The Cirripedia of New Caledonia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crustaceans from Antipatharians on Banks of the Northwestern Gulf of Mexico
CORE Metadata, citation and similar papers at core.ac.uk Provided by ZENODO A peer-reviewed open-access journal ZooKeys 457: 45–54Crustaceans (2014) from antipatharians on banks of the northwestern Gulf of Mexico 45 doi: 10.3897/zookeys.457.6280 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Crustaceans from antipatharians on banks of the northwestern Gulf of Mexico Mary K. Wicksten1, Marissa F. Nuttall2, Emma L. Hickerson2 1 Biology, Texas A&M University, College Station Texas U.S.A. 77843-3258 2 Flower Gardens Banks Natio- nal Marine Sanctuary, 4700 Avenue U, Galveston, Texas 77551 U.S.A. Corresponding author: Mary K. Wicksten ([email protected]) Academic editor: I.S. Wehrtmann | Received 19 September 2013 | Accepted 13 January 2014 | Published 25 November 2014 http://zoobank.org/AFC34B87-FAED-44B8-BD24-14B0604259AB Citation: Wicksten MK, Nuttall MF, Hickerson EL (2014) Crustaceans from antipatharians on banks of the northwestern Gulf of Mexico. In: Wehrtmann IS, Bauer RT (Eds) Proceedings of the Summer Meeting of the Crustacean Society and the Latin American Association of Carcinology, Costa Rica, July 2013. ZooKeys 457: 45–54. doi: 10.3897/zookeys.457.6280 Abstract The stalked barnacle Oxynaspis gracilis, the chirostylid squat lobster Uroptychus sp., and the caridean shrimps Periclimenes cf. antipathophilus and Pseudopontonides principis have been collected at 68–124 m by a remotely operated vehicle (ROV) on banks in the northern Gulf of Mexico. These species inhabited six species of antipatharian hosts. Pseudopontonides principis, O. gracilis, and U. sp. were not confined to a single host species. Except for O. -
Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult). -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Parapterois Heterurus (Bleeker, 1856) Parascorpaena Mcadamsi (Fowler
click for previous page 2326 Bony Fishes Parapterois heterurus (Bleeker, 1856) En - Blackfooted firefish. Maximum standard length 25 cm. Occasionally appears in trawls over soft bottoms at depths of 40 to 300 m. Too infrequently taken to be of importance to fisheries, but can force trawl fishermen to handle their catch with greater caution. Reported within the area at Amboina; more commonly taken in southern Japan and Taiwan Province of China and is also known from South Africa. (from Matsubara, 1943) Parascorpaena mcadamsi (Fowler, 1938) En - Ocellated scorpionfish. Maximum standard length 6 cm. A small relatively uncommon, reef-dwelling or shallow rocky-bot- tom inhabiting species of minor commercial value, but occasionally seen in subsistence fisheries. Found from near shore in lagoons to outer reef slopes to depths of 37 m. Widely ranging, like other species of Parascorpaena, and known from South Africa to the southern Philippines (at Jolo), to Taiwan Province of China and Queensland, Guadalcanal in the Solomon Islands, Chesterfield Islands, New Caledonia, and Rapa. Scorpaena moultoni is a probable junior synonym. (from Fowler, 1938) Scorpaeniformes: Scorpaenidae 2327 Parascorpaena mossambica (Peters, 1855) En - Mozambique scorpionfish. Maximum standard length 10 cm. Occupies inshore rocky areas and can be abundant. Although this species makes its way into local markets and is consumed as food, no significant fisheries exists for it, due to its small size. Widely distributed, occurring from South Africa and the Red Sea to the Ryukyu and Palau Islands and eastward to the Society Islands. (from Matsubara, 1943) Parascorpaena picta (Kuhl and Van Hasselt in Cuvier 1829) En - Painted scorpionfish. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks. -
Otago Submarine Canyons: Mapping and Macrobenthos
Otago Submarine Canyons: Mapping and Macrobenthos Bryce A. Peebles A thesis submitted in partial fulfilment for the degree of Master of Science at the University of Otago December 2013 ii Abstract Submarine canyons are steep-sided “V’ or “U” shaped valleys that incise continental slopes worldwide. The geophysical and oceanographic features of submarine canyons can produce environmental conditions that cause benthic assemblages to be distinctive and productive compared to those of the adjacent slope; however the assemblages are potentially vulnerable to anthropogenic impacts, including bottom fishing. In order to help inform policy and management, submarine canyons need to be objectively defined topographically and their benthic assemblages characterised. A canyon network occurs off the Otago Peninsula, south-eastern New Zealand, but lack of detailed bathymetric data and adequate benthic sampling has limited study of the canyons. This thesis outlines a method of defining submarine canyon areas and examines epifaunal and infaunal assemblages of the Otago canyons and adjacent slope. Objective definition of the Otago canyon network in the GIS software GRASS along with the steps to use this methodology worldwide are described. Archival count data from 1966-74 on the epifauna are analysed using the PRIMER suite of programs to characterise epifaunal assemblages. Anomurans, polychaetes, asteroids and ascidians make up 70% of the epifaunal canyon assemblage. The epifaunal assemblage is clearly defined by water depth and recognisable from 380 m. Quantitative sampling of infauna in Saunders canyon, Papanui canyon and adjacent slope was carried out to examine infaunal community structure of the canyons and adjacent slope. Infaunal canyon assemblages are dominated by polychaetes, amphipods, ophiuroids, decapods and isopods in canyons, accounting for 75% of collected individuals. -
Issue Number 118 October 2007 ISSN 0839-7708 in THIS
Issue Number 118 October 2007 Green turtle hatchling from Turkey with extra carapacial scutes (see pp. 6-8). Photo by O. Türkozan IN THIS ISSUE: Editorial: Conservation Conflicts, Conflicts of Interest, and Conflict Resolution: What Hopes for Marine Turtle Conservation?..........................................................................................L.M. Campbell Articles: From Hendrickson (1958) to Monroe & Limpus (1979) and Beyond: An Evaluation of the Turtle Barnacle Tubicinella cheloniae.........................................................A. Ross & M.G. Frick Nest relocation as a conservation strategy: looking from a different perspective...................O. Türkozan & C. Yılmaz Linking Micronesia and Southeast Asia: Palau Sea Turtle Satellite Tracking and Flipper Tag Returns......S. Klain et al. Morphometrics of the Green Turtle at the Atol das Rocas Marine Biological Reserve, Brazil...........A. Grossman et al. Notes: Epibionts of Olive Ridley Turtles Nesting at Playa Ceuta, Sinaloa, México...............................L. Angulo-Lozano et al. Self-Grooming by Loggerhead Turtles in Georgia, USA..........................................................M.G. Frick & G. McFall IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 118, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J. -
A Checklist of Turtle and Whale Barnacles
Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
New Caledonia by Michel Kulbicki and Jeffrey T. Williams
ATOLL RESEARCH BULLETIN NO. 444 CHECKLIST OF THE SHOREFISHES OF OUVEA ATOLL, NEW CALEDONIA BY MICHEL KULBICKI AND JEFFREY T. WILLIAMS ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. OCTOBER 1997 BY MICHELKULBICKI* AND JEFFREYT. WILLIAMS" 7'he shorefishes of Ouvdal an isolated atoll in the Loyalty Islands group of New Caledonia. had not been surveyed prior to 1990. An extensive survey was conducted by ORSTOM between 1991 and 1992 to obtain baseline information on the shorefishes. A total of 653 taxa among 72 families are now docuniented from this area. The most diverse families are the Labridae (69 species). Poniacentridae (58 species). Gobiidae (54 species). Serranidae (39 sl~ecies),Chaetodontidac (31 species) and Apogonidac (28 species). T11e absence or very low diversity of some families (Clupeidae, Nemipteridae, Siganidae) or genera (Ahzidefdzuf; AJeol~o171acenfrzis)is similar to findings for other isolated islands of the Coral Sea. Of the 653 species recorded from Ouvea, 51 species have not been reported from New Caledonia. a large high island to the South. Only one endemic specics, Luzonici~~hysivilliui~z.si, has been recognized among the shorefishes at OuvCa. A 11umber of Pacific Plate endemic species were recorded at Ouvda. which is positioned on the Australasian Plate to the south of the edge of the Pacific Plate. Ai~/er?nariz.i.rduescu.~, previously known from three specimens talten at the I-Iawaiian Islands. is recorded from a single specimen talten at Ouvda. Another antitropical distribution pattern is exhibited by Diizeimr~ich~1~y.sriukiuensis, which is known to occur at Fiji: Ouvia and Queensland in the Sonth and from Oltinawa. -
Benvenuto, C and SC Weeks. 2020
--- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.