Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle
Total Page:16
File Type:pdf, Size:1020Kb
Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle BETHUEL KARANJA ELIN SKOOG Bachelor Thesis Stockholm, Sweden 2015 Experimental Investigation of Rolling Losses and Optimal Camber and Toe Angle Bethuel Karanja Elin Skoog Bachelor Thesis MMKB 2015:68 MKNB 079 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Bachelor Thesis MMKB 2015:68 MKNB 079 Experimental investigation of rolling losses and optimal camber angle Bethuel Karanja Elin Skoog Approved Examiner Supervisor 2015-06-05 Ulf Sellgren Kjell Andersson Commissioner KTH Transport Labs/ Peter Georén Abstract This Bachelor thesis project is an experimental investigation of the effect of camber and toe angles on rolling resistance. The experiments are done on Sleipner, a Prototype car made by KTH students, which takes part in the Shell Eco Marathon competition in Rotterdam. In order to succeed in the competition it is crucial to reduce energy losses in order to get an as energy efficient vehicle as possible. The experiment involves tests where Sleipner is manually dragged across a flat floor and its position and the dragging force are logged with a pulse encoder and a load cell respectively. This is done ten times for each chosen wheel alignment (specific camber and toe angle), in order to be able to find the optimal setting with respect to minimization of rolling losses. The tests are performed in the Integrated Transport Research Lab at KTH. The obtained data is then used to calculate the magnitude of the rolling friction. It is found that the more negative the camber angle, the larger the rolling resistance. The smallest camber angle investigated is -3º which gives a coefficient of rolling friction (Cr) of 0.0052. The second camber angle is -5º giving a Cr value of 0.016 and the largest camber angle is -7º giving a Cr value 0.019. It was also found that, with the minimum camber angle, toe out gives a larger coefficient of rolling resistance than toe in; 0.0081 compared to 0.0052. The report also delves into additional effects of camber and toe angles on the vehicle’s behaviour while driving and it is found that negative camber angle gives better stability in the car when cornering and that toe in gives better stability in straight line driving. With these results it is concluded that Sleipner should have a slight camber angle of -3º and toe in of 0.5º so as to have the best results in the Shell Eco Marathon. Keywords: Camber, Toe, Rolling resistance, Shell Eco Marathon 1 2 Examensarbete MMKB 2015:68 MKNB 079 Experimentell undersökning av rullmotstånd och optimal camber och toe vinkel Bethuel Karanja Elin Skoog Godkänt Examinator Handledare 2015-06-05 Ulf Sellgren Kjell Andersson Uppdragsgivare KTH Transport Labs/ Peter Georén Sammanfattning Detta kandidatexamensarbete i maskinkonstruktion är en experimentell undersökning av hur camber och toe- vinkeln påverkar rullmotstånd. Testerna är gjorda på Sleipner, ett fordon utvecklats av studenter på KTH, som tävlar i Prototyp-klassen i Shell Eco Marathon som hålls i Rotterdam i maj. För att få ett så energisnålt fordon som möjligt är det naturligtvis av största vikt att minska alla olika typer av förluster så mycket som möjligt. En stor del av dessa förluster är förluster som sker för att överkomma rullmotstånd, som i sin tur är beroende av många olika faktorer. Målet med undersökningen var att kunna ge en rekommendation på den optimala vinkelinställningen på Sleipner inför årets tävling. Testerna som bedömdes ge det bästa resultatet var dragtest, då Sleipner drogs med handkraft över ett platt golv. Dragkraften registrerades med en kraftgivare fastsatt centrerat på ramen och en pulsgivare på bakaxel registrerade positionen. Den data som registrerades användes för att kunna räkna ut storleken på rullmotståndet. För varje vald inställd vinkel, både camber och toe, så drogs Sleipner tio gånger över golvet, fem gånger i varje riktning. Detta för att kunna räkna ut medelvärden och på så sätt minska osäkerheten i resultaten. Alla tester utfördes i Integrated Transport Lab på KTH. Resultaten visade att ju större negativ camber vinkel, desto större blev rullmotståndet. Den minsta camber vinkeln som undersöktes var -3º, vilket gav en rullmotståndskoefficient (Cr) på 0.0052. Nästa camber vinkel som prövades var -5º, vilket gav Cr till 0.016 och den sista vilken var -7º och det resulterade i Cr-värde på 0.019. När den bästa camber vinkeln funnits, så utfördes tester med toe out, vilket visade att toe out gav ett större värde på rullmotståndet än toe in, Cr på 0.0081 jämfört med 0.0052. Rapporten behandlar vidare andra effekter av camber och toe-vinklar, såsom inverkan på fordonet under körning. Det visar sig att negativ camber vinkel ger bättre stabilitet, speciellt vid kurvtagning, och toe in ger bättre stabilitet vid körning rakt fram. Med de resultat som erhölls resulterade i en rekommendation på att Sleipner skulle ha camber vinkel på -3º, och toe in på runt 0.5º för att kunna uppnå bästa resultat i tävlingen. Nyckelord: Camber, Toe, rullmotstånd, Shell Eco Marathon 3 4 PREFACE Here we thank some people that have been important to us during this project. We would like to acknowledge some people that have been especially important to us in order to succeed in this project. Firstly, we would like to thank our supervisor, Kjell Andersson, Professor in Mechanical Engineering, for his constant help, guidance, support and good feedback during the whole process. Secondly, we would like to extend our thanks to Mikael Hellgren, Research Engineer at KTH Transport Labs, for his invaluable help and advice with the preparations for the experiments, and his mechanical knowledge. We also extend our thanks to all the students that have been part of the KTH Team for the Shell Eco Marathon competition this year. They have been an inspiration to us and it has been a pleasure working together with them. Last but not least we thank all the sponsors that have made the KTH EcoCars project possible. Bethuel Karanja Elin Skoog Stockholm, June 2015 5 6 NOMENCLATURE In this chapter are presented the symbols and abbreviations that are used throughout this report. Notations Symbol Description Unit Cr Coefficient of rolling resistance - g Gravitational acceleration m/s2 m Mass kg 2 mj Equivalent mass of moment of inertia kg m Cd Coefficient of air resistance - F Force N FR Rolling resistance force N Fd Air resistance force N α Camber Angle degrees (º) β Toe Angle degrees (º) s Distance m ṡ Speed m/s s̈ Acceleration m/s2 t Time s ρ Density of air kg/m3 A Frontal area m2 Abbreviations SEM Shell Eco Marathon ITRL Integrated Transport Research Lab VI Virtual Instrument u.d. Unknown date 7 8 TABLE OF CONTENTS PREFACE ............................................................................................................................................................ 5 NOMENCLATURE ............................................................................................................................................. 7 TABLE OF CONTENTS ..................................................................................................................................... 9 1 INTRODUCTION ............................................................................................................................................ 11 1.1 Background .................................................................................................................................................. 11 1.2 Purpose ......................................................................................................................................................... 11 1.3 Delimitations ................................................................................................................................................ 11 1.4 Method ........................................................................................................................................................... 11 2 FRAME OF REFERENCE ............................................................................................................................. 13 2.1 Shell Eco Marathon .................................................................................................................................... 13 2.2 Rolling resistance ....................................................................................................................................... 14 2.2.1 Camber Angle ........................................................................................................................................ 15 2.2.2 Toe Angle ............................................................................................................................................... 15 2.2.3 Results from previous studies ............................................................................................................. 16 2.3 Equations ...................................................................................................................................................... 17 3 THE PROCESS .............................................................................................................................................. 19 3.1 Preparation and Calibration of the instruments ................................................................................. 19 3.2 Changing and measuring of camber and toe angles ........................................................................ 20 4 RESULTS .......................................................................................................................................................