Issue Number 118 October 2007 ISSN 0839-7708 in THIS

Total Page:16

File Type:pdf, Size:1020Kb

Issue Number 118 October 2007 ISSN 0839-7708 in THIS Issue Number 118 October 2007 Green turtle hatchling from Turkey with extra carapacial scutes (see pp. 6-8). Photo by O. Türkozan IN THIS ISSUE: Editorial: Conservation Conflicts, Conflicts of Interest, and Conflict Resolution: What Hopes for Marine Turtle Conservation?..........................................................................................L.M. Campbell Articles: From Hendrickson (1958) to Monroe & Limpus (1979) and Beyond: An Evaluation of the Turtle Barnacle Tubicinella cheloniae.........................................................A. Ross & M.G. Frick Nest relocation as a conservation strategy: looking from a different perspective...................O. Türkozan & C. Yılmaz Linking Micronesia and Southeast Asia: Palau Sea Turtle Satellite Tracking and Flipper Tag Returns......S. Klain et al. Morphometrics of the Green Turtle at the Atol das Rocas Marine Biological Reserve, Brazil...........A. Grossman et al. Notes: Epibionts of Olive Ridley Turtles Nesting at Playa Ceuta, Sinaloa, México...............................L. Angulo-Lozano et al. Self-Grooming by Loggerhead Turtles in Georgia, USA..........................................................M.G. Frick & G. McFall IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 118, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J. Godley & Annette C. Broderick (Editors Emeriti) Nicolas J. Pilcher University of Exeter in Cornwall, UK Marine Research Foundation, Malaysia George H. Balazs Manjula Tiwari National Marine Fisheries Service, Hawaii, USA National Marine Fisheries Service, La Jolla, USA Alan B. Bolten Kartik Shanker University of Florida, USA Indian Institute of Science, Bangalore, India Angela Formia Jeanette Wyneken University of Florence, Italy Florida Atlantic University, USA Colin Limpus Queensland Turtle Research Project, Australia MTN Online - The Marine Turtle Newsletter is available at the MTN web site: <http://www.seaturtle.org/mtn/>. Subscriptions and Donations - Subscriptions and donations towards the production of the MTN should be made online at <http://www.seaturtle. org/mtn/> or c/o SEATURTLE.ORG (see inside back cover for details). We are grateful to our major donors: Marine© Turtle Marine Newsletter Turtle No. Newsletter 118, 2007 - Page 1 Editorial: Conservation Conflicts, Conflicts of Interest, and Conflict Resolution: What Hopes for Marine Turtle Conservation? Lisa M. Campbell Nicholas School of Environment and Earth Sciences, Duke University Marine Lab, 135 Marine Lab Rd, Beaufort, NC 28516 USA (E-mail: [email protected]) Debates about the role of science in policy–making, and that of shared by all conservation biologists, see (Brussard & Tull 2007) scientists as policy advocates, are not new. These roles have been for an alternative view of advocacy). Lackey (2007, 13) argues discussed among natural scientists (for example, see several articles that “Attempting to be both the provider of policy-neutral science in Conservation Biology 21:1) and examined by others (Jasanoff and an advocate for one’s personal policy preference is laden with 1996; Kinchy & Kleinman 2003). While all sciences struggle with conflicts of interest.” the tension between science and advocacy to a certain extent, this But what is conflict of interest? Generally, a conflict of interest tension is inherent in the field of conservation biology given its arises when a person with obligations to a particular organization, normative goals; conservation is normative in that it promotes or to maintaining a particular standard, is compromised by other what ‘ought’ to be rather than simply describing what ‘is.’ For commitments and interests. ‘Other’ interests are typically portrayed example, the mission of the Society for Conservation Biology as financial, but can also include more intangible gains, e.g. ensuring is “to advance the science and practice of conserving the Earth’s one policy option is adopted over another, or realizing deeply held biological diversity” (http://www.conbio.org/AboutUs/). Among values. Conflicts of interest can be potential, real, or perceived, and member organizations devoted to marine turtles, normative goals there are several possibilities for dealing with them. Disclosure of are also evident. For example, the International Sea Turtle Society’s conflicts of interest is probably the most common method (and mission is bringing “people together to promote the exchange the most feasible). Disclosure can contribute to transparency and of information that advances the global knowledge of sea turtle assist people in assessing arguments for and against particular biology and conservation” (http://www.seaturtle.org/ists/mission. interpretations of data or of conservation policies. What is important php). While the ISTS mission statement can be read as advancing to note is that disclosing a conflict of interest does not remove it, the ‘knowledge of’ conservation rather than conservation per se, the but rather alerts others to its presence. Marine Turtle Specialist Group of the World Conservation Union Calls for disclosure of conflicts of interest surfaced recently in more directly advocates conservation. Its mission is: “To develop debates among members of the Marine Turtle Specialist Group and support strategies, set priorities, and provide tools that promote (MTSG) about the utility of the IUCN’s Red List criteria for and guide the conservation of marine turtles, and their ecological assessing the status of marine turtles. These calls surface primarily roles and habitats” (http://www.iucn-mtsg.org/about.shtml). when someone on one side of the debate is questioning the views of Scientists who are members of such organizations presumably someone on the other, i.e. there has been a focus on the conflicts of identify with their mission statements. Does membership in such interests, and to a certain extent Lackey’s (2006)‘demonization’, of organizations undermine a scientist’s claims to ‘objectivity’? particular people. There have also been suggestions for widespread Can we interpret membership in conservation organizations as a disclosure of conflicts of interest. Such disclosure in debates about potential source of bias when scientists are asked to provide data marine turtle conservation would achieve three important things. that will influence conservation policy? Beyond membership, are First, it would increase transparency in the debate for all of those scientists open to accusations of conflicts of interest based on the participating and watching from the sidelines. Second, it would funds and support they receive from specific organizations, be these increase self-awareness among participants. It is much easier to see government, private, or not-for-profit? At a more fundamental level, conflicts of interest in other people, particularly those we don’t agree is anyone able to fully meet the ideals of objectivity, completely with, than in ourselves (to this end, I advocate full disclosure, i.e. separating his/her values from science? In the world of marine moving beyond a listing of funding agencies and policy preferences, turtle conservation and research, these questions are more than to a more self-reflexive examination of personal bias). Third, it academic. Marine turtles and their conservation can be included might decrease animosity, since self-disclosure would reduce the in the category of what (Salwasser 2004) identifies as ‘wicked’ need for accusations of conflicts of interest between colleagues. problems. These have several characteristics, including: clear All of these things are worth pursuing. However, we need to winners and losers in policy outcomes; the use of science to mask recognize the limits to disclosure, i.e. what it won’t achieve. First, personal policy preferences; divisiveness and confrontation, where given the normative nature of conservation itself, the mission individuals demonize supporters of competing policy preferences statement of two of the largest organizations dedicated to marine rather than present analytical arguments; high levels of uncertainty; turtles, and the way research on conservation and on endangered national versus regional conflict; and semantic wrangling, where the species is funded, there are likely to be few scientists actively meaning of words matters and arguments over meaning are often engaged in debates about marine turtle biology and conservation surrogates for debates over values (Lackey 2006; Lackey 2007). In that could convince all other scientists that they have no potential, such cases, Lackey (2007, 12) argues that scientists “must exercise perceived, or real conflict of interest. Perception is important in this great care to play an appropriate and clearly defined role” and case, since it will impact on how someone’s position is assessed suggests that scientists avoid advocacy altogether (this view is not whether or not the conflict
Recommended publications
  • Beach Dynamics and Impact of Armouring on Olive Ridley Sea Turtle (Lepidochelys Olivacea) Nesting at Gahirmatha Rookery of Odisha Coast, India
    Indian Journal of Geo-Marine Sciences Vol. 45(2), February 2016, pp. 233-238 Beach dynamics and impact of armouring on olive ridley sea turtle (Lepidochelys olivacea) nesting at Gahirmatha rookery of Odisha coast, India Satyaranjan Behera1, 2, Basudev Tripathy3*, K. Sivakumar2, B.C. Choudhury2 1Odisha Biodiversity Board, Regional Plant Resource Centre Campus, Nayapalli, Bhubaneswar-15 2Wildlife Institute of India, Dehradun, PO Box 18, Chandrabani, Dehradun – 248 001, India. 3Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700 053 (India) *[E. mail:[email protected]] Received 28 March 2014; revised 18 September 2014 Gahirmatha arribada beach are most dynamic and eroding at a faster rate over the years from 2008-09 to 2010-11, especially during the turtles breeding seasons. Impact of armouring cement tetrapod on olive ridley sea turtle nesting beach at Gahirmatha rookery of Odisha coast has also been reported in this study. This study documented the area of nesting beach has reduced from 0.07 km2to 0.06 km2. Due to a constraint of nesting space, turtles were forced to nest in the gap of cement tetrapods adjacent to the arribada beach and get entangled there, resulting into either injury or death. A total of 209 and 24 turtles were reported to be injured and dead due to placement of cement tetrapods in their nesting beach during 2008-09 and 2010-11 respectively. Olive ridley turtles in Odisha are now exposed to many problems other than fishing related casualty and precautionary measures need to be taken by the wildlife and forest authorities to safeguard the Olive ridleys and their nesting habitat at Gahirmatha.
    [Show full text]
  • AN INTRODUCTION to Texas Turtles
    TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth­ less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature.
    [Show full text]
  • Background on Sea Turtles
    Background on Sea Turtles Five of the seven species of sea turtles call Virginia waters home between the months of April and November. All five species are listed on the U.S. List of Endangered and Threatened Wildlife and Plants and classified as either “Threatened” or “Endangered”. It is estimated that anywhere between five and ten thousand sea turtles enter the Chesapeake Bay during the spring and summer months. Of these the most common visitor is the loggerhead followed by the Kemp’s ridley, leatherback and green. The least common of the five species is the hawksbill. The Loggerhead is the largest hard-shelled sea turtle often reaching weights of 1000 lbs. However, the ones typically sighted in Virginia’s waters range in size from 50 to 300 lbs. The diet of the loggerhead is extensive including jellies, sponges, bivalves, gastropods, squid and shrimp. While visiting the Bay waters the loggerhead dines almost exclusively on horseshoe crabs. Virginia is the northern most nesting grounds for the loggerhead. Because the temperature of the nest dictates the sex of the turtle it is often thought that the few nests found in Virginia are producing predominately male offspring. Once the male turtles enter the water they will never return to land in their lifetime. Loggerheads are listed as a “Threatened” species. The Kemp’s ridley sea turtle is the second most frequent visitor in Virginia waters. It is the smallest of the species off Virginia’s coast reaching a maximum weight of just over 100 lbs. The specimens sited in Virginia are often less than 30 lbs.
    [Show full text]
  • In the Northern Mariana Islands
    THE TRADITIONAL AND CEREMONIAL USE OF THE GREEN TURTLE (Chelonia mydas) IN THE NORTHERN MARIANA ISLANDS with recommendations for ITS USE IN CULTURAL EVENTS AND EDUCATION A Report prepared for the Western Pacific Regional Fishery Management Council and the University of Hawaii Sea Grant College Program by Mike A. McCoy Kailua-Kona, Hawaii December, 1997 TABLE OF CONTENTS EXECUTIVE SUMMARY...........................................................................................................................4 PREFACE......................................................................................................................................................8 1. INTRODUCTION....................................................................................................................................9 1.1 BACKGROUND ......................................................................................................................................9 1.2 TERMS OF REFERENCE AND METHODOLOGY ............................................................................10 1.3 DISCUSSION OF DEFINITIONS .........................................................................................................11 2. GREEN TURTLES, ISLANDS AND PEOPLE OF THE NORTHERN MARIANAS ...................12 2.1 SUMMARY OF GREEN TURTLE BIOLOGY.....................................................................................12 2.2 DESCRIPTION OF THE NORTHERN MARIANA ISLANDS ............................................................14 2.3 SOME RELEVANT
    [Show full text]
  • Do You Know of a Colleague And/Or Student Who Would Be Interested in Receiving These Bulletin Boards? Please Forward to Them
    Do you know of a colleague and/or student who would be interested in receiving these Bulletin Boards? Please forward to them. A quick email to [email protected] with the word “subscribe” in the subject line and the email address will be added to the listing. Geoscience Bulletin Board – 24 February 2020 – compiled by Elaine J. Hanford 14% chance of M9 EQ hitting Seattle in next 50 years – multiple simulations of Cascadia event • https://www.yahoo.com/news/earthquake-experts-lay-latest-outlook-030810234.html • Tsunami simulation: https://www.geekwire.com/2019/watch-tsunami-waves-9-0-earthquake- new-simulation-videos-washington-scientists/ Ice volcanoes erupt on Lake Michigan beach • https://www.msn.com/en-us/weather/topstories/rare-ice-volcanoes-captured-erupting-on- lake-michigan-beach-but-may-not-stick-around/ar-BB105oA7 • https://www.popularmechanics.com/science/environment/a31019508/lake-michigan-ice- volcanoes/ Foehn winds cause localized high temperature conditions in Antarctica • https://www.deseret.com/2020/2/11/21132049/record-high-temperature-recorded-in- antarctica-esperanza-global-warming-foehn Heavy rains & swollen rivers trigger landslide in Hardin County, Tennessee • https://abcstlouis.com/news/nation-world/watch-tennessee-house-collapses-in-landslide-02- 17-2020 Avalanche in Eagle County, Colorado, claims two lives – triggered by 3 mono-track riders • https://www.msn.com/en-us/news/us/2-men-killed-in-large-avalanche-in-colorado/ar- BB103UrS Fluid pressure changes facilitate slow aseismic EQ in Cascadia Subduction
    [Show full text]
  • An Early Bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F
    www.nature.com/scientificreports OPEN An early bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F. Smith1, Christopher R. Noto2 & Aryeh Grossman1 Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is signifcant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modifed phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids. Pleurodira, colloquially known as “side-necked” turtles, form one of two major clades of turtles known from the Early Cretaceous to present 1,2. Pleurodires are Gondwanan in origin, with the oldest unambiguous crown pleurodire dated to the Barremian in the Early Cretaceous2. Pleurodiran fossils typically come from relatively warm regions, and have a more limited distribution than Cryptodira (hidden-neck turtles)3–6. Living pleurodires are restricted to tropical regions once belonging to Gondwana 7,8.
    [Show full text]
  • Osseous Growth and Skeletochronology
    Comparative Ontogenetic 2 and Phylogenetic Aspects of Chelonian Chondro- Osseous Growth and Skeletochronology Melissa L. Snover and Anders G.J. Rhodin CONTENTS 2.1 Introduction ........................................................................................................................... 17 2.2 Skeletochronology in Turtles ................................................................................................ 18 2.2.1 Background ................................................................................................................ 18 2.2.1.1 Validating Annual Deposition of LAGs .......................................................20 2.2.1.2 Resorption of LAGs .....................................................................................20 2.2.1.3 Skeletochronology and Growth Lines on Scutes ......................................... 21 2.2.2 Application of Skeletochronology to Turtles ............................................................. 21 2.2.2.1 Freshwater Turtles ........................................................................................ 21 2.2.2.2 Terrestrial Turtles ......................................................................................... 21 2.2.2.3 Marine Turtles .............................................................................................. 21 2.3 Comparative Chondro-Osseous Development in Turtles......................................................22 2.3.1 Implications for Phylogeny ........................................................................................32
    [Show full text]
  • Using Growth Rates to Estimate Age of the Sea Turtle Barnacle Chelonibia Testudinaria
    Mar Biol (2017) 164:222 DOI 10.1007/s00227-017-3251-5 SHORT NOTE Using growth rates to estimate age of the sea turtle barnacle Chelonibia testudinaria Sophie A. Doell1 · Rod M. Connolly1 · Colin J. Limpus2 · Ryan M. Pearson1 · Jason P. van de Merwe1 Received: 4 May 2017 / Accepted: 20 October 2017 © Springer-Verlag GmbH Germany 2017 Abstract Epibionts can serve as valuable ecological indi- may live for up to 2 years, means that these barnacles may cators, providing information about the behaviour or health serve as interesting ecological indicators over this period. of the host. The use of epibionts as indicators is, however, In turn, this information may be used to better understand often limited by a lack of knowledge about the basic ecology the movement and habitat use of their sea turtle hosts, ulti- of these ‘hitchhikers’. This study investigated the growth mately improving conservation and management of these rates of a turtle barnacle, Chelonibia testudinaria, under threatened animals. natural conditions, and then used the resulting growth curve to estimate the barnacle’s age. Repeat morphomet- ric measurements (length and basal area) on 78 barnacles Introduction were taken, as host loggerhead turtles (Caretta caretta) laid successive clutches at Mon Repos, Australia, during the Sea turtles are known to host diverse communities of plants 2015/16 nesting season. Barnacles when frst encountered and invertebrate animals (Caine 1986; Kitsos et al. 2005; ranged in size from 3.7 to 62.9 mm, and were recaptured Robinson et al. 2017). Past analyses of the size, abundance, between 12 and 56 days later.
    [Show full text]
  • Redalyc.Distribution Patterns of the Barnacle, Chelonibia Testudinaria
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Nájera-Hillman, Eduardo; Bass, Julie B.; Buckham, Shannon Distribution patterns of the barnacle, Chelonibia testudinaria, on juvenile green turtles (Chelonia mydas) in Bahia Magdalena, Mexico Revista Mexicana de Biodiversidad, vol. 83, núm. 4, diciembre, 2012, pp. 1171-1179 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42525092012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 83: 1171-1179, 2012 DOI: 10.7550/rmb.27444 Distribution patterns of the barnacle, Chelonibia testudinaria, on juvenile green turtles (Chelonia mydas) in Bahia Magdalena, Mexico Patrones de distribución del balano, Chelonibia testudinaria, en tortugas verdes (Chelonia mydas) juveniles en bahía Magdalena, México Eduardo Nájera-Hillman1 , Julie B. Bass2,3 and Shannon Buckham2,4 1COSTASALVAjE A.C. Las Dunas #160-203. Fracc. Playa Ensenada. 22880 Ensenada, Baja California, México. 2Center for Coastal Studies-The School for Field Studies. 23740 Puerto San Carlos, Baja California Sur, México. 3Wellesley College, 21 Wellesley College Rd., Wellesley, MA 02481 USA. 4Whitman College, 345 Boyer Ave. Walla Walla, WA 99362 USA. [email protected] Abstract. The barnacle, Chelonibia testudinaria, is an obligate commensal of sea turtles that may show population variability according to the physical characteristics of the environment and properties of turtle hosts; therefore, we characterized the distributional patterns and the potential effects on health of C.
    [Show full text]
  • A Checklist of Turtle and Whale Barnacles
    Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5.
    [Show full text]
  • Race War Draft 2
    Race War Comics and Yellow Peril during WW2 White America’s fear of Asia takes the form of an octopus… The United States Marines #3 (1944) Or else a claw… Silver Streak Comics #6 (Sept. 1940)1 1Silver Streak #6 is the first appearance of Daredevil Creatures whose purpose is to reach out and ensnare. Before the Octopus became a symbol of racial fear it was often used in satirical cartoons to stoke a fear of hegemony… Frank Bellew’s illustration here from 1873 shows the tentacles of the railroad monopoly (built on the underpaid labor of Chinese immigrants) ensnaring our dear Columbia as she struggles to defend the constitution from such a beast. The Threat is clear, the railroad monopoly is threating our national sovereignty. But wait… Isn’t that the same Columbia who the year before… Yep… Maybe instead of Columbia frightening away Indigenous Americans as she expands west, John Gast should have painted an octopus reaching out across the continent grabbing land away from them. White America’s relationship with hegemony has always been hypocritical… When White America views the immigration of Chinese laborers to California as inevitably leading to the eradication of “native” White Americans, it can only be because when White Americans themselves migrated to California they brought with them an agenda of eradication. In this way White European and American “Yellow Peril” has largely been based on the view that China, Japan, and India represent the only real threats to white colonial dominance. The paranoia of a potential competitor in the game of rule-the-world, especially a competitor perceived as being part of a different species of humans, can be seen in the motivation behind many of the U.S.A.’s military involvement in Asia.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]