Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle BETHUEL KARANJA ELIN SKOOG Bachelor Thesis Stockholm, Sweden 2015 Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle Bethuel Karanja Elin Skoog Bachelor Thesis MMKB 2015:68 MKNB 079 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Bachelor Thesis MMKB 2015:68 MKNB 079 Experimental investigation of rolling losses and optimal camber angle Bethuel Karanja Elin Skoog Approved Examiner Supervisor 2015-06-05 Ulf Sellgren Kjell Andersson Commissioner KTH Transport Labs/ Peter Georén Abstract This Bachelor thesis project is an experimental investigation of the effect of camber and toe angles on rolling resistance. The experiments are done on Sleipner, a Prototype car made by KTH students, which takes part in the Shell Eco Marathon competition in Rotterdam. In order to succeed in the competition it is crucial to reduce energy losses in order to get an as energy efficient vehicle as possible. The experiment involves tests where Sleipner is manually dragged across a flat floor and its position and the dragging force are logged with a pulse encoder and a load cell respectively. This is done ten times for each chosen wheel alignment (specific camber and toe angle), in order to be able to find the optimal setting with respect to minimization of rolling losses. The tests are performed in the Integrated Transport Research Lab at KTH. The obtained data is then used to calculate the magnitude of the rolling friction. It is found that the more negative the camber angle, the larger the rolling resistance. The smallest camber angle investigated is -3º which gives a coefficient of rolling friction (Cr) of 0.0052. The second camber angle is -5º giving a Cr value of 0.016 and the largest camber angle is -7º giving a Cr value 0.019. It was also found that, with the minimum camber angle, toe out gives a larger coefficient of rolling resistance than toe in; 0.0081 compared to 0.0052. The report also delves into additional effects of camber and toe angles on the vehicle’s behaviour while driving and it is found that negative camber angle gives better stability in the car when cornering and that toe in gives better stability in straight line driving. With these results it is concluded that Sleipner should have a slight camber angle of -3º and toe in of 0.5º so as to have the best results in the Shell Eco Marathon. Keywords: Camber, Toe, Rolling resistance, Shell Eco Marathon 1 2 Examensarbete MMKB 2015:68 MKNB 079 Experimentell undersökning av rullmotstånd och optimal camber och toe vinkel Bethuel Karanja Elin Skoog Godkänt Examinator Handledare 2015-06-05 Ulf Sellgren Kjell Andersson Uppdragsgivare KTH Transport Labs/ Peter Georén Sammanfattning Detta kandidatexamensarbete i maskinkonstruktion är en experimentell undersökning av hur camber och toe- vinkeln påverkar rullmotstånd. Testerna är gjorda på Sleipner, ett fordon utvecklats av studenter på KTH, som tävlar i Prototyp-klassen i Shell Eco Marathon som hålls i Rotterdam i maj. För att få ett så energisnålt fordon som möjligt är det naturligtvis av största vikt att minska alla olika typer av förluster så mycket som möjligt. En stor del av dessa förluster är förluster som sker för att överkomma rullmotstånd, som i sin tur är beroende av många olika faktorer. Målet med undersökningen var att kunna ge en rekommendation på den optimala vinkelinställningen på Sleipner inför årets tävling. Testerna som bedömdes ge det bästa resultatet var dragtest, då Sleipner drogs med handkraft över ett platt golv. Dragkraften registrerades med en kraftgivare fastsatt centrerat på ramen och en pulsgivare på bakaxel registrerade positionen. Den data som registrerades användes för att kunna räkna ut storleken på rullmotståndet. För varje vald inställd vinkel, både camber och toe, så drogs Sleipner tio gånger över golvet, fem gånger i varje riktning. Detta för att kunna räkna ut medelvärden och på så sätt minska osäkerheten i resultaten. Alla tester utfördes i Integrated Transport Lab på KTH. Resultaten visade att ju större negativ camber vinkel, desto större blev rullmotståndet. Den minsta camber vinkeln som undersöktes var -3º, vilket gav en rullmotståndskoefficient (Cr) på 0.0052. Nästa camber vinkel som prövades var -5º, vilket gav Cr till 0.016 och den sista vilken var -7º och det resulterade i Cr-värde på 0.019. När den bästa camber vinkeln funnits, så utfördes tester med toe out, vilket visade att toe out gav ett större värde på rullmotståndet än toe in, Cr på 0.0081 jämfört med 0.0052. Rapporten behandlar vidare andra effekter av camber och toe-vinklar, såsom inverkan på fordonet under körning. Det visar sig att negativ camber vinkel ger bättre stabilitet, speciellt vid kurvtagning, och toe in ger bättre stabilitet vid körning rakt fram. Med de resultat som erhölls resulterade i en rekommendation på att Sleipner skulle ha camber vinkel på -3º, och toe in på runt 0.5º för att kunna uppnå bästa resultat i tävlingen. Nyckelord: Camber, Toe, rullmotstånd, Shell Eco Marathon 3 4 PREFACE Here we thank some people that have been important to us during this project. We would like to acknowledge some people that have been especially important to us in order to succeed in this project. Firstly, we would like to thank our supervisor, Kjell Andersson, Professor in Mechanical Engineering, for his constant help, guidance, support and good feedback during the whole process. Secondly, we would like to extend our thanks to Mikael Hellgren, Research Engineer at KTH Transport Labs, for his invaluable help and advice with the preparations for the experiments, and his mechanical knowledge. We also extend our thanks to all the students that have been part of the KTH Team for the Shell Eco Marathon competition this year. They have been an inspiration to us and it has been a pleasure working together with them. Last but not least we thank all the sponsors that have made the KTH EcoCars project possible. Bethuel Karanja Elin Skoog Stockholm, June 2015 5 6 NOMENCLATURE In this chapter are presented the symbols and abbreviations that are used throughout this report. Notations Symbol Description Unit Cr Coefficient of rolling resistance - g Gravitational acceleration m/s2 m Mass kg 2 mj Equivalent mass of moment of inertia kg m Cd Coefficient of air resistance - F Force N FR Rolling resistance force N Fd Air resistance force N α Camber Angle degrees (º) β Toe Angle degrees (º) s Distance m ṡ Speed m/s s̈ Acceleration m/s2 t Time s ρ Density of air kg/m3 A Frontal area m2 Abbreviations SEM Shell Eco Marathon ITRL Integrated Transport Research Lab VI Virtual Instrument u.d. Unknown date 7 8 TABLE OF CONTENTS PREFACE ............................................................................................................................................................ 5 NOMENCLATURE ............................................................................................................................................. 7 TABLE OF CONTENTS ..................................................................................................................................... 9 1 INTRODUCTION ............................................................................................................................................ 11 1.1 Background .................................................................................................................................................. 11 1.2 Purpose ......................................................................................................................................................... 11 1.3 Delimitations ................................................................................................................................................ 11 1.4 Method ........................................................................................................................................................... 11 2 FRAME OF REFERENCE ............................................................................................................................. 13 2.1 Shell Eco Marathon .................................................................................................................................... 13 2.2 Rolling resistance ....................................................................................................................................... 14 2.2.1 Camber Angle ........................................................................................................................................ 15 2.2.2 Toe Angle ............................................................................................................................................... 15 2.2.3 Results from previous studies ............................................................................................................. 16 2.3 Equations ...................................................................................................................................................... 17 3 THE PROCESS .............................................................................................................................................. 19 3.1 Preparation and Calibration of the instruments ................................................................................. 19 3.2 Changing and measuring of camber and toe angles ........................................................................ 20 4 RESULTS .......................................................................................................................................................
Recommended publications
  • Caster Camber Tire-Wear Angles
    BASIC WHEEL ALIGNMENT odern steering and ples. Therefore, let’s review these basic the effort needed to turn the wheel. suspension systems alignment angles with an eye toward Power steering allows the use of more are great examples of typical complaints and troubleshooting. positive caster than would be accept- solid geometry at able with manual steering. work. Wheel align- Caster Too little caster can make steering ment integrates all the factors of steer- Caster is the tilt of the steering axis of unstable and cause wheel shimmy. Ex- Ming and suspension geometry to pro- each front wheel as viewed from the tremely negative caster and the related vide safe handling, good ride quality side of the vehicle. Caster is measured shimmy can contribute to cupped wear and maximum tire life. in degrees of an angle. If the steering of the front tires. If caster is unequal Front wheel alignment is described axis tilts backward—that is, the upper from side to side, the vehicle will pull in terms of angles formed by steering ball joint or strut mounting point is be- toward the side with less positive (or and suspension components. Tradi- hind the lower ball joint—the caster more negative) caster. Remember this tionally, five alignment angles are angle is positive. If the steering axis tilts when troubleshooting a complaint of checked at the front wheels—caster, forward, the caster angle is negative. vehicle pull or wander. camber, toe, steering axis inclination Caster is not measured for rear wheels. (SAI) and toe-out on turns. When we Caster affects straightline stability Camber move from two-wheel to four-wheel and steering wheel return.
    [Show full text]
  • Wheel Alignment Simplified
    The WHAT and WHY of Toe Caster - Camber Kingpin Inclination - Thrust Angle Steering Angle – Wheel setback WHEEL ALIGNMENT SIMPLIFIED Wheel alignment is often considered complicated and hard to understand In the days of the rigid chassis construction with solid axles, when tyres were poor and road speeds were low, wheel alignment was simply a matter of ensuring that the wheels rolled along the road in parallel paths. This was easily accomplished by means of using a toe gauge or simple tape measure. The steering wheel could then also simply be repositioned on the splines of the steering shaft. Camber and Caster was easily adjustable by means of shims. Today wheel alignment is of course more sophisticated as there are several angles to consider when doing wheel alignment on the modern vehicle with Independent suspension systems, good performing tyres and high road speeds. Below are the most common angles and their terminology and for the correction of wheel alignment and the diagnoses thereof, the understanding of the principals of these angles will become necessary. Doing the actual corrections of wheel alignment is a fairly simple task and in many instances it is easily accomplished by some mechanical adjustments. However Wheel Alignment diagnosis is not so straightforward and one will need to understand the interaction between the wheel alignment angles as well as the influence the various angles have on each other. In addition there are also external factors one will need to consider. Wheel Alignment Specifications are normally given in angular values of degrees and minutes A circle consists of 360 segments called DEGREES, symbolized by the indicator ° Each DEGREE again has 60 segments called MINUTES symbolized by the indicator ‘.
    [Show full text]
  • Eclipse Cross
    MITSUBISHI ECLIPSE CROSS The Turning Point Features, powertrain combinations, trim lines and equipment described refer to European specification models (MME34 area) They may vary market by market within that area, according to specific model specification All data subject to final homologation (Further data to be released at launch time) - Summary – The “RED CAR” at a GLANCE CORPORATE – The First Enabler DESIGN – Vibrant & Defiant DRIVING DYNAMICS – Smooth Operator PACKAGING – Clever ‘SUV’ Living FEATURES – Cool Tech SAFETY - Palette *** (All data - MMC’s own internal measurement) - The “RED CAR” at a GLANCE - I - Timing: October 2013: XR-PHEV Concept @ Tokyo Motor Show March 2015: XR-PHEV II Concept @ Geneva Motor Show March 2017: World premiere @ Geneva Motor Show October 2017: Start of Production – EU specification models (see below detail) End of CY17: Start of Sales – EU specification models: MME34 Markets LHD 1.5 petrol RHD petrol LHD 2.2 DiD RHD 2.2 DiD SoP October 2017 November 2017 TbA TbA SoS* December 2017 January 2018 TbA TbA *Actual Start of Sales varying market by market, according to resp. launch plans 2018: Sequential roll out in Japan, North America, Russia, Australia/New Zealand and other regions. II - Positioning: First enabler for the next generation of Mitsubishi Motors’ automobiles & positioning for which it returns to the MMC fundamentals: • Authentic SUV Brand (vs. ‘marketing’ SUVs): 4WD since 1936 / Super-All Wheel Control (S-AWC) system since 1987 SUVs: 77% sales in Europe – CY16 (incl. L200
    [Show full text]
  • SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank You for Choosing Suspensionmaxx for Your Vehicle
    INSTALLATION INSTRUCTIONS PART#: SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank you for choosing SuspensionMaxx for your vehicle. This kit is designed to add suspension travel SuspensionMAXX kits are designed to be easily installed and increase front and ground clearance. Specially and completely reversible to the factory supplied settings. designed tools and experience are required to complete These instructions are supplied for ease of installation, the installation properly. These parts should only be correct procedures and safety. Automotive experience installed by a qualified mechanic otherwise an unsafe recommended. vehicle and/or injury may result. Consult manufactures service manual for proper torque specifications and REQUIRED TOOLS procedures. Instructions are supplied for the leveling kit installation only. Safety is important. Use safe • Load-rated floor jack working habits. • Safety stands x2 • Wheel Chocks • Metric tool set WARNING! • Torque Wrench This suspension system will enhance off road performance and increase • Loctite threadlocker for all fasteners ground clearance. Larger tires will increase vehicle roll center height. The vehicle will handle and respond to driver steering and braking dif- ferently from a stock factory equipped passenger car or truck. Extreme care must be used to prevent loss of control or vehicle rollover during abrupt maneuvers both on and off-road. Failure to operate this vehicle safely can result in vehicle damage, serious injury or death to the driver and passengers. Always wear your seat belt and reduce your speed, avoid sharp turns, inclines and abrupt maneuvers. Tread lightly, re- spect nature and enjoy the Off-Road Experience! Help keep it available for future generations.
    [Show full text]
  • VW Suspension Technical Article
    VW Tech Tip VW Suspension Technical Article Tech Tip: by Charles Adams The following is a technical THE TRUTH ABOUT SUSPENSIONS MYTH: Lowering or raising my car will give it greater performance than I article written for better If you want a smooth ride and not just looks, there is more than meets could expect at stock height. For ex- understanding of the rear the eye at a quick glance. Anyone ample if I simply lower my car it will corner better than my friend’s car that air-cooled VW suspension can lower or raise a vehicle and call it good, but just like any good en- is not lowered. Alternatively, if I raise as well as our products. For gine build, if you seek performance, my car it will perform better off road, absorbing bumps and jumps, than my the majority of people, the everything should be prepared in advance and every component’s friend’s car that is not raised. rear VW suspension is little function should be understood. It understood and more is more than just ordering the most FACT: Every suspension rides at its costly parts, assembling them, and greatest potential when it is riding often misunderstood. blowing away the competition. Yet within the parameters that it was suspensions are not a mystery and designed for. This means that facto- they certainly are not rocket science. ry suspensions perform the greatest The truth is that they are simply and when the ride at factory height and easily understood if they are ex- the geometry is not tampered with.
    [Show full text]
  • Development and Analysis of a Multi-Link Suspension for Racing Applications
    Development and analysis of a multi-link suspension for racing applications W. Lamers DCT 2008.077 Master’s thesis Coach: dr. ir. I.J.M. Besselink (Tu/e) Supervisor: Prof. dr. H. Nijmeijer (Tu/e) Committee members: dr. ir. R.M. van Druten (Tu/e) ir. H. Vun (PDE Automotive) Technische Universiteit Eindhoven Department Mechanical Engineering Dynamics and Control Group Eindhoven, May, 2008 Abstract University teams from around the world compete in the Formula SAE competition with prototype formula vehicles. The vehicles have to be developed, build and tested by the teams. The University Racing Eindhoven team from the Eindhoven University of Technology in The Netherlands competes with the URE04 vehicle in the 2007-2008 season. A new multi-link suspension has to be developed to improve handling, driver feedback and performance. Tyres play a crucial role in vehicle dynamics and therefore are tyre models fitted onto tyre measure- ment data such that they can be used to chose the tyre with the best characteristics, and to develop the suspension kinematics of the vehicle. These tyre models are also used for an analytic vehicle model to analyse the influence of vehicle pa- rameters such as its mass and centre of gravity height to develop a design strategy. Lowering the centre of gravity height is necessary to improve performance during cornering and braking. The development of the suspension kinematics is done by using numerical optimization techniques. The suspension kinematic objectives have to be approached as close as possible by relocating the sus- pension coordinates. The most important improvements of the suspension kinematics are firstly the harmonization of camber dependant kinematics which result in the optimal camber angles of the tyres during driving.
    [Show full text]
  • (Title of the Thesis)*
    Reconfigurable Integrated Control for Urban Vehicles with Different Types of Control Actuation by Mansour Ataei A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Mechanical and Mechatronics Engineering Waterloo, Ontario, Canada, 2017 © Mansour Ataei 2017 Examining committee membership: The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. Supervisors: Prof. Amir Khajepour Professor Mechanical and Mechatronics Department Prof. Soo Jeon Associate Mechanical and Mechatronics Department Professor External Prof. Fengjun Yan Associate McMaster University Examiner: Professor Department of Mechanical Engineering Internal- Prof. Nasser Lashgarian Azad Associate System Design Engineering external: Professor Internal: Prof. William Melek Professor Mechanical and Mechatronics Department Internal: Prof. Ehsan Toyserkani Professor Mechanical and Mechatronics Department ii AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Urban vehicles are designed to deal with traffic problems, air pollution, energy consumption, and parking limitations in large cities. They are smaller and narrower than conventional vehicles, and thus more susceptible to rollover and stability issues. This thesis explores the unique dynamic behavior of narrow urban vehicles and different control actuation for vehicle stability to develop new reconfigurable and integrated control strategies for safe and reliable operations of urban vehicles. A novel reconfigurable vehicle model is introduced for the analysis and design of any urban vehicle configuration and also its stability control with any actuation arrangement.
    [Show full text]
  • Brake Adjuster's Handbook
    STATE OF CALIFORNIA HANDBOOK FOR BRAKE ADJUSTERS May 2015 BUREAU OF AUTOMOTIVE REPAIR BRAKE ADJUSTERS’ HANDBOOK FOREWORD This Handbook is intended to serve as a reference for Official Brake Adjusting Stations and as study material for licensed brake adjusters and persons desiring to be licensed as adjusters. See the applicable Candidate Handbook for further information. This handbook includes a short history of the development of automotive braking equipment, and the procedures for licensing of Official Brake Adjusting Stations and Official Brake Adjusters. In addition to the information contained in this Handbook, persons desiring to be licensed as adjusters must possess a knowledge of vehicle braking systems, adjustment techniques and repair procedures sufficient to ensure that all work is performed correctly and with due regard for the safety of the motoring public. This handbook will not supply all the information needed to pass a licensing exam. No attempt has been made to relate the information contained herein to the specific design of a particular manufacturer. Accordingly, each official brake station must maintain as references the current service manuals and technical instructions appropriate to the types and designs of brake systems serviced, inspected and repaired by the brake station. Installation, repair and adjustment of motor vehicle brake equipment shall be performed in accordance with applicable laws, regulations and the current instructions and specifications of the manufacturer. Periodically, supplemental bulletins may be distributed by the Bureau of Automotive Repair (BAR or Bureau) containing information regarding changes in laws, regulations or technical procedures concerning the inspection, servicing, repair and adjustment of vehicle braking equipment.
    [Show full text]
  • Set Toe Properly
    SET TOE PROPERLY You will get better more consistent results adjusting your toe in settings if you go the extra mile to eliminate variables. You must first decide which technique that you plan to use to take the measurements. Each technique offers different benefits and drawbacks. The methods discussed here will be the Toe Plate method, Toe Bar Method and Tire Scribe Method. If you understand each toe setting technique you will be assured of repeatable results. Before you begin taking measurements you must insure that the car is race ready. Ride heights set, weight percentages correct, driver weight accounted for, bump steer set, camber and caster set, Ackerman set, air pressure set, stagger correct....you get the idea. You should also inspect the steering components and replace any that are worn or bent. Center up the steering before you begin. Center the drag link or rack so that the inner control pivots and inner tie rods are centered to each other. Tie rod lengths should be adjusted to match you lower control points if possible. String the right side of the car to line up the right front to the right rear. By lining up the right side and starting with the right front in line with the right rear you will eliminate any Ackerman effect that is in the car. If the wheels are turned away from straight when you take your toe measurement the Ackerman effect can add toe out that will not be present when the wheels are straight ahead. Take the time to string the right side and you will get more precise results.
    [Show full text]
  • Design and Development of Multi-Link Suspension Suspension System
    ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6 Design and Development of Multi-Link Suspension Suspension System 1Piyush Parida, 2Vaibhav Itkikar, 3Harshal Patil, 4Sandip Patil 1,2,3,4UG Students Mechanical Engineering Department G.H. Raisoni College of Engineering and Management, Chas, Ahmednagar, India Abstract: In order to provide a comfortable ride to the passengers and avoid additional stresses in motor car frame, the car should neither bounce or roll or sway the passengers when cornering nor pitch when accelerating. For this purpose the virtual prototype of suspension systems were built in software MSC ADAMS/CAR and suspensions for military truck were analyzed keeping in mind the optimization of suspension parameters. As there is tremendous development in Suspension Technology, Multi-Link suspension system are considered better independent suspension system among all other independent suspension system. Its simple design and construction makes it way more convenient to install and serve its purpose. As there is vast growth in Agriculture, farming becoming more and more advanced in terms of technology and in that transport vehicles play important role in making agriculture more productive. We saw different scenario where agriculture transport vehicles collapsing because of their conventional suspension system fails to stabalize the loaded vehicle on different road conditions. We tried to see the improvement in performance of vehicle in stabalizing itself by using Multi- Link suspension system. Keywords: Suspension, links, vibrations, Multi body dynamic analysis (MBD) 1. INTRODUCTION In heavy transport vehicle field existing dependent suspension system unit is used. If some have that is leaf spring suspension. In all cases Leaf spring design for full load condition.
    [Show full text]
  • Chassis Tuning 101 Matt Murphy’S Dirt Oval Chassis Tuning Guide
    Chassis Tuning 101 Matt Murphy’s Dirt Oval Chassis Tuning Guide PREFACE Over the last 17 years of my life, I have raced Dirt Oval all over the United States, on foam tires and rubber, hard packed and loose dirt. I have learned a lot about chassis setup on many different track surfaces with many different types of cars. Much of what I have learned is from trial and error, and quite a bit I have learned from doing plain old research on race car chassis dynamics. My goal now is to take what I have learned, and share it with you, but I want to do so in the simplest, easiest to understand manner that I possibly can. I certainly do not know everything, and I am not always right, however I can say that it is rare that I work on a particular chassis setup, and do not find improvement with each adjustment. My theories are just that, and are intended only to help you better enjoy your RC race cars, no matter which make and model you choose. Some things I pay much more attention to than others when it comes to chassis setup, but please understand there is no right or wrong, there is simply what works best for YOU! INDEX: Chapter 1 - Introduction to Dirt Oval Chassis Setup Chapter 2 - Tires Chapter 3 - Springs, Shocks, and Chassis Height Chapter 4 - Toe, Camber, Caster, and Wheel Spacing Chapter 5 - Droop Chapter 6 - Camber Links and Roll Centers Chapter 7 - Wheelbase, Kickup, and Squat Chapter 8 - Sway Bars Chapter 9 - Transmissions and Drive Train Page 1 of 21 Chapter 1: Introduction to Dirt Oval Chassis Setup: Chassis Setup is the most important factor in having a fast Dirt Oval car.
    [Show full text]
  • Camber Effect Study on Combined Tire Forces
    Camber effect study on combined tire forces Shiruo Li Master Thesis in Vehicle Engineering Department of Aeronautical and Vehicle Engineering KTH Royal Institute of Technology TRITA-AVE 2013:33 ISSN 1651-7660 Postal address Visiting Address Telephone Telefax Internet KTH Teknikringen 8 +46 8 790 6000 +46 8 790 6500 www.kth.se Vehicle Dynamics Stockholm SE-100 44 Stockholm, Sweden Abstract Considering the more and more concerned climate change issues to which the greenhouse gas emission may contribute the most, as well as the diminishing fossil fuel resource, the automotive industry is paying more and more attention to vehicle concepts with full electric or partly electric propulsion systems. Limited by the current battery technology, most electrified vehicles on the roads today are hybrid electric vehicles (HEV). Though fully electrified systems are not common at the moment, the introduction of electric power sources enables more advanced motion control systems, such as active suspension systems and individual wheel steering, due to electrification of vehicle actuators. Various chassis and suspension control strategies can thus be developed so that the vehicles can be fully utilized. Consequently, future vehicles can be more optimized with respect to active safety and performance. Active camber control is a method that assigns the camber angle of each wheel to generate desired longitudinal and lateral forces and consequently the desired vehicle dynamic behavior. The aim of this study is to explore how the camber angle will affect the tire force generation and how the camber control strategy can be designed so that the safety and performance of a vehicle can be improved.
    [Show full text]