Nei Nastran In-CAD™

Total Page:16

File Type:pdf, Size:1020Kb

Nei Nastran In-CAD™ NEi Nastran in-CAD Features Overview NEi Nastran in-CAD combines a FEM Modeler with comprehensive pre- and post- processing capabilities, and NASTRAN Solvers. Parts and assemblies can be analyzed for a wide spectrum of static, dynamic, and thermal loading. NEi Nastran in-CAD features true geometry associativity, composite elements, custom coordinate systems and nonlinear analyses for plasticity and true surface to surface contact. With NASTRAN being one of the most Dual Kernel Support and Kernel widely used solutions, NEi Nastran in-CAD collaboration (ACIS and Parasolid) users can now communicate their data to Support both top-down and bottom-up most standard pre- and post-processors design process through support of the NASTRAN file format. This provides versatility to a product which is CAD Interoperability: already easy to use and backed by the Native file translators to and from nearly renowned NASTRAN solution. all mechanical CAD products and graphical applications on the market Capabilities: today: CATIA® V4 & V5, SolidWorks®, Unique Methodologies: Pro/ENGINEER®, IPT & IAM (Autodesk Innovative Part Design, Intuitive feature Inventor®), Unigraphics®, IGES, STEP, history with flexible design intent X_T (Parasolid®), SAT (ACIS®), VRML, 3D Dynamic Modeling, Mixed feature STL, DWG, DXF™, EXB (CAXA based and direct editing design DRAFT), TIFF, JPG, PNG, TGA, BMP, Single scene part and assembly EPS, HSF (Hoops), 3DS (3D Studio), environment POV-Ray, Raw, Romulus, TrueSpace, IntelliShape™ Handled based design OBJ (Wavefront), 3D PDF editing Supported standards: ANSI, DIN, ISO, IntelliShape Modeling Intelligence, JIS, and GB Advanced modeling settings connected to features Part Modeling: SmartSnap™ Technology enabling Feature based, parameterized solid automatic catching to existing geometry modeling SmartAssembly® Technology for Scene Browser dynamic design tree automatic positioning, sizing, and (e.g. re-order, drag and drop, etc.) orientation of parts, and assemblies Property Browser direct input and DesignVariation™ parametric and context based actions property configurations at any part, Quick Access contextual pop-up hotkey feature, and assembly level commands for in-place design creation TriBall® advance positioning and In-place editing of features, parts, and operation tool faces Catalog based design environment for History Independent referencing to part drag and drop design geometry IntelliStretch™ dynamic resizing for Integrated sketching with dynamic assemblies/parts optional constraints 2011 NEi, NEi Software, Inc. NE, NE/, and NEi logo are Registered Trademarks of NEi Software, Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. Windows is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. Extrudes, revolves, feature patterns, Advance Photo-Realistic Rendering holes, etc. Engine Advanced 3D operations, e.g. lofting, Drag and Drop color and image sweeping, complex blending, capabilities chamfering, etc. Drag and Drop animation support Advanced shelling, trim operations, and Key Frame animation manipulation and Boolean operations advance animation positioning with Catalog based functional features, e.g. TriBall Custom Holes, Fasteners, Gears, 3D E-mail Package builder for sharing Bearing, etc. Web Publishing for project review and Direct Face modification support for communication native features and imported data Free 3D IC-Viewer Support for creating 3D models from existing 2D data, e.g. 2D-to-3D Meshing: extrusion, etc. Global and local controls for part Multiple design variations with geometry with default sizing Configuration Management support Mesh control on arbitrary user defined regions Sketch line or curve meshing Free surface meshing: quads or triangles Auto mesh, loads and constraints update with geometry changes Mesher status window and progress bar Display/hide shell element normals Reverse normals for shell elements Mesh validation checks - distortion, Jacobian, and skew Display/hide beam element orientation and direction Assembly Modeling: Display/hide beam element and shell Flexible Assemble and Disassemble element cross-section support 1D element cross-section property Complete range of mating conditions, definition snap-to-fit SmartAssembly® Technology Combined shell (2D) and beam (1D) Cross parent constraint relation support meshing Real-time Collision Detection and Interference Checking Assembly Connectors: Multiple sub-assembly support True surface contact Easily design-in-the-context of an Automatic contact assembly Thermal contact resistance Easy designing and changing of parts and subassemblies from within an Loads and Boundary Conditions: assembly Uniform pressure and force on faces, Mirrored components to create new edges and vertices parts and assemblies based on existing Directional pressure and force designs Acceleration loads (gravity) Multiple assembly design variations with Enforced motions: acceleration, velocity, Configuration Management for easy displacement (rotational/translational) “what if” design scenarios Temperature, default temperature and Statistical analysis support for mass, heat flux center of gravity, and moments of inertia Symmetric, antisymmetric, axisymmetric boundary conditions Communication: Fixed constraints on faces, edges and Photo-Realistic real-time realistic vertices settings with Image export Directional and prescribed constraints 2011 NEi, NEi Software, Inc. NE, NE/, and NEi logo are Registered Trademarks of NEi Software, Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. Windows is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. Thermal constraints Generalized polynomial Thermal body loads Temperature dependent property Initial temperature conditions support Custom colors and sizes for loads and constraints Material Orientation: Loads defined using edges Vector projection Convection Curve tangent Conduction Rotated curve tangent Radiation Translated curve tangent Heat generation Surface U and V directions Rotational velocity / acceleration From output (thermal) Properties: Load variation using arbitrary 3D scale 1D beam (PBEAM/PBEAML) and bar factors (PBAR/PBARL) 2D plate (PSHELL) and composite Element Library: (PCOMP) 1D line (CBEAM, CBAR, CPIPE) 3D solid (PSOLID) 2D linear shell (CQUAD4 and CTRIA3) Contact (BSCONP) 2D parabolic shell (CQUAD8 and CTRIA6) Surface Contact: 3D linear and parabolic tetrahedron Automatic surface contact generation (CTETRA) General, welded, slide, rough, offset Composites with plates and shells weld and RBE3 element contact types Surface to surface contact with manual Static friction or automatic recognition of surfaces Concentrated mass Analysis Types: Connectors: Linear statics Spring (CBUSH) Normal modes Rigid elements Linear buckling Rod (CROD) Nonlinear static Nonlinear cable Thermal stress Prestress static Materials: Composite Isotropic Contact analysis in assemblies Anisotropic (2D & 3D) Linear steady state heat transfer Orthotropic (2D & 3D) Modal transient response Nonlinear materials Direct transient response Nonlinear elastic Direct frequency response Elasto-plastic Modal frequency response Plastic Nonlinear steady state heat transfer Hardening Nonlinear transient heat transfer Isotropic Nonlinear transient response Kinematic Combined Composite Analysis: Yield Various failure theories supported: Von Mises Hill Tresca Hoffman Mohr-Coulomb Tsai-Wu Drucker-Prager Max. stress Custom stress-strain curve Max. strain Hyperelastic NASA LARC02 Neo-Hookean Mooney-Rivlin Coordinate Systems: Ogden Cartesian, cylindrical and spherical coordinate systems Yeoh 2011 NEi, NEi Software, Inc. NE, NE/, and NEi logo are Registered Trademarks of NEi Software, Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. Windows is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. Referencing global assembly, part or Binary results file in OP2 format usable custom coordinate systems by all Nastran solvers and wide variety Display toggles of post-processors Post-Processing: Stress, deformation plots Principal and directional stress plot Strain plot Resonant frequencies, mode shape plots Temperature, heat flux plots Iso-surfaces Results across composite laminates Partial results generation for modal and transient analysis types Export Nastran input deck to other FEA systems User Interface: Customizable material library Menu support for all features Output within NEi Nastran in-CAD Toolbar shortcuts Modeler view with sensitive Help and Modern tree view layout analysis control, such as pausing and Query display of real time information on solution termination nodes and elements Import results using Femap Binary Highlight specific nodes and elements Neutral file format (FNO) on the model Single and multi-set animations Total number of nodes/elements Max/min labels displayed in assembly tree Results processed on selected parts of Section view for parts and assemblies assemblies Dynamic update of loads, constraints, Dynamic result data display during and rigid bodies
Recommended publications
  • Unit 31: Computer Animation
    Unit 31: Computer Animation Unit code: D/601/7658 QCF Level 3: BTEC National Credit value: 10 Guided learning hours: 60 Aim and purpose The aim of this unit is to ensure learners understand types of animation and their uses and develop the knowledge and skills required to use software techniques to design and implement different types of animation. Unit introduction Computer animation is the art of creating moving images through the use of computers. It brings together computer graphics and animation techniques. Animation does not require computers, however the increasing ability of computers to create and manipulate sets of images has allowed basic animation to reach new levels of sophistication and realism. To create the illusion of movement, a sequence of images is displayed over time and the human eye perceives this sequence as continual movement. The technique is at the heart of all existing technologies such as television and motion pictures. It is increasingly created by means of 3D computer graphics, although 2D computer graphics are still widely used for low bandwidth and faster real-time needs. Only 2D graphics are required in this unit. Animation has become a prominent feature of the worldwide web and is used to create interest and attract attention. In this area, however, there are other factors that need to be taken into account when designing and building applications, such as the nature of the display device and the bandwidth of the connection. As with all computer applications learners must first identify the need, specific requirements and constraints before building the solution. Learners will start by looking at different types of animation and their uses and formats.
    [Show full text]
  • FEA Newsletter October 2011
    October Issue - 11th Anniversary Issue PreSys™ R3 Release BETA CAE Systems S.A. FE Modeling Tool release ANSA v13.2.0 ESI engineer David Prono transatlantic boat race The Stealth LLNL M. King (left) and physicist W. Moss B-2 Spirit compression test helmet pad TABLE OF CONTENTS 2. Table of Contents 4. FEA Information Inc. Announcements 5. Participant & Industry Announcements 6. Participants 7. BETA CAE Systems S.A. announces the release of ANSA v13.2.0 11. Making A Difference Guenter & Margareta Mueller 13. LLNL researchers find way to mitigate traumatic brain injury 16. ESI sponsors in-house engineer David Prono for a transatlantic boat race 18. ETA - PreSys™ R3 Release FE Modeling Tool Now Offers ‘Part Groups’ Function 20. Toyota Collaborative Safety Research Center 23. LSTC SID-IIs-D FAST - Finite Element Model 27. Website Showcase The Snelson Atom 28. New Technology - “Where You At?” 29. SGI - Benchmarks- Top Crunch.org 35. Aerospace - The Stealth 2 36. Reference Library - Available Books 38. Solutions - PrePost Processing - Model Editing 39. Solutions - Software 40. Cloud Services – SGI 42. Cloud Services – Gridcore 43. Global Training Courses 50. FEA - CAE Consulting/Consultants 53. Software Distributors 57. Industry News - MSC.Software 59. Industry News – SGI 60. Industry News - CRAY 3 FEA Information Inc. Announcements Welcome to our 11th Anniversary Issue. A special thanks to a few of our first participant’s that supported, and continue to support FEA Information Inc.: Abe Keisoglou and Cathie Walton, (ETA) US, Brian Walker, Oasys, UK Christian Tanasecu, SGI, Guenter and Margareta Mueller, CADFEM Germany, Sam Saltiel, BETA CAE Systems SA, Greece Companies - JSOL - LSTC With this issue we will be adding new directions, opening participation, and have brought on additional staff.
    [Show full text]
  • Download Ebook Articles on Finite Element Software, Including: Ls
    [PDF] Articles On Finite Element Software, including: Ls-dyna, Nastran, Genoa Software, Fedem, Nei Nastran, Algor, Feflow,... Articles On Finite Element Software, including: Ls-dyna, Nastran, Genoa Software, Fedem, Nei Nastran, Algor, Feflow, Femap, Samcef, Abaqus, Strand7, Ansa Pre-processor, Safehull, List Of Finite Elemen Book Review It in a of the best publication. It really is loaded with knowledge and wisdom You may like the way the blogger write this ebook. (Prof. Shannon W ehner PhD) A RTICLES ON FINITE ELEMENT SOFTWA RE, INCLUDING: LS-DYNA , NA STRA N, GENOA SOFTWA RE, FEDEM, NEI NA STRA N, A LGOR, FEFLOW, FEMA P, SA MCEF, A BA QUS, STRA ND7, A NSA PRE-PROCESSOR, SA FEHULL, LIST OF FINITE ELEMEN - To save A rticles On Finite Element Software, including : Ls-dyna, Nastran, Genoa Software, Fedem, Nei Nastran, A lg or, Feflow, Femap, Samcef, A baqus, Strand7, A nsa Pre-processor, Safehull, List Of Finite Elemen eBook, make sure you click the link beneath and save the document or get access to other information that are relevant to Articles On Finite Element Software, including: Ls-dyna, Nastran, Genoa Software, Fedem, Nei Nastran, Algor, Feflow, Femap, Samcef, Abaqus, Strand7, Ansa Pre-processor, Safehull, List Of Finite Elemen ebook. » Download A rticles On Finite Element Software, including : Ls-dyna, Nastran, Genoa Software, Fedem, Nei Nastran, A lg or, Feflow, Femap, Samcef, A baqus, Strand7, A nsa Pre-processor, Safehull, List Of Finite Elemen PDF « Our professional services was launched by using a want to work as a complete on the web electronic digital local library which offers usage of large number of PDF publication catalog.
    [Show full text]
  • Jack's Poser Pro Manual Last Update: 2021 09 17
    Jack's Poser Pro Manual Last Update: 2021 09 17 Note 1: This Manual has been prepared for my own use. If you find it useful, great. However, don't be surprised (or angry with me) if I have failed to update something that has changed from one version of Poser to the next and which I haven't discovered yet. Or if I have failed to understand and so incorrectly describe something. If I discover (or have pointed out to me) that something in this Manual doesn't work as I described, I'll see about updating my text. Note 2: I installed Poser 12 on 30 November 2020. I have no idea if anything in this Manual has changed in Poser 12. I will make necessary changes as I find them. I began using Poser Pro 2012 on about 2013 01 07. This file was started soon after doing a bit of experimenting and finding that I had no tutorial. So here are the results from experimenting, reading Poser Pro 2012 Reference Manual, Poser Pro 2014 Reference Manual, Poser Pro 11 Reference Manual, Smith Micro Tech Support, and internet research. I also have Practical Poser 8. The Official Guide, by Richard Schrand, even though Poser 8 would seem to be several iterations behind Poser Pro 2014, and even farther behind Poser Pro 11 which I started using in December 2015, or Poser 12 as noted above. Most of the information in this Manual is based on my experiences with Poser Pro 2012 and 2014, and probably still holds true for Poser Pro 11 or Poser 12 versions.
    [Show full text]
  • 3D World - the Magazine for 3D Artists
    3D World - The Magazine For 3D Artists http://www.3dworldmag.com/page/3dworld?entry=3d_world_115_now_on SEARCH « Autodesk release Softimag... | Weblog | E-on call for showreel su... » CALENDAR « March 2009 » Monday March 02, 2009 Sun Mon Tue W ed Thu Fri Sat 1 2 3 4 5 6 7 - In Category - 3D World 115 now on sale in the UK 8 9 10 11 12 13 14 Search 15 16 17 18 19 20 21 In our latest issue: complete character workshop, pitch your 3D 22 23 24 25 26 27 28 project, comping tips and particle tricks, plus models and assets 29 30 31 CATEGORIES worth $326 on the CD Today LATEST ISSUE Click the thumbnail to order your copy online IN THE MAGAZINE Character workshop Master key sculpting and texturing techniques to recreate our cover star Modelling: follow videos of the full workflow to build every detail of your figure Texturing: apply a blend of painted textures and carefully chosen NEWS FEEDS shaders The perfect composite LINKS Whether you‘re adding digital creatures to footage or just trying to match two images, compositing is a vital part of VFX work. Brush up your skills with 20 expert tips Particle tricks Master dissolve effects in Blender with Andy Goralczyk Signed on the spot! Experts from across the 3D industry reveal the tricks of the trade that can make all the difference when pitching a project to an agency, potential backer, broadcaster or movie studio The making of Coraline For the animated version of Neil Gaiman‘s Gothic novella Coraline, Laika used CG and digital printing to create 15,000 separate face 1 of 3 4/12/2009 12:37 AM 3D
    [Show full text]
  • Aplikasi Untuk Desain Grafis Yang Gratis
    Aplikasi Untuk Desain Grafis Yang Gratis Faisal Aditya [email protected] Abstrak Bagi animator maupun yang suka bergelut di bidang desain grafis software berbasis 3D adalah fondasi utama dalam merancang sebuah desain sehingga menghasilkan nilai seni yang tinggi dan kepuasan tersendiri. Namun software yang digunakan terbilang cukup berat dari segi biaya maupun kapasitasnya. Disini saya akan memaparkan aplikasi yang gratis agar tidak memakan biaya bagi anda dan juga bisa untuk belajar. Kata Kunci : aplikasi, desain grafis,free, komputer Pendahuluan Desain grafis adalah bagian penting dari sebuah lapangan pekerjaan yang sifatnya seni modern. Contohnya dalam perfilman, jika tidak ada software desain grafis maka pencitraan karya yang dibuat kurang menarik bahkan tidak menarik untuk dinikmati penikmat film karena sentuhan akan modernisasi kurang memukau dan juga sebagai alasan memadukan unsur fisik (nyata) dan rekayasa. Maka haruslah ada software/aplikasi yang mendukung. Lisensi Dokumen: Copyright © 2008-2014 ilmuti.org Seluruh dokumen di ilmuti.org dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan bukan komersial (nonprofit), dengan syarat tidak menghapus atau merubah atribut penulis dan pernyataan copyright yang disertakan dalam setiap dokumen. Tidak diperbolehkan melakukan penulisan ulang, kecuali mendapatkan ijin terlebih dahulu dari ilmuti.org Pembahasan Komputer grafis Tiga dimensi (3D) saat secara luas digunakan hampir dapat dilihat di mana saja, baik film, desain produk , iklan, dll. Meskipun begitu tidak berarti grafis Tiga dimensi (3D) mudah dibuat. Untuk membuat grafis Tiga dimensi, maka harus dibuat dalam alat authoring 3D yang biasanya memerlukan biaya yang cukup besar untuk pengguna yang bukan profesional dibidang ini. Sebuah model 3D biasanya dibuat menggunakan alat pemodelan 3d. Oleh karena itu, saya pikir mungkin menarik untuk membahas ketersediaan sumber alat pemodelan 3D yang gratisan.
    [Show full text]
  • Loads, Load Factors and Load Combinations
    Overall Outline 1000. Introduction 4000. Federal Regulations, Guides, and Reports Training Course on 3000. Site Investigation Civil/Structural Codes and Inspection 4000. Loads, Load Factors, and Load Combinations 5000. Concrete Structures and Construction 6000. Steel Structures and Construction 7000. General Construction Methods BMA Engineering, Inc. 8000. Exams and Course Evaluation 9000. References and Sources BMA Engineering, Inc. – 4000 1 BMA Engineering, Inc. – 4000 2 4000. Loads, Load Factors, and Load Scope: Primary Documents Covered Combinations • Objective and Scope • Minimum Design Loads for Buildings and – Introduce loads, load factors, and load Other Structures [ASCE Standard 7‐05] combinations for nuclear‐related civil & structural •Seismic Analysis of Safety‐Related Nuclear design and construction Structures and Commentary [ASCE – Present and discuss Standard 4‐98] • Types of loads and their computational principles • Load factors •Design Loads on Structures During • Load combinations Construction [ASCE Standard 37‐02] • Focus on seismic loads • Computer aided analysis and design (brief) BMA Engineering, Inc. – 4000 3 BMA Engineering, Inc. – 4000 4 Load Types (ASCE 7‐05) Load Types (ASCE 7‐05) • D = dead load • Lr = roof live load • Di = weight of ice • R = rain load • E = earthquake load • S = snow load • F = load due to fluids with well‐defined pressures and • T = self‐straining force maximum heights • W = wind load • F = flood load a • Wi = wind‐on‐ice loads • H = ldload due to lllateral earth pressure, ground water pressure,
    [Show full text]
  • Deree College Syllabus For: Itc 3129 3D Modeling Methodologies 2/1/2
    DEREE COLLEGE SYLLABUS FOR: ITC 3129 3D MODELING METHODOLOGIES 2/1/2 (Updated Spring 2016 ) UK LEVEL 5 UK CREDITS: 10 PREREQUISITES: ITC1070 LE Information Technology Fundamentals –or- CS1070 Introduction to Information Systems CATALOG 3D object manipulation. Modelling methodologies. Lighting and DESCRIPTION: rendering effects. Camera manipulation. Textures creation and use. Dynamic animation. Characters creation and manipulation. RATIONALE: The course is intended for students of the Digital Media Technologies of the IT major. It aims to provide in-depth experience of 3D modelling practices and applications. Object manipulation, lighting and rendering techniques, and specialized components, such as characters, are addressed at various levels. LEARNING OUTCOMES: As a result of taking this course, the student should be able to: 1. Demonstrate knowledge of object manipulation 2. Analyse modelling techniques. 3. Construct 3D models with animation capabilities and use them to compose 3D scenes. METHOD OF TEACHING AND In congruence with the teaching and learning strategy of the LEARNING: college, the following tools are used: Classroom lectures, class discussions. Laboratory sessions, involving training and practice in the creation of 3D scenes. Office hours: Students are encouraged to make full use of the office hours of their instructor, where they can ask questions and go over lecture material. Use of the Blackboard Learning platform, where instructors post lecture notes, assignment instructions, timely announcements, as well as additional resources. ASSESSMENT: Summative: Midterm Examination: combination of short essay 40% questions and case problems Project: Model creation/ development of a 3D 60% scene/animation Formative: In-class, 1-hour, “diagnostic” test: short essays 0 Coursework: practical exercises / creation of 3D 0 scenes/ case problems The formative assessments aim to shape teaching along the semester and prepare students for the summative assessments.
    [Show full text]
  • Scientific & Technical Visualization I
    SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Scientific & Technical Visualization I http://www.intelegia.com/en/files/2013/05/datavisualisation.jpg 1 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 This is an amended version of the NC Department of Education’s curriculum for Scientific Visualization I course number 7061. The changes were made by Tonja Canady for Atkins High School students. Any photographs or graphics taken from the Internet have a hyperlink to the webpage or website from where they were copied. In addition, some information from the original document has to corrected or reworded in this version. Furthermore, activities and answer keys have been removed; teachers should use the original document to access student activities and answer keys. It is my belief that this version is more technologically current, links to 3ds Max tutorials, and is more student oriented than teacher oriented. Should you find mistakes, please notify Ms. Canady at [email protected] indicating the page number and paragraph number along with the correction. The information will be updated as quickly as possible. 2 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Table of Contents Unit 1: Leadership Development and Orientation .................................................................... 8 Objective: 1.01 Identify basic business meeting procedures. .................................................... 9 Objective: 1.02 Establish personal and organizational goals. .................................................
    [Show full text]
  • An Overview of 3D Data Content, File Formats and Viewers
    Technical Report: isda08-002 Image Spatial Data Analysis Group National Center for Supercomputing Applications 1205 W Clark, Urbana, IL 61801 An Overview of 3D Data Content, File Formats and Viewers Kenton McHenry and Peter Bajcsy National Center for Supercomputing Applications University of Illinois at Urbana-Champaign, Urbana, IL {mchenry,pbajcsy}@ncsa.uiuc.edu October 31, 2008 Abstract This report presents an overview of 3D data content, 3D file formats and 3D viewers. It attempts to enumerate the past and current file formats used for storing 3D data and several software packages for viewing 3D data. The report also provides more specific details on a subset of file formats, as well as several pointers to existing 3D data sets. This overview serves as a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D data files. 1 Introduction 3D data represents information in several applications, such as medicine, structural engineering, the automobile industry, and architecture, the military, cultural heritage, and so on [6]. There is a gamut of problems related to 3D data acquisition, representation, storage, retrieval, comparison and rendering due to the lack of standard definitions of 3D data content, data structures in memory and file formats on disk, as well as rendering implementations. We performed an overview of 3D data content, file formats and viewers in order to build a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D files.
    [Show full text]
  • Autodesk® Simulation Moldflow® Comparison Matrix
    Autodesk® Simulation Moldflow® Comparison Matrix Autodesk® Simulation Moldflow® injection molding simulation software provides tools that can help manufacturers validate and optimize the design of plastic parts and injection molds and study the injection molding process. Compare the features of Autodesk Simulation Moldflow products to learn how Autodesk® Simulation Moldflow® Adviser and Autodesk® Simulation Moldflow® Insight software can help meet the needs of your organization. Autodesk Autodesk Autodesk Autodesk Autodesk Autodesk Simulation Simulation Simulation Simulation Simulation Simulation Moldflow Moldflow Moldflow Moldflow Moldflow Moldflow LEGEND Adviser Adviser Adviser Insight Insight Insight Feature supported Standard Premium Ultimate Standard Premium Ultimate MESHING TECHNOLOGY Dual Domain™ 3D Midplane CAD INTEROPERABilitY Direct Modeling with Autodesk® Inventor® Fusion Defeaturing with Inventor Fusion Multi-CAD Data Exchange CAD Solid Models Parts Assemblies SimulatiON CapaBilitiES Thermoplastic Filling Part Defects Gate Location Molding Window Thermoplastic Packing Runner Balancing Cooling Warpage Fiber Orientation Insert Overmolding Two-Shot Sequential Overmolding Core Shift Control MOLDING PROCEssES Thermoplastic Injection Molding Reactive Injection Molding Microchip Encapsulation Underfill Encapsulation Gas-Assisted Injection Molding Injection-Compression Molding Co-Injection Molding MuCell® Birefringence
    [Show full text]
  • Vizin-Lsinc Joint PR-Package.Pdf
    INSTITUTE FOR THE VISUALIZATION OF HISTORY 151 Bridges Road • Williamstown MA 01267-2232 USA v/f: 413-458-1788 • email: [email protected] • http://www.vizin.org "When people don't know history, they have a poor sense of their country and community, and most of all, the relative importance of [current] events" ("History Tells us to be Afraid,” by Mark Lane, article circulated by Cox Newspapers May 2002). About the Institute EXPERTISE The INSTITUTE builds and expands upon the pioneering work of Learning Sites, Inc., in the field of virtual heritage. Learning Sites® is a recognized leader in designing and building innovative products using archaeological and other historical material. The INSTITUTE’s staff brings a wide range of expertise and many years experience to each project. LEARNING SITES was an "official collaborator" for the first Festival on Virtual Archaeology, organized by the Computer Applications in Archaeology Society of Spain and the Centre de Cultura Contemporania de Barcelona, in preparation for the Computer Applications in Archaeology World Conference, 1998. One of LEARNING SITES’ educational packages was voted one of the top 10 VRML-based virtual worlds on the Internet by Silicon Graphics Incorporated, and Simon & Schuster selected one of LEARNING SITES’ virtual worlds as the only virtual world to appear on its premier online educational Web site. LEARNING SITES re-creations have appeared on television, in movies, and in online and paper publications around the world. VIZIN is a registered trademark of the Institute for the Visualization of History, Inc. The Institute’s Professional Expertise Includes: archaeology (diverse styles, periods, and cultures).
    [Show full text]