Phyllomedusa Bicolor: Phyllomedusidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phyllomedusa Bicolor: Phyllomedusidae) Amphibia-Reptilia 41 (2020): 349-359 brill.com/amre Hidden diversity within the broadly distributed Amazonian giant monkey frog (Phyllomedusa bicolor: Phyllomedusidae) Edvaldo Pereira Mota1, Igor Luis Kaefer2, Mario da Silva Nunes1, Albertina Pimentel Lima3, Izeni Pires Farias1,∗ Abstract. Phyllomedusa bicolor is a large-sized nocturnal tree frog found in tropical rainforests throughout much of the Amazonian region of Brazil, Colombia, Bolivia, Peru, Venezuela, and the Guianas. Very little is known about P. b i c o l o r genetic diversity and genealogical history of its natural populations. Here, using a sampling design that included populations covering most of its distributional range, we investigated the spatial distribution of genetic variability of this species, and we tested the hypothesis that P. b i c o l o r is composed of deeply structured genetic groups, constituting more than one lineage across the Brazilian Amazonia. The results suggested two main lineages in two geographic mega-regions: Western and Eastern Amazonia, the latter consisting of three population groups distributed in the Guiana and Brazilian Shields. The present findings have implications to taxonomy, to understanding the processes that lead to diversification, and to defining strategies of conservation and medicinal use of the species. Keywords: cryptic diversity, genetic diversity, Phyllomedusidae, phylogeography, tropical rainforest. Introduction in general, forest specialist species and species with low dispersal capacity tend to be geneti- Surveys of molecular biodiversity suggest high cally structured (Smith and Green, 2005; Ro- levels of intraspecific diversity within anurans dríguez et al., 2015). In summary, trait, distribu- from the Neotropics (Fouquet et al., 2007; Funk, tion, and life history can influence genetic diver- Caminer and Ron, 2012; Motta et al., 2018) gence between populations and may, ultimately, which often upon further examination trans- influence the phylogeographic patterns of the late to species diversity (e.g. Caminer et al., species. Besides, the taxonomic limits within 2017; Rojas et al., 2018). The nominal species Amazonian species complexes as well as the ge- to present such a pattern are often categorized ographic factors promoting and maintaining dif- as complexes of cryptic species, being gen- ferentiation among populations remain poorly erally those with wide geographical distribu- understood (Wesselingh et al., 2010; Kaefer et tion, small body size and low dispersal abilities al., 2013; Fouquet et al., 2014). (Gehara et al., 2014); however, species with re- In this context, several species of Amazo- stricted distribution cannot be discarded either nian anurans with a wide distribution turn out (Guayasamin et al., 2017). Also, such evolution- to be geographically structured in many evolu- ary differentiation is likely favored by habitat tionary lineages, some of which deserving spe- specificity (Vences and Wake, 2007; Kaefer et cific status (Kaefer et al., 2013; Rojas et al., al., 2013; Maia, Lima and Kaefer, 2017), i.e. 2018). Phyllomedusa bicolor (Boddaert, 1772) (Anura, Phyllomedusidae) is a relatively large- 1 - Laboratório de Evolução e Genética Animal, Instituto sized nocturnal tree frog found in tropical rain- de Ciências Biológicas, Universidade Federal do Ama- zonas, Manaus, Brazil forests throughout a broad geographic area, oc- 2 - Departamento de Biologia, Instituto de Ciências Bi- curring in the Amazonian region of Brazil, ológicas, Universidade Federal do Amazonas, Manaus, Colombia, Bolivia, Peru, Venezuela, and the Brazil 3 - Coordenação de Biodiversidade, Instituto Nacional de Guianas; it also occurs in the Cerrado habitat of Pesquisas da Amazônia, Manaus, Brazil Maranhão state, Brazil (Frost, 2019). The cur- ∗Corresponding author; e-mail: [email protected] rently accepted hypothesis that individuals of Downloaded from Brill.com10/16/2020 07:21:33PM via free access © Koninklijke Brill NV, Leiden, 2020. DOI:10.1163/15685381-bja10003 350 E.P. Mota et al. P. bicolor from geographically distant locations obtained from the primers MZV15-L (Moritz, Wright and represent the same taxon awaits support from Brown, 1992) and Control-IP-H (Goebel, Donnelly and Atz, 1999) to amplify a portion of the Cytb gene, and primers for genetic data. Skin secretions from this frog have the nuclear gene RAG1 (Rag1_phyFL and Rag1_phyR). been used by indigenous people from Brazil and The amplification of the 16S and Cytb was performed Peru for centuries as a ritualistic healing sub- in a final volume of 15 μl containing 5.5 μl of ddH2O, stance, and its use has spread via urban ex- 1.5 μl of dNTP (1.5 mM), 1.5 μl of 10X buffer (Tris-HCl 100 mM, KCl 500 mM), 1.5 ml of each primer (0.2 mM), pansion into alternative therapy clinics (Silva, 1.5 μlofMgCl2 (25 mM), 1 μl of DNA (approx. 10 ng) and Monteiro and Bernarde, 2019). Even though 0.3 μl of Taq DNA polymerase. The amplification cycles Phyllomedusa bicolor is a pharmacologically were performed using the following conditions: (1) initial denaturation at 92°C for 1 minute, (2) 35 cycles consisting important taxon, no study has assessed the ge- of denaturation at 92°C for 1 minute, annealing of primers at netic diversity and genealogical history of natu- 50°C for 40 seconds, and extension at 72°C for 1.5 minutes, ral populations of this species, and many of its as well as (3) final extension at 72°C for 5 minutes. The PCR products were purified with the exonuclease few published DNA sequences are not assigned and alkaline phosphatase enzymes, following the manu- to any specific geographic location, given that facturer’s protocol (Fermentas). Sequencing reactions were they have been obtained from pet trade speci- performed using the Big Dye Terminator Cycle Sequencing Kit, following the manufacturer’s protocol (Life Technolo- mens. Therefore, we assess the genetic diver- gies). Products were resolved on the ABI3130xl automatic sity of Phyllomedusa bicolor populations by sequencer (Life Technologies) and edited and aligned using sequencing mitochondrial and nuclear genetic the software BioEdit (Hall, 1999). markers. Assuming its large geographical dis- tribution, we aim to test whether populations of Data analysis P. bicolor constitute the same evolutionary unit A network of haplotypes was generated using a con- + throughout its range. catenated data of all molecular markers (16S rRNA Cytb+RAG1) in the program HAPLOVIEWER for the re- construction of the genealogical relations between individ- uals (Salzburger, Ewing and von Haeseler, 2011). Materials and methods Single locus discovery and phylogeography Sampling and data collection To test whether populations of Phyllomedusa bicolor com- Sampling occurred in the years 2008 to 2009 and was per- prise just one evolutionary unit, we used the ultramet- formed in sampling sites across five states in the Brazilian ric consensus tree topology generated in BEAST as in- Amazonia. A total of 117 individuals were obtained from put for single-locus species discovery analyses: bGMYC, a 11 different sampling sites (supplementary table S1), which Bayesian implementation of the GMYC (Reid and Carstens, include populations that cover a large part of the species dis- 2012), and the Poisson tree process (PTP) model for species tribution in the Amazonian biome. delimitation (Zhang et al., 2013) as implemented in mPTP We collected samples at night around permanent and (Kapli et al., 2017). For these analyses, we used only unique semi-permanent puddles as well as around ponds near haplotypes from the concatenated data set. The phylogeo- streams. At least seven individuals were collected from graphic analysis in BEAST was conducted using concate- each area. The sampling was conducted through auditory nated data from all sampled individuals. Clade support was and visual searches with a headlamp. Tissue samples were assessed with 1,000 non-parametric bootstraps. For these collected from one of the toes, preserved in 95% ethanol analyses, we used the TIM+G+I model of molecular evo- and deposited in the Animal Genetics Tissue Collection – lution selected by the program jMODELTEST (Posada, CTGA-ICB/UFAM Campus (CGEN, Resolution No. 75 of 2008). August 26, 2004) Laboratory of Animal Genetics and Evo- Using the concatenated data we calculated the time of lution of the Federal University of Amazonas, Manaus, most recent common ancestor (TMRCA) for each group Brazil. of haplotypes using a coalescence history approach inves- Genomic DNA extraction was performed according to tigated by Markov Chain Monte Carlo (MCMC) using the the protocol described by Sambrook, Fritsch and Maniatis BEAST v1.8 program (Drummond and Rambaut, 2007). (1989). We used sets of primers to amplify two regions of The analyses were performed assuming a relaxed molecu- the mitochondrial DNA (mtDNA) and one nuclear gene. lar clock lognormal type, which assumes independent rates Amplification was performed via polymerase chain reaction on different branches (Drummond et al., 2006). Prior trees (PCR) using primers for 16S rRNA mitochondrial gene were modeled according to the Yule process of speciation. (Palumbi, 1996), Cytochrome b (Cytb) specific primers The chain (MCMC) used in the BEAST analysis of di- developed for Phyllomedusa bicolor using amplifications vergence had a size of 10 million steps, with a consensus Downloaded from Brill.com10/16/2020 07:21:33PM via free access Genetic diversity of giant monkey frog Phyllomedusa bicolor 351 tree recorded every 10,000 steps and a burn-in of 5%. The constant.
Recommended publications
  • Kambô: a Shamanic Medicine - Personal Testimonies
    Review Article JOJ Case Stud Volume 8 Issue 3 - September 2018 Copyright © All rights are reserved by Jan M Keppel Hesselink DOI: 10.19080/JOJCS.2018.08.555739 Kambô: A Shamanic Medicine - Personal Testimonies Jan M Keppel Hesselink1,2* 1Department of Health, University of Witten/Herdecke, Germany 2Institute for Neuropathic Pain, Netherlands Submission: August 24, 2017; Published: September 07, 2018 *Corresponding author: Jan M Keppel Hesselink, Department of Health, University of Witten/Herdecke, Germany & Institute for Neuropathic Pain, Bosch en Duin, Netherlands, Email: Abstract Since the beginning of this century more and more people in Europe and USA make use of a shamanic product based on the secretion of an Amazonian frog, the Phyllomedusa bicolor. This secretion contains a great number of bio-active peptides and is administered in a ritual via a fresh burn created on the skin of forearm or leg. The desired effects are related to acute intoxication and consist amongst others of nausea and vomiting, diarrhea and swelling of the face as in Quinke’s edema. These effects occur within minutes after the inoculation with the secretion and last mostly for few hours. After this intense period people feel rejuvenated and many participants of the cleansing ritual claim long lasting positive effects for their health. We present the history and context of Kambô use and some case-studies based on personal testimonies. Clearly the increasing use of a shamanic intervention as Kambô is also an expression and a signal of the dissatisfaction of consumers with the results of Western medicine. Keywords: Phyllomedusa bicolor; Shaman; Healing; Target; Side-effects Introduction Phyllomedusa bicolor is an Amazonian frog and the source of Kambô.
    [Show full text]
  • The Journey of Life of the Tiger-Striped Leaf Frog Callimedusa Tomopterna (Cope, 1868): Notes of Sexual Behaviour, Nesting and Reproduction in the Brazilian Amazon
    Herpetology Notes, volume 11: 531-538 (2018) (published online on 25 July 2018) The journey of life of the Tiger-striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes of sexual behaviour, nesting and reproduction in the Brazilian Amazon Thainá Najar1,2 and Lucas Ferrante2,3,* The Tiger-striped Leaf Frog Callimedusa tomopterna 2000; Venâncio & Melo-Sampaio, 2010; Downie et al, belongs to the family Phyllomedusidae, which is 2013; Dias et al. 2017). constituted by 63 described species distributed in In 1975, Lescure described the nests and development eight genera, Agalychnis, Callimedusa, Cruziohyla, of tadpoles to C. tomopterna, based only on spawns that Hylomantis, Phasmahyla, Phrynomedusa, he had found around the permanent ponds in the French Phyllomedusa, and Pithecopus (Duellman, 2016; Guiana. However, the author mentions a variation in the Frost, 2017). The reproductive aspects reported for the number of eggs for some spawns and the use of more than species of this family are marked by the uniqueness of one leaf for confection in some nests (Lescure, 1975). egg deposition, placed on green leaves hanging under The nests described by Lescure in 1975 are probably standing water, where the tadpoles will complete their from Phyllomedusa vailantii as reported by Lescure et development (Haddad & Sazima, 1992; Pombal & al. (1995). The number of eggs in the spawns reported Haddad, 1992; Haddad & Prado, 2005). However, by Lescure (1975) diverge from that described by other exist exceptions, some species in the genus Cruziohyla, authors such as Neckel-Oliveira & Wachlevski, (2004) Phasmahylas and Prhynomedusa, besides the species and Lima et al. (2012). In addition, the use of more than of the genus Agalychnis and Pithecopus of clade one leaf for confection in the nest mentioned by Lescure megacephalus that lay their eggs in lotic environments (1975), are characteristic of other species belonging to (Haddad & Prado, 2005; Faivovich et al.
    [Show full text]
  • Release Calls of Four Species of Phyllomedusidae (Amphibia, Anura)
    Herpetozoa 32: 77–81 (2019) DOI 10.3897/herpetozoa.32.e35729 Release calls of four species of Phyllomedusidae (Amphibia, Anura) Sarah Mângia1, Felipe Camurugi2, Elvis Almeida Pereira1,3, Priscila Carvalho1,4, David Lucas Röhr2, Henrique Folly1, Diego José Santana1 1 Mapinguari – Laboratório de Biogeografia e Sistemática de Anfíbios e Repteis, Universidade Federal de Mato Grosso do Sul, 79002-970, Campo Grande, MS, Brazil. 2 Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59072-970, Natal, RN, Brazil. 3 Programa de Pós-graduação em Biologia Animal, Laboratório de Herpetologia, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. 4 Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista (UNESP), 15054-000, São José do Rio Preto, SP, Brazil. http://zoobank.org/16679B5D-5CC3-4EF1-B192-AB4DFD314C0B Corresponding author: Sarah Mângia ([email protected]) Academic editor: Günter Gollmann ♦ Received 8 January 2019 ♦ Accepted 6 April 2019 ♦ Published 15 May 2019 Abstract Anurans emit a variety of acoustic signals in different behavioral contexts during the breeding season. The release call is a signal produced by the frog when it is inappropriately clasped by another frog. In the family Phyllomedusidae, this call type is known only for Pithecophus ayeaye. Here we describe the release call of four species: Phyllomedusa bahiana, P. sauvagii, Pithecopus rohdei, and P. nordestinus, based on recordings in the field. The release calls of these four species consist of a multipulsed note. Smaller species of the Pithecopus genus (P. ayeaye, P. rohdei and P. nordestinus), presented shorter release calls (0.022–0.070 s), with high- er dominant frequency on average (1508.8–1651.8 Hz), when compared to the bigger Phyllomedusa (P.
    [Show full text]
  • Species Diversity and Conservation Status of Amphibians in Madre De Dios, Southern Peru
    Herpetological Conservation and Biology 4(1):14-29 Submitted: 18 December 2007; Accepted: 4 August 2008 SPECIES DIVERSITY AND CONSERVATION STATUS OF AMPHIBIANS IN MADRE DE DIOS, SOUTHERN PERU 1,2 3 4,5 RUDOLF VON MAY , KAREN SIU-TING , JENNIFER M. JACOBS , MARGARITA MEDINA- 3 6 3,7 1 MÜLLER , GIUSEPPE GAGLIARDI , LILY O. RODRÍGUEZ , AND MAUREEN A. DONNELLY 1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida 33199, USA 2 Corresponding author, e-mail: [email protected] 3 Departamento de Herpetología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 11, Perú 4 Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA 5 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA 6 Departamento de Herpetología, Museo de Zoología de la Universidad Nacional de la Amazonía Peruana, Pebas 5ta cuadra, Iquitos, Perú 7 Programa de Desarrollo Rural Sostenible, Cooperación Técnica Alemana – GTZ, Calle Diecisiete 355, Lima 27, Perú ABSTRACT.—This study focuses on amphibian species diversity in the lowland Amazonian rainforest of southern Peru, and on the importance of protected and non-protected areas for maintaining amphibian assemblages in this region. We compared species lists from nine sites in the Madre de Dios region, five of which are in nationally recognized protected areas and four are outside the country’s protected area system. Los Amigos, occurring outside the protected area system, is the most species-rich locality included in our comparison.
    [Show full text]
  • ARAZPA YOTF Infopack.Pdf
    ARAZPA 2008 Year of the Frog Campaign Information pack ARAZPA 2008 Year of the Frog Campaign Printing: The ARAZPA 2008 Year of the Frog Campaign pack was generously supported by Madman Printing Phone: +61 3 9244 0100 Email: [email protected] Front cover design: Patrick Crawley, www.creepycrawleycartoons.com Mobile: 0401 316 827 Email: [email protected] Front cover photo: Pseudophryne pengilleyi, Northern Corroboree Frog. Photo courtesy of Lydia Fucsko. Printed on 100% recycled stock 2 ARAZPA 2008 Year of the Frog Campaign Contents Foreword.........................................................................................................................................5 Foreword part II ………………………………………………………………………………………… ...6 Introduction.....................................................................................................................................9 Section 1: Why A Campaign?....................................................................................................11 The Connection Between Man and Nature........................................................................11 Man’s Effect on Nature ......................................................................................................11 Frogs Matter ......................................................................................................................11 The Problem ......................................................................................................................12 The Reason
    [Show full text]
  • “Kambô” Frog (Phyllomedusa Bicolor): Use in Folk Medicine and Potential Health Risks
    Revista da Sociedade Brasileira de Medicina Tropical Journal of the Brazilian Society of Tropical Medicine Vol.:52:e20180467: 2019 doi: 10.1590/0037-8682-0467-2018 Letter “Kambô” frog (Phyllomedusa bicolor): use in folk medicine and potential health risks Francisco Vaniclei Araújo da Silva[1],[2], Wuelton Marcelo Monteiro[3],[4] and Paulo Sérgio Bernarde[1],[2] [1]. Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brasil. [2]. Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde na Amazônia Ocidental, Universidade Federal do Acre, Rio Branco, AC, Brasil. [3]. Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brasil. [4]. Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil. Dear Editor: Phyllomedusa bicolor is an Amazonian amphibian of the Phyllomedusidae Family, and is found in the forests of Brazil, the Guianas, Venezuela, Colombia, Peru, and Bolivia. It is one of the largest tree frogs of the Amazon. The males measure up to 11.8 cm from snout to vent1 (Figure 1A). Popularly known as “Kambô”, “Kampô,” or “Kampu,” natives use the toxin secreted by the skin of this frog in traditional medicine1,2. The name Kambô is also used to describe the ritual of applying the poisonous secretions of the frog to the skin (Figure 1B). Natives also call the poisonous secretion "toad vaccine". Indigenous people of Brazil and Peru remove the white- colored secretion (Figure 1C) that the frog exudes when it is stimulated, and collect it on wooden spreaders for later use.
    [Show full text]
  • Karyotypes and Ag-Nors in Phyllomedusa Camba De La Riva, 1999 and P
    Italian Journal of Zoology, March 2010; 77(1): 116–121 SHORT COMMUNICATION Karyotypes and Ag-NORs in Phyllomedusa camba De La Riva, 1999 and P. rhodei Mertens, 1926 (Anura, Hylidae, Phyllomedusinae): cytotaxonomic considerations C. R. PAIVA1, J. NASCIMENTO2, A. P. Z. SILVA3, P. S. BERNARDE4, & F. ANANIAS*1 1Curso de Cieˆncias Biolo´gicas, Universidade Sa˜o Francisco (USF), Sa˜o Paulo, Brazil, 2Curso de Cieˆncias Biolo´gicas, Universidade Braz Cubas (UBC), Sa˜o Paulo, Brazil, 3Laborato´rio de Ecologia e Evoluc¸a˜o, Instituto Butantan, Sa˜o Paulo, Sa˜o Paulo, Brazil, and 4Laborato´rio de Herpetologia, Centro de Cieˆncias Biolo´gicas e da Natureza, Universidade Federal do Acre – UFAC, Campus Floresta, Cruzeiro do Sul, Acre, Brazil Abstract The karyotypes of Phyllomedusa camba De La Riva, 1999 and P. rhodei Mertens, 1926 are presented and the chromosome pairs with Ag-NORs are identified. Both karyotypes have 2n526 chromosomes with similar morphology, an exception being the presence of three acrocentric pairs in P. camba. In this species the Ag-NORs are found in the proximal region of pairs 1 and 5 whilst in P. rhodei an extensive inter-individual variation was observed in the number and position of the Ag- NORs (1p, 3q, 5p, 8p, 11q, and 12q). Based on comparative cytogenetic data of P. camba and P. rhodei, we discuss the phenetic groups proposed for Phyllomedusa genus. Keywords: Cytogenetic, chromosome, Amphibia, Phyllomedusa, phenetic group Introduction the species can be distributed amongst five species groups: burmeisteri, hypochondrialis, buckeli, perinesos The family Hylidae has about 870 species, currently and tarsius (Faivovich et al.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • ABCM Specialty Taxa Husbandry Phyllomedusines (Leaf Frogs)
    ABCM Specialty Taxa Husbandry Phyllomedusines (Leaf Frogs) version 2 April 2009 Ron Gagliardo Amphibian Ark The purpose of the Specialty Taxa Monograph is to provide more information on husbandry and breeding of different taxa that may be encountered in amphibian collections. It is intended to be an addendum to the Basic Husbandry Monograph and other monographs such as Captive Reproduction, where basic principles are addressed. Some husbandry specifics are based on experience at the Atlanta Botanical Garden and others may experience different results. 1) Basic morphology and natural history Phyllomedusines (Leaf Frogs) are among the most commonly maintained and reproduced frogs in captivity. This is easy to understand when we think about the numbers of Red eyed leaf frogs that are imported, bred and distributed via the pet trade and institutions. Leaf frogs, however are much more than this flagship with the brilliant red eyes and have much more to offer than display animals with very distinctive behavioral, biochemical and reproductive features! Endemic to Central and South America, there are 57 species of phyllomedusines described to date contained in 7 genera including: Agalychnis 6 species Cruziohyla 2 species Hylomantis 8 species Pachymedusa 1 species Phasmahyla 4 species Phyrnomedusa 5 species Phyllomedusa 31 species Phyllomedusines are easily distinguished from other “tree” frogs by the presence of a vertically elliptical pupil. As the common name implies, they resemble leaves and often are quite cryptic while sleeping on the underside of a leaf. Some species such as Cruziohyla calcarifer and Phyllomedusa bicolor will rest on the tops of leaves or perched on a branch, fully exposed.
    [Show full text]
  • Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae)
    Zootaxa 4104 (1): 001–109 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4104.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:D598E724-C9E4-4BBA-B25D-511300A47B1D ZOOTAXA 4104 Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae) WILLIAM E. DUELLMAN1,3, ANGELA B. MARION2 & S. BLAIR HEDGES2 1Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA 2Center for Biodiversity, Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1601, USA 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Vences: 27 Oct. 2015; published: 19 Apr. 2016 WILLIAM E. DUELLMAN, ANGELA B. MARION & S. BLAIR HEDGES Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae) (Zootaxa 4104) 109 pp.; 30 cm. 19 April 2016 ISBN 978-1-77557-937-3 (paperback) ISBN 978-1-77557-938-0 (Online edition) FIRST PUBLISHED IN 2016 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2016 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]
  • Anura: Phyllomedusidae): a Tree Frog Inhabiting the Brazilian Semiarid
    SALAMANDRA 55(4) 242–252 30 OctoberMarina 2019 dos SantosISSN 0036–3375 Faraulo et al. Reproductive behavior of Pithecopus nordestinus (Anura: Phyllomedusidae): a tree frog inhabiting the Brazilian semiarid Marina dos Santos Faraulo, Jamille Freitas Dias & Juliana Zina Universidade Estadual do Sudoeste da Bahia (UESB) – Campus de Jequié, Departamento de Ciências Biológicas, Laboratório de Vertebrados, Av. José Moreira Sobrinho, s/n, Jequiezinho, Jequié, Bahia, Brasil, CEP: 45208-091 Corresponding author: Marina dos Santos Faraulo, e-mail: [email protected] Manuscript received: 18 May 2019 Accepted: 2 September 2019 by Arne Schulze Abstract. Pithecopus nordestinus is a small species of Phyllomedusidae that occurs in semi-arid zones, being the only one of the genus that occurs in Caatinga areas. In order to understand the ecological and behavioral traits responsible for the existence of the species in xeric environments we study a population of P. nordetinus of a Caatinga area in southwest Bahia, Brazil. Males of P. nordestinus used preferably the vegetation (mainly Euphorbiaceae and Poaceae) inside semi-permanent and temporary water bodies as calling sites. The dependence of aquatic environments, the arboreal habit, and reproduc- tive mode may lead to these preferences, being that choice related to the species fitness in the semiarid region. The species has elaborated courtship, including the use of visual signals, with females that inspect the oviposition site and split their clutch (spatial partition), probably spawning in more than one occasion during the reproductive season (temporal parti- tion). This set of behaviors points to a sophisticated control mechanism during egg laying and sperm release, as well as the existence of a repertoire of complex reproductive behavioral displays related to the occupation of environments with characteristics as peculiar as those of the Brazilian Northeastern semi-arid.
    [Show full text]
  • Reptile & Amphibian List
    TAMBOPATA REPTILE & AMPHIBIAN LIST Posada Amazonas & Tambopata Research Center Family English common name PosAm TRC CLASS AMPHIBIA ANURA Bufonidae 1 Bufo glaberrimus Toad * 2 Bufo marinus Cane toad * * 3 Bufo gr. typhonius Crested toad ** 4 Dendrophryniscus minutus Tiny tree toad * Centrolenidae 5 Cochranella sp 6 Hyalinobatrachium sp Dendrobatidae 7 Colostethus trilineatus 8 Colostethus sp ** 9 Dendrobates biolat Poison-dart frog ** 10 Epipedobates femoralis Poison-dart frog * 11 Epipedobates pictus Poison-dart frog * 12 Epipedobates simulans Poison-dart frog * 13 Epipedobates trivittatus Poison-dart frog ** * * * Hylidae 14 Agalychnis craspedopus * 15 Hemiphractus johnsoni Casque headed Frog 16 Hemiphractus scutatus Casque headed Frog * 17 Hyla acreana Tree frog 18 Hyla allenorum Tree frog 19 Hyla boans Tree frog ** 20 Hyla calcarata Blue-flanked tree frog * 21 Hyla callipleura Tree frog 22 Hyla fasciata Tree frog ** 23 Hyla geographica Tree frog * 24 Hyla granosa Tree frog * 25 Hyla koechlini Tree frog 26 Hyla lanciformis Tree frog * 27 Hyla leali Tree frog 28 Hyla leucophyllata Clown tree frog ** 29 Hyla marmorata Tree frog 30 Hyla minuta Tree frog 31 Hyla parviceps Tree frog * 32 Hyla punctata Tree frog * 33 Hyla rhodopepla Tree frog * 34 Hyla riveroi Tree frog 35 Hyla sarayacuensis Tree frog * 36 Osteocephalus leprieurii Tree frog ** 37 Osteocephalus pearsoni Tree frog * 38 Osteocephalus taurinus Tree frog * 39 Phrynohyas coriacea Tree frog * 40 Phrynohyas venulosa Tree frog * 41 Phyllomedusa atelopoides Tree frog 42 Phyllomedusa
    [Show full text]