Gonzales, Emily Sweet, Sarah Chesney, Alex Allegretto, and Joseph Dowd for their incomparable help and technical support. Special thanks are due to Dr. Kristina M. Sefc for her valuable technical support and discussion regarding the use of the parentage analysis software, IDENTITY. The author is very grateful for the funding provided by Northern Nut Growers Association, the MSU-Rogers Reserve Endowment, and private funding by Dr. Vladimir Ferrer. Furthermore, the author deeply appreciates the cooperation of various Michigan chestnut growers, especially Mrs.Virginia (Ginger) Rinkel, Mr. Robert (Bob) Rinkel, Mr. William (Bill) Nash, and the late Mr. Kenneth (Ken) LaFever, for allowing the use of their chestnut orchards for experimentation purposes. vi TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................ ix LIST OF FIGURES ...................................................................................................................... xi KEY TO SYMBOLS OR ABBREVIATIONS ………………………………………………...xiii LITERATURE REVIEW........................…………………………………………………………1 CHESTNUTS…………...........…………………………………………………………………...1 Description of Eucastanon species ………………………………………………...……..2 Description of Balanocastanon species ……………………………………………..........5 Description of Hypocastanon species ……………………………………………….........5 Definition of Cultivar ……………………………………………………………………..5 A Brief History of Chestnut Tree Plantings in Michigan Focusing on Germplasm ……...7 Challenges of Identifying Chestnut Cultivars Currently Planted in Michigan …….........15 MOLECULAR MARKERS ……………………………………………………….....................16 Marker-assisted Breeding ………………………………………………………….........16 Genetic Markers ………………………………………………………………………....17 Concluding Remarks on Molecular Markers ……………………………………………25 CURRENT USES OF SIMPLE SEQUENCE REPEATS .……………………………………..26 SSRs as Genetic Markers for Cultivar Identification of Nut-bearing Species …………..26 SSRs as Markers to Assess Genetic Diversity in Chestnuts ……………………….........34 SSRs as Gene Markers to Perform Paternity Analysis in Chestnuts.……………………36 POLLINATION BIOLOGY OF CHESTNUT TREES ………………………………………....37 Pollination Process ………………………………………………………………………39 Chestnut Inflorescences …………………………………………………………………40 Fertilization ……………………………………………………………………………...46 Embryo Formation and Development …………………………………………………...48 CURRENT ASPECTS OF CHESTNUT POLLINATION IN MICHIGAN .…………………..49 THESIS GOALS ………………………………………………………………………………...51 LITERATURE CITED …………………………………………………………………….........52 IDENTIFICATION OF CHESTNUT CULTIVARS AND PROGENY USING SSRs...............64 ABSTRACT ……………………………………………………………………………………..64 INTRODUCTION …………………………………………………………………………........66 MATERIALS AND METHODS ………………………………………………………………..71 SSR-based Identification of Chestnut Cultivars…………………………………………..71 Plant Material ……………………………………………………………………71 DNA Extraction ………………………………………………………………….75 Polymerase Chain Reaction (PCR) Amplification …………………………...….76 Evaluation of Polymorphisms …………………………...........................………79 Microsatellite Analysis …………………………………………………………..80 Phenogram Construction ………………………...………………………………81 vii SSR-based Evaluation of Progeny from an Open-pollinated Orchard in Michigan….….82 Chestnut Orchard and Pollen Source………………………………………….....82 Pollination ……………………………………………….………………………83 Plant Material and DNA Extraction (Kernel Biopsy)……………………………84 Polymerase Chain Reaction (PCR) Amplification.……...……………………….85 Simple Sequence Repeats (SSR)-based Analysis of Parents and F1 progeny…...85 RESULTS………………………………………………………………………………………..88 SSR-based Identification of Chestnut Cultivars ………………………………………….88 SSR locus Analysis ………………………………………………………………88 SSR loci Polymorphism …………………………………………………………90 Genotyping Cultivars ……………………………………...…………………….93 Characteristics of SSR profiles Based on Putative Species ……………………105 Genetic Relationships Among Cultivars/Hybrids ...…………………………....108 SSR-based Evaluation of Progeny from an Open-pollinated Orchard in Michigan……..110 Pollination ……………………………………………………………………...110 SSR analysis of Parental Cultivars and F1 progeny ……………………………112 Microsatellite Analysis …………………………………...…………………....119 DISCUSSION ………………………………………………………………………………….120 Usefulness of SSR as Genetic Markers …………………………………………………122 SSR loci Polymorphism ………………………………………………….……………..123 Genotyping Cultivars ……………………………………………………....…………...126 Genetic
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Acetle Acid on Pollen V, ;. Grain; Germination.»
    Artificial germination of Sorghum vulgare Pers. Pollen Item Type text; Thesis-Reproduction (electronic) Authors Humphrey, David Ford, 1934- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 11:53:46 Link to Item http://hdl.handle.net/10150/551560 MLTIF.IGIkL GERBOZATIGE . op v; . '■ ■■ SOHGHUM WLGAEE BES» POHEN fey ' ' . David Ford Hwaphrey & ffeesis Submitted t®. the Fasti.ty ©f the . DEPARTMENT 0F PEAIMT BREEDING In Partial Fulfillment ®f the. Eequirements , _ ... For the Degree of ; MSTER OF'SCIENCE In the Graduate College .SHE UNIVERSITY CF-ARIZCEA STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in The University Library to be made available to borrowers under rules of the Library* Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made* Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship* In all other instances, however, permission must be obtained from the author* SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: o -j? Professor of Plant Breeding > e ' ii ; ■ : .
    [Show full text]
  • Chestnut Growers Urged to Implement Quarantine for Chestnut Gall Wasp
    Vol. 18 No. 4 Published by Chestnut Growers of America, Inc. Fall 2017 Chestnut Growers Urged to Implement Quarantine for Chestnut Gall Wasp By Michelle Warmund, Ph.D., University of Missouri Center for Agroforestry; Tom Green, Ph.D., Professor Emeritus, Western Illinois University; Tom Wahl, Red Fern Farms; Kathy Dice, Red Fern Farms; and Jim Dallmeyer, Thistle Creek Orchard he chestnut gall wasp, Dryocosumus 40 days and the larvae remain dormant Indeed, this pest was first introduced to Tkuriphilus Yasumatsu, is a tiny, gnat- until the following spring, when galls are the US on scion wood. Dispersal by flight sized, non-stinging insect that causes formed. With bud break, larvae induce is eclipsed by human transport. A serious galls in chestnut trees. These galls retard gall formation on developing plant tissues. source of propagation comes from home plant growth and flowering and can kill Larvae feed on the inner gall tissue for 20 owners who plant chestnuts in their yards branches. Severe infestations can kill trees. to 30 days before pupating. Adult wasps and hunters who plant them in woods to After the adult insects emerge, the dried, emerge from the galls in late May and attract deer. While commercial orchards blackened galls become woody and can early June. Beyond the gall clusters of dead may be fairly far apart, these alternate persist on older limbs for several years. leaves form. Called flags, these are easily growers provide additional “stepping Older, slower growing trees are more visible, making location of galls quickly stones” for the spread of the CGW. vulnerable.
    [Show full text]
  • Chestnuts in Appalachian Culture Part II Chestnuts in Appalachian Culture Part II a Perfect Wildlife Food Lost in Time, But
    the September 2010 | Issue 2 Vol.24 27th Annual Meeting October 15-17 Registration Information Inside Chestnuts in Appalachian Culture Part II A Perfect Wildlife Food Lost in Time, But Not Forgotten Simple Strategies for Controlling a Common Pest MeadowviewMeadowview DedicationDedication a Success!S ! 27th REGISTER ONLINE AT WWW.ACF.ORG REGISTRATIONANNUAL MEETING OR CALL (828) 281-0047 TO REGISTER BY PHONE THE AMERICAN CHESTNUT FOUNDATION Option 1: Full Registration PAYMENT TACF Member $75 Name of Attendee(s) Non-Member $115 (includes a one-year membership) Address Full Registration for one person City (does not include lodging) State Includes: Zip Code Phone number t Friday Night Welcome Reception t Saturday Night Dinner & Awards Program Email t Access to all Workshops Form of Payment t All Meals Check (payable to TACF) Credit Card Option 2: Day Passes for Workshops Only (Registration fee does not include lodging Total amount due $ or meals) Credit Card Billing Information SATURDAY Credit Card (circle one): Visa Mastercard Regular Members $40 Card Number __ __ __ __-__ __ __ __-__ __ __ __-__ __ __ __ Student Members $40 Regular Non-Member $80 (includes a one-year membership) Expiration Date Student Non-Member $55 (includes a one-year membership) Name on Card (print) SUNDAY Address Regular Members $25 City Student Members $25 State Zip Code Regular Non-Member $65 (includes a one-year membership) Student Non-Member $40 (includes a one-year membership) Phone number All attendees MUST pre-register for the Annual Meeting. Signature TACF needs to register all of our attendees with NCTC’s security office prior to the meeting, and no on-site Return form and payment to: registration will be available.
    [Show full text]
  • Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
    Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility
    [Show full text]
  • The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea Ozarkensis" (2017)
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2017 The ffecE t of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis Colton Zirkle University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, Entomology Commons, and the Plant Biology Commons Recommended Citation Zirkle, Colton, "The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis" (2017). Theses and Dissertations. 1996. http://scholarworks.uark.edu/etd/1996 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected], [email protected]. The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Colton Zirkle Missouri State University Bachelor of Science in Biology, 2014 May 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ____________________________________ Dr. Ashley Dowling Thesis Director ____________________________________ ______________________________________ Dr. Frederick Paillet Dr. Neelendra Joshi Committee Member Committee Member Abstract Ozark chinquapin (Castanea ozarkensis), once found throughout the Interior Highlands of the United States, has been decimated across much of its range due to accidental introduction of chestnut blight, Cryphonectria parasitica. Efforts have been made to conserve and restore C. ozarkensis, but success requires thorough knowledge of the reproductive biology of the species. Other Castanea species are reported to have characteristics of both wind and insect pollination, but pollination strategies of Ozark chinquapin are unknown.
    [Show full text]
  • Recent Advances in Adventitious Root Formation in Chestnut
    plants Review Recent Advances in Adventitious Root Formation in Chestnut Jesús M. Vielba, Nieves Vidal , M. Carmen San José, Saleta Rico and Conchi Sánchez * Department of Plant Physiology, Instituto de Investigaciones Agrobiológicas de Galicia, Consejo Superior de Investigaciones Científicas, 15705 Santiago de Compostela, Spain; [email protected] (J.M.V.); [email protected] (N.V.); [email protected] (M.C.S.J.); [email protected] (S.R.) * Correspondence: [email protected]; Tel.: +34-981590958 Received: 7 September 2020; Accepted: 5 November 2020; Published: 11 November 2020 Abstract: The genus Castanea includes several tree species that are relevant because of their geographical extension and their multipurpose character, that includes nut and timber production. However, commercial exploitation of the trees is hindered by several factors, particularly by their limited regeneration ability. Regardless of recent advances, there exists a serious limitation for the propagation of elite genotypes of chestnut due to decline of rooting ability as the tree ages. In the present review, we summarize the research developed in this genus during the last three decades concerning the formation of adventitious roots (ARs). Focusing on cuttings and in vitro microshoots, we gather the information available on several species, particularly C. sativa, C. dentata and the hybrid C. sativa C. crenata, and analyze the influence of several factors on the achievements of the × applied protocols, including genotype, auxin treatment, light regime and rooting media. We also pay attention to the acclimation phase, as well as compile the information available about biochemical and molecular related aspects. Furthermore, we considerate promising biotechnological approaches that might enable the improvement of the current protocols.
    [Show full text]
  • Chestnut Quiz: Questions and Answers
    kupidonia.com Chestnut Quiz: questions and answers Chestnut Quiz: questions and answers - 1 / 4 kupidonia.com 1. Which family of trees does chestnut belong to? Juglandaceae Fagaceae Myricaceae 2. How many species of chestnut exist? 9 7 8 3. What are the two accepted species of American chestnuts? Castanea dentata and Castanea pumila Castanea mollissima and Castanea henryi Castanea pumila and Castanea seguinii 4. Which genius does chestnut belong to? Castanea Lithocarpus Castanopsis 5. What is the scientific name for Dwarf chestnut? Castanea henryi Castanea pumila Chestnut Quiz: questions and answers - 2 / 4 kupidonia.com Castanea mollissima 6. How much energy does a raw chestnut have? 890 kJ 670 kJ 820 kJ 7. Which country is the largest producer of chestnuts? China South Korea Turkey 8. Which language does name "chestnut" come from? Spanish Latin Old French 9. Where was chestnut brought to Europe from? Asia Africa Australia Chestnut Quiz: questions and answers - 3 / 4 kupidonia.com Chestnut Quiz: questions and answers Right answers 1. Which family of trees does chestnut belong to? Fagaceae 2. How many species of chestnut exist? 8 3. What are the two accepted species of American chestnuts? Castanea dentata and Castanea pumila 4. Which genius does chestnut belong to? Castanea 5. What is the scientific name for Dwarf chestnut? Castanea pumila 6. How much energy does a raw chestnut have? 820 kJ 7. Which country is the largest producer of chestnuts? China 8. Which language does name "chestnut" come from? Old French 9. Where was chestnut brought to Europe from? Asia Chestnut Quiz: questions and answers - 4 / 4 Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • Pollination in Jacaranda Rugosa (Bignoniaceae): Euglossine Pollinators, Nectar Robbers and Low Fruit Set P
    Plant Biology ISSN 1435-8603 RESEARCH PAPER Pollination in Jacaranda rugosa (Bignoniaceae): euglossine pollinators, nectar robbers and low fruit set P. Milet-Pinheiro1 & C. Schlindwein2 1 Programa de Po´ s-Graduac¸a˜ o em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, Brazil 2 Departamento de Botaˆ nica, Universidade Federal de Pernambuco, Recife, Brazil Keywords ABSTRACT Apidae; bees; Brazil; Euglossini; Jacaranda rugosa; National Park of Catimbau; nectar Nectar robbers access floral nectar in illegitimate flower visits without, in robbers; pollination. general, performing a pollination service. Nevertheless, their effect on fruit set can be indirectly positive if the nectar removal causes an incremental Correspondence increase in the frequency of legitimate flower visits of effective pollinators, P. Milet-Pinheiro, Programa de Po´ s-Graduac¸a˜ o especially in obligate outcrossers. We studied pollination and the effect of em Biologia Vegetal, Universidade Federal de nectar robbers on the reproductive fitness of Jacaranda rugosa, an endemic Pernambuco. Av. Prof. Moraes Rego, s ⁄ n, shrub of the National Park of Catimbau, in the Caatinga of Pernambuco, 50670-901 Recife, PE Brazil. Brazil. Xenogamous J. rugosa flowers continuously produced nectar during ) E-mail: [email protected] the day at a rate of 1 llÆh 1. Female and male Euglossa melanotricha were the main pollinators. Early morning flower visits substantially contributed Editor to fruit set because stigmas with open lobes were almost absent in the after- J. Arroyo noon. Ninety-nine per cent of the flowers showed damage caused by nectar robbers. Artificial addition of sugar water prolonged the duration of flower Received: 3 September 2007; Accepted: 6 visits of legitimate flower visitors.
    [Show full text]
  • Comparing Pollination Bag Types for Micro-Environmental Parameters Influencing Seed Production in Oil Palm
    RESEARCH ARTICLES RESEARCH ARTICLES JOURNALJournal ofOF OilOIL PalmPALM RESEARCH Research 29 Vol. (2) (JUNE29 (2) 2017) June 2017 p. 168 – 179 DOI:JOURNALJournal https://doi.org/10.21894/jopr.2017.2902.02 ofOF OilOIL PalmPALM RESEARCH Research 29 Vol. (2) (JUNE29 (2) 2017) June 2017 p. 168 – 179 COMPARING POLLINATION BAG TYPES FOR MICRO-ENVIRONMENTAL PARAMETERS INFLUENCING SEED PRODUCTION IN OIL PALM LUC BONNEAU*; DEBORAH ELI*; PHILLIP VOVOLA* and DALJIT SINGH VIRK** LUC BONNEAU*; DEBORAH ELI*; PHILLIP VOVOLA* and DALJIT SINGH VIRK** ABSTRACT ABSTRACT For oil palm seed production, the pollination bag must prevent contamination by unintended pollen to For oil palm seed production, the pollination bag must prevent contamination by unintended pollen to ensure the genetic integrity. An investigation was undertaken by the seed production unit of Dami Oil Palm ensure the genetic integrity. An investigation was undertaken by the seed production unit of Dami Oil Palm Research Station (DAMI OPRS) in Papua New Guinea to compare the impact of the type of pollination Research Station (DAMI OPRS) in Papua New Guinea to compare the impact of the type of pollination bags on both the genetic integrity and seed yield in the commercial seed production environment. Three bags on both the genetic integrity and seed yield in the commercial seed production environment. Three pollination bag types [canvas, high density polyethylene (HDPE) and polyester] were compared during pollination bag types [canvas, high density polyethylene (HDPE) and polyester] were
    [Show full text]
  • The Microenvironment Within and Pollen Transmission Through Polyethylene Sorghum Pollination Bags
    American Journal of Plant Sciences, 2015, 6, 265-274 Published Online February 2015 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2015.62030 The Microenvironment within and Pollen Transmission through Polyethylene Sorghum Pollination Bags Dennis C. Gitz1*, Jeffrey T. Baker2, Zhanguo Xin3, John J. Burke3, Robert J. Lascano1 1United States Department of Agriculture-Agricultural Research Service#, Wind Erosion and Water Conservation Unit, Lubbock, Texas, USA 2United States Department of Agriculture-Agricultural Research Service, Wind Erosion and Water Conservation Unit, Big Spring, Texas, USA 3United States Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Lubbock, Texas, USA Email: *[email protected] Received 13 January 2015; accepted 27 January 2015; published 30 January 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Bird damage is a problem in sorghum breeding and germplasm maintenance operations. Paper pollination bags are damaged by rain and provide minimal deterrent to birds. Earlier we reported upon bird resistance of spun polyethylene pollination bags. Herein, we report the potential for pollen transmission through, and the microenvironment within, hard form (HfT) and soft form (SfT) spun polyethylene pollination bags as compared to traditional Paper pollination bags. With- in Paper pollination bags morning temperatures were 10˚C - 15˚C above ambient and high temper- ature excursions as high as 45˚C were measured. Heating in Sft and HfT was 25% and 50% that of Paper, respectively.
    [Show full text]
  • FAGACEAE 1. FAGUS Linnaeus, Sp. Pl. 2: 997. 1753
    Flora of China 4: 314–400. 1999. 1 FAGACEAE 壳斗科 qiao dou ke Huang Chengjiu (黄成就 Huang Ching-chieu)1, Zhang Yongtian (张永田 Chang Yong-tian)2; Bruce Bartholomew3 Trees or rarely shrubs, monoecions, evergreen or deciduous. Stipules usually early deciduous. Leaves alternate, sometimes false-whorled in Cyclobalanopsis. Inflorescences unisexual or androgynous with female cupules at the base of an otherwise male inflorescence. Male inflorescences a pendulous head or erect or pendulous catkin, sometimes branched; flowers in dense cymules. Male flower: sepals 4–6(–9), scalelike, connate or distinct; petals absent; filaments filiform; anthers dorsifixed or versatile, opening by longitudinal slits; with or without a rudimentary pistil. Female inflorescences of 1–7 or more flowers subtended individually or collectively by a cupule formed from numerous fused bracts, arranged individually or in small groups along an axis or at base of an androgynous inflorescence or on a separate axis. Female flower: perianth 1–7 or more; pistil 1; ovary inferior, 3–6(– 9)-loculed; style and carpels as many as locules; placentation axile; ovules 2 per locule. Fruit a nut. Seed usually solitary by abortion (but may be more than 1 in Castanea, Castanopsis, Fagus, and Formanodendron), without endosperm; embryo large. Seven to 12 genera (depending on interpretation) and 900–1000 species: worldwide except for tropical and S Africa; seven genera and 294 species (163 endemic, at least three introduced) in China. Many species are important timber trees. Nuts of Fagus, Castanea, and of most Castanopsis species are edible, and oil is extracted from nuts of Fagus. Nuts of most species of this family contain copious amounts of water soluble tannin.
    [Show full text]