Appendix a Basic Mathematics for 3D Computer Graphics

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Basic Mathematics for 3D Computer Graphics Appendix A Basic Mathematics for 3D Computer Graphics A.1 Vector Operations (),, A vector v is a represented as v1 v2 v3 , which has a length and direction. The location of a vector is actually undefined. We can consider it is parallel to the line (),, (),, from origin to a 3D point v. If we use two points A1 A2 A3 and B1 B2 B3 to (),, represent a vector AB, then AB = B1 – A1 B2 – A2 B3 – A3 , which is again parallel (),, to the line from origin to B1 – A1 B2 – A2 B3 – A3 . We can consider a vector as a ray from a starting point to an end point. However, the two points really specify a length and a direction. This vector is equivalent to any other vectors with the same length and direction. A.1.1 The Length and Direction The length of v is a scalar value as follows: 2 2 2 v = v1 ++v2 v3 . (EQ 1) 378 Appendix A The direction of the vector, which can be represented with a unit vector with length equal to one, is: ⎛⎞v1 v2 v3 normalize()v = ⎜⎟--------,,-------- -------- . (EQ 2) ⎝⎠v1 v2 v3 That is, when we normalize a vector, we find its corresponding unit vector. If we consider the vector as a point, then the vector direction is from the origin to that point. A.1.2 Addition and Subtraction (),, (),, If we have two points A1 A2 A3 and B1 B2 B3 to represent two vectors A and B, then you can consider they are vectors from the origin to the points. As we said, any parallel vectors with the same length and direction are equivalent. Therefore, we can move a vector in 3D space as long as it stays parallel. As shown in Fig. A.1, vector addition is just connecting the vectors. That is: (),, A+B = A1 + B1 A2 + B2 A3 + B3 . (EQ 3) A negative vector is just the original vector in reverse direction. Therefore, vector subtraction is just adding a negative vector. (),, A-B = A1 – B1 A2 – B2 A3 – B3 . (EQ 4) B A-B A A A A A+B B -B -B a) vector A and B b) -B c) A + B d) A - B Fig. A.1 Vector addition and subtraction A.1 Vector Operations 379 A.1.3 Dot Product and Cross Product The dot product of two vectors is a scalar value as follows: • AB= A1B1 ++A2B2 A3B3 . (EQ 5) The dot product is also equal to: AB• = ABcosθ , (EQ 6) where θ is the angle between the two vectors. Therefore, given two vectors, we can easily find the angle between the two vectors according to Equation 5 and Equation 6. When the two vectors are unit vectors, their dot product is the cosine of their angle. The cross product of two vectors A and B is a vector perpendicular to the two vectors and has a magnitude equal to the area of the parallelogram generated from the two vectors, as shown Fig. A.2. A×B B B θ θ A A a) vector dot product a) vector cross product Fig. A.2 Vector dot product and cross product The area of the parallelogram is: AB× = ABsinθ . (EQ 7) The direction of the cross product is according to the right-hand rule, which is in the thumb’s direction if our right-hand’s four fingers go from vector A to B. Therefore, the order of the two vectors in the cross product equation matters. The cross product can be calculated by a determinant as follows: 380 Appendix A ijk × AB= A1 A2 A3 , (EQ 8) B1 B2 B3 where (i, j, k) represent (x, y, z) components. That is, × (),, AB= A2B3 – A3B2 A3B1 – A1B3 A1B2 – A2B1 . (EQ 9) Cross products are often used to find a vector that is perpendicular to the two vectors. Also, according to Equation 7 and Equation 9, the cross products are often used to find sine of their angle. A.1.4 Reflection A reflection of vector A around vector N is a vector B as shown in Fig. A.3, which has the same length making the same angle around N. B B N’ N θ N θ θ θ A A Fig. A.3 Vector reflection around a normal vector As we can see, B = N’ - A; (EQ 10) N’ = 2n|A|cosθ. (EQ 11) A.1 Vector Operations 381 where n is the unit vector along N: n = N/|N|, (EQ 12) and cosθ = n•A/|A|. (EQ 13) Putting them all together, B = 2N•A/|N| - A. (EQ 14) Reflection is needed in ray tracing. A.2 Matrix Operations A matrix is represented as A = (ai,j) for i=1,...n rows; j=1,...,m columns as follows: a11 ... a1m A = ... ... ... (EQ 15) an1 ... anm A.2.1 Transpose T The transpose of A = (ai,j) for i=1,...n; j=1,...,m is a matrix A = (aj,i) for i=1,...n; j=1,...,m, which swaps the rows with columns of the original matrix. That is: a11 ... an1 T A = ... ... ... (EQ 16) a1m ... anm 382 Appendix A A.2.2 Addition and Subtraction For two matrices A = (ai,j) and B = (bi,j), A + B = (ai,j + bi,j) and A - B = (ai,j -bi,j) for i=1,...n; j=1,...,m. That is: ()() a11 + b11 ... a1m + b1m AB+ = ... ... ... ; (EQ 17) ()() an1 + bn1 ... anm + bnm ()() a11 – b11 ... a1m – b1m AB– = ... ... ... (EQ 18) ()() an1 – bn1 ... anm – bnm For example, 123 321 ()13+ ()22+ ()31+ 444 456 + 789 ==()47+ ()58+ ()69+ 11 13 15 . (EQ 19) 789 456 ()74+ ()85+ ()96+ 11 13 15 The transpose of two matrices added together is: T T T ()AB+ A += B . (EQ 20) A.2.3 Multiplications If we multiply a matrix A = (ai,j) for i=1,...n; j=1,...,m with a scalar value c, the result is calculated by multiplying every element of A with c: cA = (cai,j) for i=1,...n; j=1,...,m. For example: A.1 Vector Operations 383 321 963 3 789 = 21 24 27 (EQ 21) 456 12 15 18 2 1 1 --- --- 3 3 321 7 8 789 ⁄ 3 = --- --- 3 (EQ 22) 3 3 456 4 5 --- --- 2 3 3 If we multiply two matrices together, it is required that the number of columns of the left matrix is the same as the number of rows of the right matrix. For example, if matrix A = (ai,j) for i=1,...n; j=1,...,m, then matrix B = (bi,j) has to be with i=1,...m; j=1,...,n in order to have the matrix multiplication: () AB = ∑ aik, bkj, (EQ 23) 0kn≤≤ That is: () () ∑ a1k, bk1, ... ∑ a1k, bkm, 1kn≤≤ 1kn≤≤ AB = ... ... ... (EQ 24) () () ∑ ank, bk1, ... ∑ ank, bkm, 1kn≤≤ 1kn≤≤ For example, 384 Appendix A 12 123 ()1615++ ()2818++ 22 28 34 ==. (EQ 25) 456 ()41530++ ()82036++ 49 64 56 As we can see, matrix multiplication is not commutative. In general, AB≠BA. The transpose of two matrices multiplied together is: T T T ()AB = B A . (EQ 26) A.2.4 Square Matrix and Inverse A square matrix is a matrix with the same number of rows and columns: A = (ai,j) for i=1,...n and j=1,...n. An identity matrix I, which is also called a unit matrix, is a square matrix with the main diagonal value equal to one (ai,j = 1) and all other elements equal to zero. Any matrix multiply its identity matrix is the matrix itself: AI = IA = I. For example, for n=3, 100 I3 = 010 . (EQ 27) 001 If AB = I, then B is called the inverse or reciprocal matrix of A, denoted by A-1. A has an inverse, which is called nonsingular or invertible, if and only if the determinant |A|≠0. a a For a 2×2 matrix, A = 11 12 , a21 a22 –1 1 a22 –a12 A = ------ . (EQ 28) A –a21 a11 A.1 Vector Operations 385 There are several methods to calculate the inverse, but they are numerically complex. The numerical complexity of matrix inversions is several orders of more calculations than matrix multiplications. In graphics, matrix inverse is implemented for transforming the normals and other applications. Appendix B Graphics Software Tools Appendix Objectives: • Provide a comprehensive list of graphics software tools. • Categorize graphics tools according to their applications. Many tools come with multiple functions. We put a primary category name behind a tool name in the alphabetic index, and put a tool name into multiple categories in the categorized index according to its functions. B.1 Graphics Tools Listed by Categories We have no intention of rating any of the tools. Many tools in the same category are not necessarily of the same quality or at the same capacity level. For example, a software tool may be just a simple function of another powerful package, but it may be free. Low-level Graphics Libraries 1. Coin3D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 431 2. DirectX/Direct3D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 440 3. GKS-3D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 456 4. Jogl - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 472 5. Mesa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 487 6. OpenGL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 501 7. OpenGL For Java (GL4Java, Maps OpenGL and GLU APIs to Java) - - - - - - - - - 501 8. QuickDraw3D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 514 9. Tao Framework - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 533 388 Appendix B 10. XGL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 559 Visualization Tools 1. 3D Grapher (Illustrates and solves mathematical equations in 2D and 3D) - - - - - - 402 2. 3D Studio VIZ (Architectural and industrial designs and concepts) - - - - - - - - - - - 404 3. 3DField (Elevation data visualization) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 406 4. 3DVIEWNIX (Image, volume, soft tissue display, kinematic analysis) - - - - - - - - 407 5. Amira (Medicine, biology, chemistry, physics, or engineering data) - - - - - - - - - - 415 6. Analyze (MRI, CT, PET, and SPECT) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 416 7.
Recommended publications
  • Audio Middleware the Essential Link from Studio to Game Design
    AUDIONEXT B Y A LEX A N D E R B R A NDON Audio Middleware The Essential Link From Studio to Game Design hen I first played games such as Pac Man and GameCODA. The same is true of Renderware native audio Asteroids in the early ’80s, I was fascinated. tools. One caveat: Criterion is now owned by Electronic W While others saw a cute, beeping box, I saw Arts. The Renderware site was last updated in 2005, and something to be torn open and explored. How could many developers are scrambling to Unreal 3 due to un- these games create sounds I’d never heard before? Back certainty of Renderware’s future. Pity, it’s a pretty good then, it was transistors, followed by simple, solid-state engine. sound generators programmed with individual memory Streaming is supported, though it is not revealed how registers, machine code and dumb terminals. Now, things it is supported on next-gen consoles. What is nice is you are more complex. We’re no longer at the mercy of 8-bit, can specify whether you want a sound streamed or not or handing a sound to a programmer, and saying, “Put within CAGE Producer. GameCODA also provides the it in.” Today, game audio engineers have just as much ability to create ducking/mixing groups within CAGE. In power to create an exciting soundscape as anyone at code, this can also be taken advantage of using virtual Skywalker Ranch. (Well, okay, maybe not Randy Thom, voice channels. but close, right?) Other than SoundMAX (an older audio engine by But just as a single-channel strip on a Neve or SSL once Analog Devices and Staccato), GameCODA was the first baffled me, sound-bank manipulation can baffle your audio engine I’ve seen that uses matrix technology to average recording engineer.
    [Show full text]
  • Autodesk Entertainment Creation Suite
    Autodesk Entertainment Creation Suite Top Reasons to Buy and Upgrade Access the power of the industry’s top 3D modeling and animation technology in one unbeatable software suite. Autodesk® Entertainment Creation Suite Options: Autodesk® Maya® Autodesk® 3ds Max® Entertainment Creation Suite 2010 includes: Entertainment Creation Suite 2010 includes: • Autodesk® Maya® 2010 software • Autodesk® 3ds Max® 2010 • Autodesk® MotionBuilder® 2010 software • Autodesk® MotionBuilder® 2010 software • Autodesk® Mudbox™ 2010 software • Autodesk® Mudbox™ 2010 software Comprehensive Creative Toolsets The Autodesk Entertainment Creation Suite offers an expansive range of artist-driven tools designed to handle tough production challenges. With a choice of either Autodesk Maya 2010 software or Autodesk 3ds Max 2010 software, you have access to award-winning, 3D software for modeling, animation, rendering, and effects. The Suite also includes Autodesk Mudbox 2010 software, allowing you to quickly and intuitively sculpt highly detailed models; and Autodesk MotionBuilder 2010 software, to quickly and efficiently create, manipulate and process massive amounts of animation data. The complementary toolsets of the Suite help you to achieve higher quality results more efficiently and more cost-effectively. Real-Time Performance with MotionBuilder The addition of MotionBuilder to a Maya or 3ds Max pipeline helps increase production efficiency, and produce higher quality results when developing projects requiring high-volume character animation. With its real-time 3D engine and dedicated toolsets for character rigging, nonlinear animation editing, motion-capture data manipulation, and interactive dynamics, MotionBuilder is an ideal, complementary toolset to Maya or 3ds Max, forming a unified Image courtesy of Wang Xiaoyu. end-to-end animation solution. Digital Sculpting and Texture Painting with Mudbox Designed by professional artists in the film, games and design industries, Mudbox software gives 3D modelers and texture artists the freedom to create without worrying about technical details.
    [Show full text]
  • Making a Game Character Move
    Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future.
    [Show full text]
  • A Guide to Harvard Academics
    The 49 A Guide to Harvard Academics 2016-2017 This guide is not the College’s advising resource of record. For the most accurate and up-to-date information on concentration and secondary field requirements, please consult the undergraduate Handbook for Students. Table of Contents Welcome to Harvard .........................................................................................................................4 Fields of Concentration and the 49 Book.......................................................................................5 How to Read the Fields of Concentration in the Handbook for Students.................................6 Academic Advising at Harvard........................................................................................................7 The Advising Relationship ...............................................................................................................8 Building Your Board of Advisors ...................................................................................................9 First-Year Advising ............................................................................................................................10 Sophomore Advising .........................................................................................................................11 Concentration Advising ....................................................................................................................12 Additional Advising Resources .......................................................................................................13
    [Show full text]
  • Comparative Analysis of Human Modeling Tools Emilie Poirson, Mathieu Delangle
    Comparative analysis of human modeling tools Emilie Poirson, Mathieu Delangle To cite this version: Emilie Poirson, Mathieu Delangle. Comparative analysis of human modeling tools. International Digital Human Modeling Symposium, Jun 2013, Ann Arbor, United States. hal-01240890 HAL Id: hal-01240890 https://hal.archives-ouvertes.fr/hal-01240890 Submitted on 24 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparative analysis of human modeling tools Emilie Poirson & Matthieu Delangle LUNAM, IRCCYN, Ecole Centrale de Nantes, France April 25, 2013 Abstract sometimes a multitude of functions that are not suitable for his application case. Digital Human Modeling tools simulate a task performed by a human in a virtual environment and provide useful The first step of our study consisted in listing all indicators for ergonomic, universal design and represen- the comparable software and to select the comparison tation of product in situation. The latest developments criteria. Then a list of indicators is proposed, in three in this field are in terms of appearance, behaviour and major categories: degree of realism, functions and movement. With the considerable increase of power com- environment. Based on software use, literature searches puters,some of these programs incorporate a number of [7] and technical reports ([8], [9], [10], for example), the key details that make the result closer and closer to a real table of indicator is filled and coded from text to a quinary situation.
    [Show full text]
  • Multimedia Systems DCAP303
    Multimedia Systems DCAP303 MULTIMEDIA SYSTEMS Copyright © 2013 Rajneesh Agrawal All rights reserved Produced & Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Lovely Professional University Phagwara CONTENTS Unit 1: Multimedia 1 Unit 2: Text 15 Unit 3: Sound 38 Unit 4: Image 60 Unit 5: Video 102 Unit 6: Hardware 130 Unit 7: Multimedia Software Tools 165 Unit 8: Fundamental of Animations 178 Unit 9: Working with Animation 197 Unit 10: 3D Modelling and Animation Tools 213 Unit 11: Compression 233 Unit 12: Image Format 247 Unit 13: Multimedia Tools for WWW 266 Unit 14: Designing for World Wide Web 279 SYLLABUS Multimedia Systems Objectives: To impart the skills needed to develop multimedia applications. Students will learn: z how to combine different media on a web application, z various audio and video formats, z multimedia software tools that helps in developing multimedia application. Sr. No. Topics 1. Multimedia: Meaning and its usage, Stages of a Multimedia Project & Multimedia Skills required in a team 2. Text: Fonts & Faces, Using Text in Multimedia, Font Editing & Design Tools, Hypermedia & Hypertext. 3. Sound: Multimedia System Sounds, Digital Audio, MIDI Audio, Audio File Formats, MIDI vs Digital Audio, Audio CD Playback. Audio Recording. Voice Recognition & Response. 4. Images: Still Images – Bitmaps, Vector Drawing, 3D Drawing & rendering, Natural Light & Colors, Computerized Colors, Color Palletes, Image File Formats, Macintosh & Windows Formats, Cross – Platform format. 5. Animation: Principle of Animations. Animation Techniques, Animation File Formats. 6. Video: How Video Works, Broadcast Video Standards: NTSC, PAL, SECAM, ATSC DTV, Analog Video, Digital Video, Digital Video Standards – ATSC, DVB, ISDB, Video recording & Shooting Videos, Video Editing, Optimizing Video files for CD-ROM, Digital display standards.
    [Show full text]
  • Columbia Photographic Images and Photorealistic Computer Graphics Dataset
    Columbia Photographic Images and Photorealistic Computer Graphics Dataset Tian-Tsong Ng, Shih-Fu Chang, Jessie Hsu, Martin Pepeljugoski¤ fttng,sfchang,[email protected], [email protected] Department of Electrical Engineering Columbia University ADVENT Technical Report #205-2004-5 Feb 2005 Abstract Passive-blind image authentication is a new area of research. A suitable dataset for experimentation and comparison of new techniques is important for the progress of the new research area. In response to the need for a new dataset, the Columbia Photographic Images and Photorealistic Computer Graphics Dataset is made open for the passive-blind image authentication research community. The dataset is composed of four component image sets, i.e., the Photorealistic Com- puter Graphics Set, the Personal Photographic Image Set, the Google Image Set, and the Recaptured Computer Graphics Set. This dataset, available from http://www.ee.columbia.edu/trustfoto, will be for those who work on the photographic images versus photorealistic com- puter graphics classi¯cation problem, which is a subproblem of the passive-blind image authentication research. In this report, we de- scribe the design and the implementation of the dataset. The report will also serve as a user guide for the dataset. 1 Introduction Digital watermarking [1] has been an active area of research since a decade ago. Various fragile [2, 3, 4, 5] or semi-fragile watermarking algorithms [6, 7, 8, 9] has been proposed for the image content authentication and the detection of image tampering. In addition, authentication signature [10, ¤This work was done when Martin spent his summer in our research group 1 11, 12, 13] has also been proposed as an alternative image authentication technique.
    [Show full text]
  • Metadefender Core V4.12.2
    MetaDefender Core v4.12.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2.
    [Show full text]
  • Luminosity | a Re-Imagining of Twilight | by Alicorn
    Luminosity by Alicorn You don't have to make a hundred mistakes for everything to disintegrate around you. One will do. One wrong risk, one misplaced trust, one careless guess is enough to destroy the one thing you can least afford to lose. But I'd never had any reason to imagine that my disaster would befall me at the time when I was most unexpectedly safe. pg. 1 1. Forks 2. The Cullens 3. The Reveal 4. Matchmaking 5. Vampires 101 6. Edward 7. Souls 8. The Future 9. Witches and Werewolves 10. Coven 11. Volterra 12. Norway 13. Newborn 14. Self-Control 15. Honeymoon 16. Ambition 17. Rachel 18. Clearwater 19. Denali 20. Europe 21. Hybrid 22. Maggie 23. Sue 24. Delivery 25. Expectations 26. Little Witch 27. Scatter 28. Ashes 29. Things Left Behind pg. 2 Forks Here is how I decided to live with my father in Washington. My favorite three questions are, What do I want?, What do I have?, and How can I best use the latter to get the former? Actually, I'm also fond of What kind of person am I?, but that one isn't often directly relevant to decision making on a day-to-day basis. What did I want? I wanted my mother, Renée, to be happy. She was the most important person to me, bar none. I also wanted her around, but when I honestly evaluated my priorities, it was more important that she be happy. If, implausibly, I had to choose between Renée being happy on Mars, and Renée being miserable living with me as she always had - I wouldn't be thrilled about it.
    [Show full text]
  • Metadefender Core V4.13.1
    MetaDefender Core v4.13.1 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2.
    [Show full text]
  • MPEG-7-Aligned Spatiotemporal Video Annotation and Scene
    MPEG-7-Aligned Spatiotemporal Video Annotation and Scene Interpretation via an Ontological Framework for Intelligent Applications in Medical Image Sequence and Video Analysis by Leslie Frank Sikos Thesis Submitted to Flinders University for the degree of Doctor of Philosophy College of Science and Engineering 5 March 2018 Contents Preface ............................................................................................................................................ VI List of Figures .............................................................................................................................. VIII List of Tables .................................................................................................................................. IX List of Listings .................................................................................................................................. X Declaration .................................................................................................................................... XII Acknowledgements ..................................................................................................................... XIII Chapter 1 Introduction and Motivation ......................................................................................... 1 1.1 The Limitations of Video Metadata.............................................................................................. 1 1.2 The Limitations of Feature Descriptors: the Semantic Gap .....................................................
    [Show full text]
  • V1.0 PDF Manual
    Anim8or® User Guide Version 1.00 29-May-17 R. Steven Glanville © 1999 - 2017 R. Steven Glanville. All rights reserved. http://www.anim8or.com Table Of Contents Introduction 9 What's New in v1.0 10 User Interface 10 Modeling 10 Animation 11 Basics 12 Mouse Usage 12 Keyboard Shortcuts 12 Undo and Redo 12 Tool Tips 13 Toolbars and Menus 13 Common Button Meanings 13 Top Toolbar 15 Arc Rotate 16 Editing Widgets 16 Grid Control 17 Material Editor 17 Anim8or Object Libraries 18 Visual Quality 18 OpenGL Workspace 19 File Output 20 User Attributes 20 Printing 20 Auto Save 20 Configuration 21 Version 1.00 29-May-17 2 © 1999 - 2017 R. Steven Glanville Table Of Contents User Interface Configuration 22 Object Editor - Basics & Object/Edit Mode 24 Object/Edit Tools 25 Basic Objects 25 Mesh vs. Parametric Components 27 Object Materials 28 Plug-in Shapes 28 Splines 29 True Type Fonts 29 Extrusion 30 Lathing 31 Modifiers 32 Mirror Image 33 Morph Targets 34 Continuously Mirrored Meshes 35 Reference Image 35 Object Editor - Object/Point Mode 37 Object/Point Operations 37 Point Editing 37 Edge Editing 38 Face Editing 39 Applying Multiple Materials 39 A Note on Selecting Faces 40 Adding Points and Edges 40 Adding Faces 41 Connecting Meshes 41 Merging Points 42 Version 1.00 29-May-17 3 © 1999 - 2017 R. Steven Glanville Table Of Contents Connecting Meshes (2) 42 Connecting Meshes (3) 42 Point and Line Parameters 43 Face Extrusion and Manipulation Tools 43 Topographical Knife 46 Face Editing Commands 47 Miscellaneous Commands 49 Selection Commands 49 Editing Commands 49 Figure Editor 51 Figure Basics 52 Figure/Edit Operations 52 Visibility 54 Building a Skeleton 55 Flexible Joints 56 Adding Body Parts 57 Skinning 57 Influence Volumes 58 Skinning Weights 59 Sequence Editor 61 Time Track 61 Scrubber Bar 62 Sequence Basics 62 Edit Operations 63 Visibility Options 63 Animate Button 64 What is a Key? 64 Version 1.00 29-May-17 4 © 1999 - 2017 R.
    [Show full text]