Hydrothermal Vents in the Lau Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Thoracia, Balanomorpha, Tetraclitidae
Rei'. West. Aust. Mus. 1990, 14(4): 665-668 Occurrence of the barnacle Tesseropora rosea (Krauss) (Thoracica, Balanomorpha, Tetraclitidae) in western Australian waters. Diana S. Jones* Tesseropora rosea was originally described from one specimen collected at Algoa Bay, South Africa (Krauss 1848). Darwin (1854) recorded material from eastern Australia and, after examining the unique South African specimen commented (p. 335) 'There can be no doubt of the identify of the African and Australian specimens. It is a singular circumstance that the same species should occur in these two distant places, and, as far as at present known, not in the intermediate, more tropical coasts'. The species has not been collected either in South Africa, or on the 'intermediate more tropical coasts' since that time. However, as well as eastern Australia, the species is also known from Lord Howe Island and the Kermadec Islands (Endean et al. 1956a, 1956b; Foster 1978; Anderson & Anderson 1985). In eastern Australia T. rosea occurs between lat. 1905 and 380, and has never been recorded from western areas ofthe continent. The species occurs abundantly in exposed coastal areas and on flat rock platforms which are subjected to strong wave action, extending from betweenjust above mean low water neap to mean high water neap tidal levels (Pope 1945; Dakin et al. 1948, 1953; Denley & Underwood 1979; Anderson & Buckle 1983; Anderson & Anderson 1985). In 1986 three live specimens of T. rosea were collected on intertidal granitic rocks at Cottesloe, Western Australia, by Ms L. M. Marsh (WAM crustacean registration number WAM 2347-86). Since 1986 four isolated large individuals of T. -
Macro-To-Nanoscale Investigation of Wall-Plate Joints in the Acorn Barnacle Semibalanus Balanoides
This is a repository copy of Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/161302/ Version: Published Version Article: Mitchell, R.L. orcid.org/0000-0002-6328-3998, Coleman, M., Davies, P. et al. (5 more authors) (2019) Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. Journal of The Royal Society Interface, 16 (157). 20190218. ISSN 1742-5689 https://doi.org/10.1098/rsif.2019.0218 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle royalsocietypublishing.org/journal/rsif Semibalanus balanoides: correlative imaging, biological form and function, Research and bioinspiration Cite this article: Mitchell RL, Coleman M, R. L. Mitchell1, M. Coleman1, P. Davies1, L. North1, E. C. Pope2, Davies P, North L, Pope EC, Pleydell-Pearce C, C. -
Contributions to Zoology, 68 (4) 245-260 (2000)
Contributions to Zoology, 68 (4) 245-260 (2000) SPB Academic Publishing bv, The Hague Pyrgoma kuri Hoek, 1913: a case study in morphology and systematics of a symbiotic coral barnacle (Cirripedia: Balanomorpha) Arnold Ross & William+A. Newman Scripps Institution of Oceanography, La Jolla, California 92093-0202, U.S.A atrial Keywords: Pyrgomatidae, passageways, chemical mediation, parasitic dinoflagellates “Whoever attempts to make outfrom external characters alone, Systematics 247 without the valves will almost Chemical mediation between barnacle and host 254 disarticulating ... certainly fall into errors 259 many ...” Acknowledgements Charles Darwin, 1854 References 259 Abstract Introduction The of from the systematics pyrgomatids, stemming early 1800’s, During 1899 and 1900 H.M.S. “Siboga” explored has been based the number of traditionally on plates making up the waters of the Netherlands East Indies, or what the wall (six, four or one) and specializations in the opercular Indonesia. is now largely known as The “Siboga”, plates. A recent study ofthe related bryozobiines focused attention some 50 m in length, takes its name from a town on detailed structural modifications ofthe basis, which we now on the west coast of Sumatra. find also applies to some highly derived pyrgomatids and an Although originally archaeobalanine. Reexamination of the Indonesian coral barnacle designed to be a gun-boat it was retrofitted as a Pyrgoma kuri Hoek, 1913 has revealed previously unknown research vessel prior to completion. Under the lead- morphological features, including separable opercular plates, a ership of Max Weber (Pieters & De Visser, 1993), and basis lined with ladder arch-like true tergal spur, a to the shipboard party collected samples at 323 sta- calcareous structures covering “atrial passageways”. -
Some Central Pacific Crustaceans by CHARLES HOWARD EDMONDSON Bernice P
OCCASIONAL PAPERS OF BERNICE P. BISHOP MUSEUM HONOLULU, HAWAII I Volume XX August 29, 1951 NumJ>er 13 Some Central Pacific Crustaceans By CHARLES HOWARD EDMONDSON BERNIce P. BtSHOJ' MOSEtrM INTRODUCTION The following report on crustaceans selected from materia1lwhich has accumulated in Bishop Museum for several years inc1uder (1), new species, (2) known species as new Hawaiian records, an,(i (3) known species rarely recorded in the central Pacific. Recently, valuable collections have been received as a result of the current dredging operations of the M alliin, a boat of the Fi hand Game Division, Territorial Board of Agriculture and Forestry. These collections clearly reveal the presence of a crustacean fauna a ut the Hawaiian Islands. at depths of about 10 fathoms and beyond, which is not seen on the shallow reefs. Many of the unique species taken nearly 50 years ago by the Albatross of the United States Fis Com~ mission have again been brought to view. Other rare crustaceans recorded in the report were receive1 from the Honolulu Aquarium and came from fish traps operated b~ com mercial fishermen off the coast of Oahu at depths ranging aro~nd 16 fathoms. These specimens show that fauna at these depths har close affinities with that of the western Pacific and the Indian Ocej. It is well known that many organisms, both land and marine ~orrns, have been introduced into the Hawaiian area within recent I.years, chiefly as a result of war activities. Ocean-going craft returning to Hawaii from forward areas in the Pacific transport on theil' hulls marine organisms not previously recognized among local shore fauna, and some of these inunigrants become established in the new e9viron ment. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
(Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil
Biodiversity Data Journal 7: e47456 doi: 10.3897/BDJ.7.e47456 Data Paper Harvestmen occurrence database (Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil Valéria J. da Silva‡, Manoel B. Aguiar-Neto‡, Dan J. S. T. Teixeira‡, Cleverson R. M. Santos‡, Marcos Paulo Alves de Sousa‡, Timoteo M. da Silva‡, Lorran A. R. Ramos‡, Alexandre Bragio Bonaldo§ ‡ Museu Paraense Emílio Goeldi, Belém, Brazil § Laboratório de Aracnologia, Museu Paraense Emílio Goeldi, C.P. 399, 66017-970 Belém, Pará, Brazil, Belém, Brazil Corresponding author: Marcos Paulo Alves de Sousa ([email protected]), Alexandre Bragio Bonaldo ([email protected]) Academic editor: Adriano Kury Received: 19 Oct 2019 | Accepted: 20 Dec 2019 | Published: 31 Dec 2019 Citation: da Silva VJ, Aguiar-Neto MB, Teixeira DJST, Santos CRM, de Sousa MPA, da Silva TM, Ramos LAR, Bragio Bonaldo A (2019) Harvestmen occurrence database (Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil. Biodiversity Data Journal 7: e47456. https://doi.org/10.3897/BDJ.7.e47456 Abstract Background We present a dataset with information from the Opiliones collection of the Museu Paraense Emílio Goeldi, Northern Brazil. This collection currently has 6,400 specimens distributed in 13 families, 30 genera and 32 species and holotypes of four species: Imeri ajuba Coronato-Ribeiro, Pinto-da-Rocha & Rheims, 2013, Phareicranaus patauateua Pinto-da- Rocha & Bonaldo, 2011, Protimesius trocaraincola Pinto-da-Rocha, 1997 and Sickesia tremembe Pinto-da-Rocha & Carvalho, 2009. The material of the collection is exclusive from Brazil, mostly from the Amazon Region. The dataset is now available for public consultation on the Sistema de Informação sobre a Biodiversidade Brasileira (SiBBr) (https://ipt.sibbr.gov.br/goeldi/resource?r=museuparaenseemiliogoeldi-collection-aracnolo giaopiliones). -
July, and October
ISSN 0739-4934 NEWSLETTER I {!STORY OF SCIENCE _iu_'i_i_u~-~-~-o~_9_N_u_M_B_E_R_3__________ S00ETY AAASREPORT HSSEXECUTIVE A Larger Role for History of Science COMMITTEE PRESIDENT in Undergraduate Education STEPHEN G. BRUSH, University of Maryland NORRISS S. HETHERINGTON VICE-PRESIDENT Office for the History of Science and Technology, SALLY GREGORY KOHLSTEDT, University of California, Berkeley University of Minnesota EXECU11VESECRETARY HISTORIANS OF SCIENCE have often been called to contribute to under MICHAEL M. SOKAL, Worcester graduate education. As HSS President Stephen G. Brush notes jNewsletter, Polytechnic Institute January 1990, pp. 1, 8-10), historically oriented science courses could be TREASURER come a valuable part of the core curriculum at many institutions, and fac MARY LOUISE GLEASON, New York City ulty at many colleges-especially science professors-have expressed strong EDITDR interest in using materials and perspectives from history of science. RONALD L. NUMBERS, University of We are now called again, this time by the American Association for the Wisconsin-Madison Advancement of Science. The Liberal Art of Science: Agenda for Action, published by the AAAS in May 1990, argues that science is one of the liberal The Newsletter of the History of Science arts and that it should be taught as such, as integrated into the totality of Society is published in January, April, July, and October. Regular issues are sent to individual human experience. This argument and advice may seem obvious to histori members of the Society who reside in North ans of science, but it is a revolutionary departure from tradition for many America. Airmail copies are sent to those scientists, and one that could transform both undergraduate education and members overseas who pay $5 yearly to cover postal costs: The Newsletter is available to the role of our discipline. -
Stalked Barnacles
*Manuscript Click here to view linked References Stalked barnacles (Cirripedia, Thoracica) from the Upper Jurassic (Tithonian) Kimmeridge Clay of Dorset, UK; palaeoecology and bearing on the evolution of living forms Andy Gale School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL; E-mail address: [email protected] A B S T R A C T New thoracican cirripede material from the Kimmeridge Clay (Upper Jurassic, Tithonian) is described. This includes a log, encrusted on the lower surface with hundreds of perfectly preserved, articulated specimens of Etcheslepas durotrigensis Gale, 2014, and fewer specimens of Concinnalepas costata (Withers, 1928). Some individuals are preserved in life position, hanging from the underside of the wood, and the material provides new morphological information on both species. It appears that Martillepas ovalis (Withers, 1928), which occurs at the same level (Freshwater Steps Stone Band, pectinatus Zone) attached preferentially to ammonites, whereas E. durotrigensis and C. costata used wood as a substrate for their epiplanktonic lifestyle. Two regurgitates containing abundant barnacle valves, mostly broken, and some bivalve fragments, have been found in the Kimmeridge Clay. These were produced by a fish grazing on epiplanktonic species, and are only the second example of regurgitates containing barnacle valves known from the fossil record. The evolution of modern barnacle groups is discussed in the light of the new Jurassic material as well as recently published molecular phylogenies. New clades defined herein are called the Phosphatothoracica, the Calamida and the Unilatera. Keywords Epiplanktonic barnacles Kimmeridge Clay predation 1. INTRODUCTION Amongst the most remarkable fossils collected by Steve Etches from the Kimmeridge Clay of Dorset are articulated stalked barnacles. -
Back Matter (PDF)
NEW RELEASE AVIAN FORAGING: THEORY, METHODOLOGY, AND APPLICATIONS MICfjAEL L. MORRISON, C. JOHN RALPH, JARED VERNER. AND JOSEPH R. JEHL. JR Order from: EDITORS Cooper Ornithological Society Western Foundation of Vertebrate zoology 1100 Glendon Ave., Suite 1400 Los Angeles, CA 90024 USA All order must be prepaid in U.S. dollars. Make checks payable to the Cooper Ornithological Society STUDIES IN AVIAN BIOLOGY NO. 13 $29.50 (includes postage & ha&Ii@ Other recent publications: SAB 11: Bird Communities at Sea off California: 1975 to 1983 $ 7.00 SAB 12: Biology of the Eared Grebe and Wilsons’ Phalarope in the Nonbreeding Season: A Study of Adaptations to Saline Lakes $14.00 3-5-1OSALE NEW REDUCED PRICES EFFECTIVEJULY 1 Original Price New Price SAB 2: Shorebirds in Marine Environments . $ 5.00 SAB 3: Bird Communi Dynamics in A Ponderosa Pine . % ore& . I!% $ 3.00 SAB 4: The Avifauna of the South Farallon Islands, California . $ 3.00 SAB 5: Annual Variation of Daily Ener $N Expenditure by the Black-bille P Magpie . * . $ 3.00 $X SAB 6: Estimating Numbers of Terrestrial Birds . $ 10.00 SAB 7: Population Ecology of the Dipper (CinClns $W me&arws) in the Front Range of Colorado . $ 3.00 $\ SAB 8: Tropical Seabird Ecology * - - - * * . * * - * * - * * $* $ 3.00 SAB 9: Forest Bird Communities of the Hawaiian Islands . $ 10.00 SAB 10: Ecology and Behavior of Gulls . $ 5.00 Prices include postage andhandling Order from: Mr. James T. Jennings Western Foundation of Vertebrate Zoology 1100 Glendon Avenue, Suite 1400 Los Angeles, CA 90024 USA All Orders must be prepaid in U.S. -
Growing Goosenecks: a Study on the Growth and Bioenergetics
GROWING GOOSENECKS: A STUDY ON THE GROWTH AND BIOENERGETICS OF POLLIPICES POLYMERUS IN AQUACULTURE by ALEXA ROMERSA A THESIS Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science September 2018 THESIS APPROVAL PAGE Student: Alexa Romersa Title: Growing Goosenecks: A study on the growth and bioenergetics of Pollicipes polymerus in aquaculture This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Science degree in the Department of Biology by: Alan Shanks Chairperson Richard Emlet Member Aaron Galloway Member and Janet Woodruff-Borden Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded September 2018 ii © 2018 Alexa Romersa This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (United States) License. iii THESIS ABSTRACT Alexa Romersa Master of Science Department of Biology September 2018 Title: Growing Goosenecks: A study on the growth and bioenergetics of Pollicipes polymerus in aquaculture Gooseneck Barnacles are a delicacy in Spain and Portugal and a species harvested for subsistence or commercial fishing across their global range. They are ubiquitous on the Oregon coastline and grow in dense aggregation in the intertidal zone. Reproductive biology of the species makes them particularly susceptible to overfishing, and in the interest of sustainability, aquaculture was explored as one option to supply a commercial product without impacting local ecological communities. A novel aquaculture system was developed and tested that caters to the unique feeding behavior of Pollicipes polymerus.